
Parallel Best-First Search of State-Space Graphs: A Summary of
Results *

Vi+ I$umari K. Ramesh, and V. Nageshwara Rae
Artificial Intelligence Laboratory

Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

Abstract

This paper presents many different parallel for-
mulations of the A*/Branch-and-Bound search
algorithm. The parallel formulations primarily
differ in the data structures used. Some formula-
tions are suited only for shared-memory architec-
tures, whereas others are suited for distributed-
memory architectures as well. These parallel for-
mulations have been implemented to solve the
vertex cover problem and the TSP problem on
the BBN Butterfly parallel processor. Using ap-
propriate data structures, we are able to obtain
fairly linear speedups for as many as 100 pro-
cessors. We also discovered problem characteris-
tics that make certain formulations more (or less)
suitable for some search problems. Since the best-
first search paradigm of A*/Branch-and-Bound
is very commonly used, we expect these parallel
formulations to be effective for a variety of prob-
lems. Concurrent and distributed priority queues
used in these parallel formulations can be used
in many parallel algorithms other than parallel
A*/branch-and-bound.

1 Introduction
Heuristic search is an important technique that is used
to solve a variety of problems in Artificial Intelligence (AI)
and other areas of computer sciencer6; 22; 231. Search tech-
niques are useful when one is able -to specify the space of
potential solutions, but the exact solution is not known be-
fore hand. In such cases a solution can be found by search-
ing the space of potential solutions. Clearly, if many pro-
cessors are available, then they can search different parts
of the space concurrently. Investigation of parallelism in
different AI search procedures is an active area of research
[9; 20; 7; 14; 15; 21.

For many problems, heuristic domain knowledge is avail-
able, which can be used to avoid searching some (unpromis-
ing) parts of the search space. This means that parallel
processors following a simple strategy (such as divide the
search space statically into disjoint parts and let each one
be searched by a different processor) may end up doing
a lot more work than a sequential processor. This would

*This work was supported by Army Research Office grant
DAAG29-84-K-0060 to the Artificial Intelligence Laboratory,
and Office of Naval Research Grant N00014-86-K-0763 to the
computer science department at the University of Texas at
Austin.

tend to reduce the speedup that can be obtained by paral-
lel processing. If the amount of work done by a sequential
processor is W, and the total amount of work done by
P parallel processors is Wp, then the redundancy factor
due to parallel-control-strategy is given by Wp/Ws and the
upper bound on the speedup is &. However, due to
other factors such as communication’overhead, etc., the
actual the speedup may be less than ,&.

We have been investigating the use of parallel process-
ing for speeding up different heuristic search algorithms [9;
20; 18; lo]. In this paper, we discuss a number of paral-
lel formulations of the A* state-space search algorithm. As
discussed in [ll; 211, A* is essentially a “best-first” branch-
and-bound algorithm. The parallel formulations presented
in this paper are also applicable to many other best-first
branch-and-bound procedures. The parallel formulations
primarily differ in the data structures used to implement
the OPEN list (priority queue) of the A* algorithm. Some
formulations are suited only for shared-memory architec-
tures, whereas others are suited for distributed-memory
architectures as well. The effectiveness of different paral-
lel formulations is also strongly dependent upon the char-
acteristics of the problem being solved. We have tested
the performance of these formulations on the 15-puzzle[22],
the traveling salesman problem(TSP), and the vertex cover
problem (VCP) [l] on the BBN Butterfly multiprocessor.
The results for the 15-puzzle and VCP are very similar;
hence we only present the results for the VCP and TSP.
Although both TSP and VCP are NP-hard problems, they
generate search spaces that are qualitatively different from
each other. We also present a preliminary analysis of
the relationship between the characteristics of the search
spaces and their suitability to various parallel formulations.

BBN Butterfly is composed of up to 256 processor mem-
ory pairs. Each processor’s local memory is accessible to
other processors via a fast switch; hence it is essentially
a shared-memory multiprocessor. It is easy to emulate
distributed memory multiprocessors on a shared-memory
multiprocessor. We study the suitability of different paral-
lel formulations for both shared-memory and distributed-
memory multiprocessors.

2 The A* Algoritlhm
We assume familiarity with the A* algorithm. See [22] for a
good introduction to A *. We will also use the terminology
presented in [22]. H ere we provide a brief overview of the
algorithm.

A* is used to find a least-cost path between a start state
and a (set of) goal state(s) of a given state-space graph.

I22 Automated Reasoning

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

The state-space graph is implicitly specified by the start
state, a move generator (a procedure that can generate
successors of any given state in the state-space graph) and
a function to recognize the goal-state(s). A* maintains two
lists OPEN and CLOSED. OPEN contains those nodes
whose successors have not been generated yet. CLOSED
contains those nodes whose successors have been gener-
ated. The process of generating successors of a node m is
also referred to as “expanding m”. For a node m in OPEN,
g(m) is the cost of the current best path from start state
to m, h(m) is a heuristic estimate of the cost of the short-
est path between m and a goal state, and f(m) = g(m) +
h(m) is the overall cost of the node m. In each iteration,
A* selects a most promising node n (i.e., the node with the
smallest f-value) from the OPEN list for expansion, gener-
ates its successors and puts the node n into CLOSED and
its successors into OPEN. 1 Whenever a goal-node is cho-
sen for expansion, A* terminates with n as the solution. It
was proved in [22] that if the heuristic estimate h is admis-
sible, then A* would terminate with an optimal solution
(if a solution exists). Since the only operations done on
OPEN are deletions of smallest cost element and insertion
of elements, OPEN is essentially a priority queue, and is
often implemented as a heap[l]. The heap implementation
allows insertions and deletions in O(log N) steps, where N
is the size of OPEN.

3 A Centralized Parallel Scare
Strategy

Given P processors, the simplest parallel strategy is to let
each parallel processor work on one of the current best
nodes in the OPEN list. We shall call it a centralized
strategy because each processor gets work from the global
OPEN list. As discussed in [5], this strategy shtiuld not
result in much redundant search. There are two problems
with this approach.

(1) The termination criterion of sequential A* does not
work any more; i.e., if a current processor picks up a goal-
node m for expansion, then the node m is no longer guar-
anteed to be the best goal node. But the termination cri-
terion can be easily modified to ensure that termination
occurs only after a best solution has been found[l4; 241.

(2) Since OPEN will be accessed by all the proces-
sors very frequently, it will have to be maintained in a
shared memory that is easily accessible to all the proces-
sors. Hence distributed-memory architectures such as the
Hypercube[26] are effectively ruled out. Even on shared
memory architectu res, contention for OPEN limits the per-
formance to Tezp/?Lccess, where TeIp is the average time
for one node expansion, and T,,,,,, is the average time
spent in accessing OPEN per node expansion [4]. Note
that the access to CLOSED does not cause contention, as
different processors would manipulate different nodes.

We have implemented this scheme for solving the Trav-
eling Salesman Problem (TSP) and the vertex cover prob-
lem(VCP). Next we discuss these implementations and
present performance results.

‘Since there can be more than one path by which a particular
node can be reached from the start node, this step is a bit more
complicated. See [22] for details.

3.1 Performance Results for the TSP
The Traveling Salesman Problem can be stated as follows
: Given a set of cities and inter-city distances, find a short-
est tour that visits every city exactly once and returns to
the starting city. TSP can be solved using the A*/Branch-
and-Bound algorithm. A number of heuristics are known
for the TSP. We have used the LMSK heuristic[l3] in our
experiments. Although the LMSK heuristic is quite pow-
erful, it is not as good as the assignment heuristic[27]. We
chose LMSK primarily because it was easy to implement
and was adequate to show the power of different data struc-
tures and parallel control strategies discussed in this paper.
We implemented parallel A* (with the LMSK heuristic)
using the centralized control strategy on BBN Butterfly.
OPEN was implemented as a heap. We tested the parallel
version for up to 100 processors on Butterfly. The cost
matrices for TSP instances were generated by a uniform
random number generator. We found the average redun-
dancy factor due to the centralized control strategy to be
over .95 even for 100 processors.

Figure 1 gives the actual speedup obtained for problems
of different granularities (Tetp). Tezcp is the time needed
to compute the LMSK heuristic of the generated nodes in
each iteration of A*. This grows as O(M2), where M is the
number of cities in the TSP. The speedup is fairly linear for rl,
small number of processors, but saturates at 7s. This

1 accegs
shows that the centralized parallel strategy is quite effec-
tive for parallelizing the TSP instances of large granularity.
On problems with smaller granularities, the contention for
OPEN shows up. To reduce the contention for OPEN, we
implemented it as a concurrent heap[l7]. On a concurrent
heap, OPEN needs to be locked only for O(1) time, which
allows O(log N) p rocessors to access OPEN simultaneously
(N is the number of nodes in OPEN). Fig. 2 shows the im-
provement in performance due to the concurrent heap.

3.2 Performance Results for the Vertex
Cover problem(VCP)

The vertex cover problem can be stated as follows: Given
an undirected graph G = (V,E) (V denotes the set of ver-
tices, and E denotes the set of edges), find the smallest
subset of vertices such that they cover all the edges in E.
The start state of the state space of the VCP is a null
cover. Each state is a partial cover of the graph. From
any state, its two successors can be created by including
or excluding the next vertex. If a vertex is excluded, then
all of its neighbors are included in the partial cover. For
any state n, g(n) is the number of vertices already included
in the partial cover n, and h(n) is the minimum number of
vertices that must be added to n to create a cover. The h
function for the VCP is readily computed2.

We implemented parallel A* to solve the VCP on BBN
Butterfly and tested it on many randomly generated in-
stances of the vertex cover problem. These instances were
chosen to have 50 to 80 vertices to ensure that the search
trees of these instances are reasonably large. The VCP is
prone to speedup anomalies, as there are a lot of nodes
in its state-space tree that have the same cost as that of

2the computation
rithm given in [29].

of h(n) for a node is done using an algo-

Kumar, Rameshand Rao 123

its least-cost solution. Hence, the speedup depends upon
when the actual solution is encountered by the search (se-
quential or parallel). The phenomenon of speedup anoma-
lies in best-first branch-and-bound has been extensively
studied in [12; 251. Our recent work[l9] shows that it is
possible to expect superlinear speedup on the average.3
To study the speedup behavior in absence of anomaly, we
modified the A* algorithm to find all optimal solutions of
the VCP.

The redundancy factor due to the centralized control
strategy for the vertex cover problem is consistently around
1. But the speedup obtained is very poor and tapers off
around 8. The reason for the poor performance is that the
node expansion in the vertex cover problem is very cheap;
hence all the processors spend a good part of their time
adding or removing elements from OPEN causing con-
tention for the shared data structure. Even if OPEN is
implemented as a concurrent heap, the speedup would ta-
per off around 24. This clearly shows that the centralized
strategy is not good for small granularity problems such
as the VCP.

Next we present many different decentralized control
strategies that work even for problems for which the node
expansion time is small. In these strategies, the OPEN list
is implemented as a distributed priority queue.

4 Distribaated Strategies
One way to avoid the contention due to centralized OPEN
is to let each processor have its own local OPEN list4.
Initially, the search space is statically divided and given
to different processors (by expanding some nodes and dis-
tributing them to the local OPEN lists of different pro-
cessors). Now all the processors select and expand nodes
simultaneously without causing contention on the shared
OPEN list as before. In the absence of any communica-
tion between individual processors, it is possible that some
processors may work on a good part of the search space,
while others may work on bad parts that would have been
pruned by the sequential search. This would lead to a high
redundancy factor and poor speedup. The communication
schemes discussed in the next three sections try to ensure
that each processor works on a good part of the search
space.

4.1 The Blackboard Communication
Strategy

In this strategy, there is a shared BLACKBOARD through
which nodes are switched among processors as follows. Af-
ter selecting a (least f-value) node from its local OPEN list,
the processor proceeds with its expansion only if it is within
a “tolerable” limit of the best node in the BLACKBOARD.
If the sclccted node is much better than the best node in
the BLACKBOARD, then the processor transfers some of

3Althongh the work reported in [19] deals with average su-
perlinear speedup in depth-first search, it is also applicable to
best-first search. If many nodes in the state-space graph have
the same cost, then heuristic function does not provide any
discrimination among them, and the search tend to become
depth-first.

*these OPEN lists can be implemented as heaps to allow
O(log N) access time

its good nodes to the BLACKBOARD. If the selected node
is much worse than the best node in the BLACKBOARD,
then the processor transfers some good nodes from the
BLACKBOARD to its local OPEN list. In each case, a
node is reselected for expansion from local OPEN.

The choice of tolerance is important, as it affects the
number of nodes expanded as well as the amount of node
switching between local OPEN lists and the BLACK-
BOARD. If the tolerance is kept low then nodes will be
switched frequently between local OPEN lists and the
BLACKBOARD unless the best nodes in all the OPEN
lists happen to have the same cost. If the tolerance is high
then the node switching would happen less frequently, thus
reducing contention on the global BLACKBOARD. But in
this case a processor can possibly expand nodes that are
inferior to nodes waiting to be expanded in other proces-
sors.

adorn Communication
Strategy

In this strategy, each processor periodically puts the newly
generated successors of the selected node into the OPEN
list of a randomly selected processor. This ensures that if
some processor has a good part of the search space, then
others get a part of it .5 This strategy can be easily im-
plemented on distributed-memory systems with low diam-
eter (such as Hypercube[26], Torus[3]) as well as shared
memory multiprocessors such as the Butterfly. If the fre-
quency of transfer is high, then the redundancy factor can
be small; otherwise it can be very large. The choice of
frequency of transfer is effectively determined by the cost
of communication. If communication cost is low (e.g., on
shared-memory multiprocessors) then it would be best to
perform communication after every node expansion.

4.3 The Ring Communication Strategy
In this strategy, different processors are assumed to be con-
nected in a virtual ring. Each processor periodically puts
the newly generated successors of the selected node into the
OPEN list of one of its neighbors in the ring.6 This allows
transfer of good work from one processor to another. This
strategy is well suited even for distributed-memory ma-
chines with high diameter (e.g., ring). Of course, it can be
equally easily implemented on low diameter networks and
shared memory architectures. As in the previous scheme,
the cost of communication determines the choice of fre-
quency of transfer.

4.4 Performance Results
We implemented the three communication schemes to solve
the TSP and VCP on the Butterfly parallel processor. Ex-
periments were run on the same problem instances that
were used with the centralized scheme. In the case of the
ring and random communication schemes, the exchanges
were done after each node expansion. In the case of the

‘This strategy is very similar to the one in which periodi-
cally, a processor puts some of its best nodes into the OPEN
list of a randomly selected processor.

‘This strategy is very similar to the one in which periodi-
cally, a processor puts some of its best nodes into the OPEN
list of one of its neighbors in the ring.

124 Automated Reasoning

blackboard strategy, the tolerance factor was kept quite
low. Results are shown in Figures 3 and 4. The black-
board scheme does very well for both problems. The ran-
dom communication scheme does very well for the VCP
and only moderately well for the TSP. The ring communi-
cation scheme has a reasonable performance on the VCP
but does very poorly on the TSP. The performance drop
for the ring communication and the random communica-
tion scheme is primarily due to the increased redundancy
factor. If nodes are transferred less frequently in the ring
and random communication strategies, or if the tolerance
factor for the blackboard strategy is made high, then the
speedup drops significantly in all cases.7 Hence it seems
that a tightly coupled architecture (such as the Butterfly)
would perform much better than loosely coupled architec-
tures on all the formulations.

5 Analysis of Performance
Here we present a discussion of a certain feature of the state
spaces of the TSP and VCP that explains the difference in
performance of distributed communication strategies on
the two problems.

In A*, if the heuristic is consistent[22], then the cost
of the nodes expanded in successive iterations never goes
down (it either goes up or stays the same). Let I$ be the
set of nodes expanded by A* after the cost has gone up
ith time but before it has gone up i+l th time. Clearly
the cost of each node in K (for any i) is the same, and
the heuristic function does not provide any discrimination
among different nodes in Vi. Vo represents the expanded
nodes that have the same cost as the start node. If the
cost goes up L times in the search, then VL is the set of
nodes expanded whose cost is the same as the optimal so-
lution. Note that the heuristic functions used in the TSP
and the VCP (and most other problems solved by branch-
and-bound) are consistent. Figure 5 plots Vi for an in-
stance of the VCP and an instance of the TSP. Plots for
the other instances are very similar in each case. Clearly,
for the VCP, V;: grows very rapidly, and for the TSP it
grows very slowly. For the VCP, expansions of nodes in
VL represents a very large fraction (nearly 75 percent) of
the total work done by A *. Since all the nodes in VL have
the same cost, the heuristic function does not provide much
discrimination between these nodes, and the loose coupling
of the random and ring communication schemes seem to
be good enough. For the TSP, there are only a few nodes
at each cost (L is 54, and most of the Vi have between 50
and 400 nodes); hence the communication scheme should
be “tightly-coupled” to be able to effectively utilize the
heuristic guidance. Note that the rapid growth of K does
not mean that the heuristic is bad. In a 65-node VCP, it
reduces the search space from 265 to around 11300 nodes.
The LMSK heuristic used for a 25-city TSP reduces the
search space from 25 * 225 to roughly 3600 nodes. Interest-
ingly, even for the 15-puzzle Vi grows very rapidly, and its
performance on the distributed communication schemes is
very similar to that of the VCP.

It is easy to see that IDA*[8] outperforms A* on those
problems for which E grows very rapidly. We have already
presented a parallel implementation of IDA* that is able

7These results are n ot shown in the speedup graphs.

to provide virtually unlimited speedup (for large enough
problems) on a variety of architectures[20; lo]. Also IDA*,
unlike A* requires very little memory, hence can solve large
problem instances without running out of memory.

The speedup anomalies on the VCP are fully explained
by the fact that a large number of nodes have the the cost
equal to that of the optimal solution. Hence, the amount
of work done by any search scheme (sequential or parallel)
depends upon when the set of nodes leading to the optimal
solution are expanded. Although a number of researchers
have investigated the phenomenon of speedup anomalies in
best-first branch-and-bound, all of them hypothesized that
the phenomenon is unlike to occur in real problems[l2;
251. Since, for the VCP (and the 15-puzzle), Vi grows
very rapidly, and the length of the solution grows linearly
with problem size, for large problem instances the speedup
anomaly can be very pronounced.

Many of the parallel formulations of A*/Branch-and-
Bound presented in this paper have been investigated by
other researchers as well. The centralized scheme has been
studied in [16; 25; 41. P arallel A* with the centralized
scheme for solving the TSP is essentially the same as Mo-
han’s parallel algorithm for TSP in [16]. Mohan reported
a speedup of 8 on 16 processors on the Cm*. Our results
show that for high granularity problems such as TSP, this
scheme can provide several orders of magnitude speedup on
commercially available multiprocessors. The use of concur-
rent heap further extends the upper limit on the speedup
obtained using the centralized approach. We have also in-
vestigated various means of artificially increasing the gran-
ularity of the problem (i.e., increase T&,).s These results
are not presented in this paper.

A number of researchers have suggested distributed
strategies similar to the random communication scheme
[29; 31, and the ring communication scheme [28; 301. Wah
and Ma [30] f ound the ring communication scheme to give
good speedup on the vertex cover problem and hypoth-
esized that this could be a good strategy for best-first
Branch-and-Bound in general. Our work has clearly shown
that these strategies are effective only for those problems in
which the search space has many nodes of the same cost.
To the best of our knowledge the blackboard communi-
cation strategy for parallel A* has not been investigated
before.

ing emarks
We have presented many different ways of parallelizing the
A* algorithm, and have studied their performance on the
Vertex Cover problem (VCP) and the Traveling Salesman
Problem (TSP). The performance of different formulations
depends on the characteristics of the problems.

The centralized scheme has a very low redundancy fac-
tor, but causes contention for the centralized OPEN (im-
plemented as a simple heap or as a concurrent heap) unless
the granularity of the problem is large. In the distributed
schemes, each processor has its own OPEN list (the OPEN

‘One such scheme is: pick one node from OPEN, generate
a large number of nodes, and then put them back into OPEN.

Kumar, Ramesh and Rao 125

list is implemented as a distributed heap); hence there is
no contention for shared data structures. But the redun-
dancy factor can be large, as some processors may have
all the good nodes while others may have only bad nodes.
The communication strategies (blackboard, ring, random)
try to make sure that all of the local OPEN lists (priority
queues) have even distribution of good nodes. Contrary
to the belief of many researchers, the random and ring
communication strategies are not very effective evenly dis-
tributing good nodes. They appear to perform well only on
those problems in which the search space has many nodes
of the same cost (e.g., the 15-puzzle, the VCP). For other
problems (such as the TSP), they have a large redundancy
factor, and give poor speedup. The blackboard strategy
clearly outperforms the other two distributed strategies
for both kinds of problems. A major drawback of the
blackboard strategy is that it requires a shared-memory
architecture, which is more expensive to construct than
the distributed memory architectures such as ring or hy-
percube. Also, contention for the blackboard limits the
ultimate scalability of the strategy. We are currently in-
vestigating strategies that do not suffer from these draw-
backs.

It is expected that all the parallel control strategies pre-
sented in this paper would be applicable to many other
problems solvable by A*/branch-and-bound. Concurrent
and distributed priority queues used in these parallel for-
mulations can be useful in many parallel algorithms other
than parallel A*/b ranch-and-bound. Our work has demon-
strated that it is possible to exploit parallelism in search
to get several orders of magnitude speedup on commer-
cially available multiprocessors. Given that each processor
in these systems is an off-the-shelf microprocessor, these
parallel processors can be cost effective high performance
computing engines for solving AI search and optimization
problems.

Acknowledgements : We would like to thank Prof.
Larry Davis (Center for Automation Research, University
of Maryland) for access to the BBN Butterfly parallel pro-
cessor. Alan Gove implemented an earlier version of paral-
lel A* for solving the Vertex Cover problem on the Sequent
parallel processor. Rich Korf and Dan Miranker made use-
ful comments on an earlier draft of this paper.

References
PI

PI

PI

PI

PI

A. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Addison-
Wesley, Reading, Massachusetts, 1974.

J.S. Conery and D.F. Kibler. Parallelism in ai programs.
In IJCAI, pages 53-56, 1985.

William Dally. A VLSI Architecture for Concurrent
Data Structures. Kluwer Academic Publ, Boston, Mas-
sachusetts, 1987.

Shie-rei Huang and Larry Davis. A Tight Upper Bound
for the Speedup of Parallel Best-First Branch-and-Bound
Algorithms. Technical Report, Center for Automation Re-
search, Univ. of Maryland, College Park, Maryland 20742,
1987.

Keki B. Irani and Yi-fong Shih. Parallel a* and ao* al-
gorithms: an optimality criterion and performance evalua-
tion. In Proceedings of International conference on PawReel
Processing, pages 274-277, 1986.

PI

171

PI

PI

PO1

WI

WI

P31

PI

PI

P61

P71

P81

PI I

PO1

Pll

WI

P31

WI

[=I

V. Kumar and L.N. Kanal. Parallel branch-and-bound
formulations for and/or tree search. IEEE Trans. Pattern.
Anad. and Machine Intel& PAMI-6:768-778, 1984.

V. Kumar and V. Nageshwara Rao. Parallel depth-first
search, partii: analysis. International Journal of Parallel
Programming, 1988. to appear.

Vipin Kumar. Branch-and-bound search. In Stuart C.
Shapiro, editor, Encyclopaedia of Artifkial Intelligence:
Vol 2, pages 1000-1004, John Wiley and Sons, Inc., New
York, 1987.

T. H. Lai and Sartaj Sahni. Anomalies in parallel branch
and bound algorithms. Communications of the ACM, 594-
602, 1984.

E. L. Lawler and D. Woods. Branch-and-bound methods:
a survey. Operations Research, 14, 1966.

D.B. Leifker and L.N. Kanal. A hybrid sss*/alpha-beta
algorithm for parallel search of game trees. In IJCAI,
pages 1044-1046, 1985.

T.A. Marsland and M. Campbell. Parallel search of
strongly ordered game trees. Computing Surveys, 14:533-
551, 1982.

Joseph Mohan. Experience with two parallel programs
solving the traveling salesman problem. In Proceed-
ings of International conference on Parallel Processing,
pages 191-193, 1983.

V. Nageshwara Rao and V. Kumar. Concurrent insertions
and deletions in a priority queue. In Proceedings of the
1988 Parallel Processing Conference, 1988.

V. Nageshwara Rao and V. Kumar. Parallel depth-first
search, part i: implementation. International Journal of
Parallel Programming, 1988. to appear.

V. Nageshwara Rao and V. Kumar. Superlinear Speedup
in Depth-First Search. Technical Report, AI Lab TR, Uni-
versity of Texas at Austin, March 1988.

V. Nageshwara Rao, V. Kumar, and K, Ramesh. A parallel
implementation of iterative-deepening-a*. In Proceedings
of the National Conf. on Artificial Intelligence (AAAI-87),
pages 878-882, 1987.

D.S. Nau, V. Kumar, and L. Kanal. General branch-and-
bound and its relation to a* and ao*. Artificial Intelli-
gence, 23, 1984.

Nils J. Nilsson. Principles of Artifkiab Inteddigence. Tioga
Press, 1980.

Judea Pearl. Heuristics - Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley, Reading,
MA, 1984. e
Michael J. Quinn. Designing EJgCcient Algorithms for Par-
allel Computers. McGraw Hill, NewYork, 1987.

Michael J. Quinn and Narsingh Deo. An upper bound
for the speedup of parallel branch-and-bound algorithms.
BIT, 6,No 1, March 1986.

Laveen Kanal and Vipin Kumar (editors). Search in Ar-
tificiat Intettigence. Springer-Verlag, New York, 1988(in
press).

L.N. Kanal and Vipin Kumar. Branch-andbound formula-
tions for sequential and parallel game tree searching. IJ-
CAI, 569-571, 1981.

R.E. Korf. Depth-first iterative-deepening: an optimal
admissible tree search. Artificial Intelligence, 27:97-109,
1985.

126 Automated Reasoning

[26] Charles Seitz. The cosmic cube. Commun.ACM, 28-1:22-
33, 1985.

[27] H. Stone. High-Performance Computer Architectures.
Addison-Wesley, 1987.

[28] Olivier Vornberger. Implementing Branch-and-Bound in a
Rirag of Processors. Technical Report 29, Univ. of Pader-
born, FRG, 1986.

[29] Olivier Vornberger. Load balancing in a network of trans-
puters. In 2nd International Workshop on Distributed
Parallel Algorithms, 1987.

[30] Benjamin W. Wah and Y. W. Eva Ma. Manip -
a multicomputer architecture for solving combinatorial
extremum-search problems. IEEE Transactions on Com-
puters, c-33, May 1984.

60

speedup

20

20 40 60 80

Number of pmcessors

Figure 3: Performance of the Distributed Strategies on the TSP

80

60

1

#’
,’

,’
56.7160 (Blackboard)

49/60 (random)

26/60
b-a)

60

50

40

w=b
30

20

10

apeedw

40

20

50
20 40 60 80

Number of processors Number of processors

Figure 1: Performance of the centralized parallel
control strategy on the TSP

Figure 4: Performance of the Distributed Strategies on the VCP

8161
8000

6000

Number of
nodes

4000

2000

100

75

speedup

50

25

The Vertex Cover Problem

2029

680

3 6 5 21 47 ‘8 *
31 32 33 34 35 36 37 38 39

cost

Number of processors

Figure 2: Performance of the centralized

parallel control strategy with concurrent heap
TSP 600

Number of
nodes

400
394

333
Ill

239

100
85 7

7 7 46 I#? 9)

200

190 210 230 250 270 280

cost
Figure 5: Number of nodes expanded at different costs

Kumar, Rarnesh and Rao 127

