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Abstract 

This paper presents many different parallel for- 
mulations of the A*/Branch-and-Bound search 
algorithm. The parallel formulations primarily 
differ in the data structures used. Some formula- 
tions are suited only for shared-memory architec- 
tures, whereas others are suited for distributed- 
memory architectures as well. These parallel for- 
mulations have been implemented to solve the 
vertex cover problem and the TSP problem on 
the BBN Butterfly parallel processor. Using ap- 
propriate data structures, we are able to obtain 
fairly linear speedups for as many as 100 pro- 
cessors. We also discovered problem characteris- 
tics that make certain formulations more (or less) 
suitable for some search problems. Since the best- 
first search paradigm of A*/Branch-and-Bound 
is very commonly used, we expect these parallel 
formulations to be effective for a variety of prob- 
lems. Concurrent and distributed priority queues 
used in these parallel formulations can be used 
in many parallel algorithms other than parallel 
A*/branch-and-bound. 

1 Introduction 
Heuristic search is an important technique that is used 
to solve a variety of problems in Artificial Intelligence (AI) 
and other areas of computer sciencer6; 22; 231. Search tech- 
niques are useful when one is able -to specify the space of 
potential solutions, but the exact solution is not known be- 
fore hand. In such cases a solution can be found by search- 
ing the space of potential solutions. Clearly, if many pro- 
cessors are available, then they can search different parts 
of the space concurrently. Investigation of parallelism in 
different AI search procedures is an active area of research 
[9; 20; 7; 14; 15; 21. 

For many problems, heuristic domain knowledge is avail- 
able, which can be used to avoid searching some (unpromis- 
ing) parts of the search space. This means that parallel 
processors following a simple strategy (such as divide the 
search space statically into disjoint parts and let each one 
be searched by a different processor) may end up doing 
a lot more work than a sequential processor. This would 
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tend to reduce the speedup that can be obtained by paral- 
lel processing. If the amount of work done by a sequential 
processor is W, and the total amount of work done by 
P parallel processors is Wp, then the redundancy factor 
due to parallel-control-strategy is given by Wp/Ws and the 
upper bound on the speedup is &. However, due to 
other factors such as communication’overhead, etc., the 
actual the speedup may be less than ,&. 

We have been investigating the use of parallel process- 
ing for speeding up different heuristic search algorithms [9; 
20; 18; lo]. In this paper, we discuss a number of paral- 
lel formulations of the A* state-space search algorithm. As 
discussed in [ll; 211, A* is essentially a “best-first” branch- 
and-bound algorithm. The parallel formulations presented 
in this paper are also applicable to many other best-first 
branch-and-bound procedures. The parallel formulations 
primarily differ in the data structures used to implement 
the OPEN list (priority queue) of the A* algorithm. Some 
formulations are suited only for shared-memory architec- 
tures, whereas others are suited for distributed-memory 
architectures as well. The effectiveness of different paral- 
lel formulations is also strongly dependent upon the char- 
acteristics of the problem being solved. We have tested 
the performance of these formulations on the 15-puzzle[22], 
the traveling salesman problem(TSP), and the vertex cover 
problem (VCP) [l] on the BBN Butterfly multiprocessor. 
The results for the 15-puzzle and VCP are very similar; 
hence we only present the results for the VCP and TSP. 
Although both TSP and VCP are NP-hard problems, they 
generate search spaces that are qualitatively different from 
each other. We also present a preliminary analysis of 
the relationship between the characteristics of the search 
spaces and their suitability to various parallel formulations. 

BBN Butterfly is composed of up to 256 processor mem- 
ory pairs. Each processor’s local memory is accessible to 
other processors via a fast switch; hence it is essentially 
a shared-memory multiprocessor. It is easy to emulate 
distributed memory multiprocessors on a shared-memory 
multiprocessor. We study the suitability of different paral- 
lel formulations for both shared-memory and distributed- 
memory multiprocessors. 

2 The A* Algoritlhm 
We assume familiarity with the A* algorithm. See [22] for a 
good introduction to A *. We will also use the terminology 
presented in [22]. H ere we provide a brief overview of the 
algorithm. 

A* is used to find a least-cost path between a start state 
and a (set of) goal state(s) of a given state-space graph. 
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The state-space graph is implicitly specified by the start 
state, a move generator ( a procedure that can generate 
successors of any given state in the state-space graph) and 
a function to recognize the goal-state(s). A* maintains two 
lists OPEN and CLOSED. OPEN contains those nodes 
whose successors have not been generated yet. CLOSED 
contains those nodes whose successors have been gener- 
ated. The process of generating successors of a node m is 
also referred to as “expanding m”. For a node m in OPEN, 
g(m) is the cost of the current best path from start state 
to m, h(m) is a heuristic estimate of the cost of the short- 
est path between m and a goal state, and f(m) = g(m) + 
h(m) is the overall cost of the node m. In each iteration, 
A* selects a most promising node n (i.e., the node with the 
smallest f-value) from the OPEN list for expansion, gener- 
ates its successors and puts the node n into CLOSED and 
its successors into OPEN. 1 Whenever a goal-node is cho- 
sen for expansion, A* terminates with n as the solution. It 
was proved in [22] that if the heuristic estimate h is admis- 
sible, then A* would terminate with an optimal solution 
(if a solution exists). Since the only operations done on 
OPEN are deletions of smallest cost element and insertion 
of elements, OPEN is essentially a priority queue, and is 
often implemented as a heap[l]. The heap implementation 
allows insertions and deletions in O(log N) steps, where N 
is the size of OPEN. 

3 A Centralized Parallel Scare 
Strategy 

Given P processors, the simplest parallel strategy is to let 
each parallel processor work on one of the current best 
nodes in the OPEN list. We shall call it a centralized 
strategy because each processor gets work from the global 
OPEN list. As discussed in [5], this strategy shtiuld not 
result in much redundant search. There are two problems 
with this approach. 

(1) The termination criterion of sequential A* does not 
work any more; i.e., if a current processor picks up a goal- 
node m for expansion, then the node m is no longer guar- 
anteed to be the best goal node. But the termination cri- 
terion can be easily modified to ensure that termination 
occurs only after a best solution has been found[l4; 241. 

(2) Since OPEN will be accessed by all the proces- 
sors very frequently, it will have to be maintained in a 
shared memory that is easily accessible to all the proces- 
sors. Hence distributed-memory architectures such as the 
Hypercube[26] are effectively ruled out. Even on shared 
memory architectu res, contention for OPEN limits the per- 
formance to Tezp/?Lccess, where TeIp is the average time 
for one node expansion, and T,,,,,, is the average time 
spent in accessing OPEN per node expansion [4]. Note 
that the access to CLOSED does not cause contention, as 
different processors would manipulate different nodes. 

We have implemented this scheme for solving the Trav- 
eling Salesman Problem (TSP) and the vertex cover prob- 
lem(VCP). Next we discuss these implementations and 
present performance results. 

‘Since there can be more than one path by which a particular 
node can be reached from the start node, this step is a bit more 
complicated. See [22] for details. 

3.1 Performance Results for the TSP 
The Traveling Salesman Problem can be stated as follows 
: Given a set of cities and inter-city distances, find a short- 
est tour that visits every city exactly once and returns to 
the starting city. TSP can be solved using the A*/Branch- 
and-Bound algorithm. A number of heuristics are known 
for the TSP. We have used the LMSK heuristic[l3] in our 
experiments. Although the LMSK heuristic is quite pow- 
erful, it is not as good as the assignment heuristic[27]. We 
chose LMSK primarily because it was easy to implement 
and was adequate to show the power of different data struc- 
tures and parallel control strategies discussed in this paper. 
We implemented parallel A* (with the LMSK heuristic) 
using the centralized control strategy on BBN Butterfly. 
OPEN was implemented as a heap. We tested the parallel 
version for up to 100 processors on Butterfly. The cost 
matrices for TSP instances were generated by a uniform 
random number generator. We found the average redun- 
dancy factor due to the centralized control strategy to be 
over .95 even for 100 processors. 

Figure 1 gives the actual speedup obtained for problems 
of different granularities (Tetp). Tezcp is the time needed 
to compute the LMSK heuristic of the generated nodes in 
each iteration of A*. This grows as O(M2), where M is the 
number of cities in the TSP. The speedup is fairly linear for rl, 
small number of processors, but saturates at 7s. This 

1 accegs 
shows that the centralized parallel strategy is quite effec- 
tive for parallelizing the TSP instances of large granularity. 
On problems with smaller granularities, the contention for 
OPEN shows up. To reduce the contention for OPEN, we 
implemented it as a concurrent heap[l7]. On a concurrent 
heap, OPEN needs to be locked only for O(1) time, which 
allows O(log N) p rocessors to access OPEN simultaneously 
(N is the number of nodes in OPEN). Fig. 2 shows the im- 
provement in performance due to the concurrent heap. 

3.2 Performance Results for the Vertex 
Cover problem(VCP) 

The vertex cover problem can be stated as follows: Given 
an undirected graph G = (V,E) (V denotes the set of ver- 
tices, and E denotes the set of edges), find the smallest 
subset of vertices such that they cover all the edges in E. 
The start state of the state space of the VCP is a null 
cover. Each state is a partial cover of the graph. From 
any state, its two successors can be created by including 
or excluding the next vertex. If a vertex is excluded, then 
all of its neighbors are included in the partial cover. For 
any state n, g(n) is the number of vertices already included 
in the partial cover n, and h(n) is the minimum number of 
vertices that must be added to n to create a cover. The h 
function for the VCP is readily computed2. 

We implemented parallel A* to solve the VCP on BBN 
Butterfly and tested it on many randomly generated in- 
stances of the vertex cover problem. These instances were 
chosen to have 50 to 80 vertices to ensure that the search 
trees of these instances are reasonably large. The VCP is 
prone to speedup anomalies, as there are a lot of nodes 
in its state-space tree that have the same cost as that of 

2the computation 
rithm given in [29]. 

of h(n) for a node is done using an algo- 
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its least-cost solution. Hence, the speedup depends upon 
when the actual solution is encountered by the search (se- 
quential or parallel). The phenomenon of speedup anoma- 
lies in best-first branch-and-bound has been extensively 
studied in [12; 251. Our recent work[l9] shows that it is 
possible to expect superlinear speedup on the average.3 
To study the speedup behavior in absence of anomaly, we 
modified the A* algorithm to find all optimal solutions of 
the VCP. 

The redundancy factor due to the centralized control 
strategy for the vertex cover problem is consistently around 
1. But the speedup obtained is very poor and tapers off 
around 8. The reason for the poor performance is that the 
node expansion in the vertex cover problem is very cheap; 
hence all the processors spend a good part of their time 
adding or removing elements from OPEN causing con- 
tention for the shared data structure. Even if OPEN is 
implemented as a concurrent heap, the speedup would ta- 
per off around 24. This clearly shows that the centralized 
strategy is not good for small granularity problems such 
as the VCP. 

Next we present many different decentralized control 
strategies that work even for problems for which the node 
expansion time is small. In these strategies, the OPEN list 
is implemented as a distributed priority queue. 

4 Distribaated Strategies 
One way to avoid the contention due to centralized OPEN 
is to let each processor have its own local OPEN list4. 
Initially, the search space is statically divided and given 
to different processors (by expanding some nodes and dis- 
tributing them to the local OPEN lists of different pro- 
cessors). Now all the processors select and expand nodes 
simultaneously without causing contention on the shared 
OPEN list as before. In the absence of any communica- 
tion between individual processors, it is possible that some 
processors may work on a good part of the search space, 
while others may work on bad parts that would have been 
pruned by the sequential search. This would lead to a high 
redundancy factor and poor speedup. The communication 
schemes discussed in the next three sections try to ensure 
that each processor works on a good part of the search 
space. 

4.1 The Blackboard Communication 
Strategy 

In this strategy, there is a shared BLACKBOARD through 
which nodes are switched among processors as follows. Af- 
ter selecting a (least f-value) node from its local OPEN list, 
the processor proceeds with its expansion only if it is within 
a “tolerable” limit of the best node in the BLACKBOARD. 
If the sclccted node is much better than the best node in 
the BLACKBOARD, then the processor transfers some of 

3Althongh the work reported in [19] deals with average su- 
perlinear speedup in depth-first search, it is also applicable to 
best-first search. If many nodes in the state-space graph have 
the same cost, then heuristic function does not provide any 
discrimination among them, and the search tend to become 
depth-first. 

*these OPEN lists can be implemented as heaps to allow 
O(log N) access time 

its good nodes to the BLACKBOARD. If the selected node 
is much worse than the best node in the BLACKBOARD, 
then the processor transfers some good nodes from the 
BLACKBOARD to its local OPEN list. In each case, a 
node is reselected for expansion from local OPEN. 

The choice of tolerance is important, as it affects the 
number of nodes expanded as well as the amount of node 
switching between local OPEN lists and the BLACK- 
BOARD. If the tolerance is kept low then nodes will be 
switched frequently between local OPEN lists and the 
BLACKBOARD unless the best nodes in all the OPEN 
lists happen to have the same cost. If the tolerance is high 
then the node switching would happen less frequently, thus 
reducing contention on the global BLACKBOARD. But in 
this case a processor can possibly expand nodes that are 
inferior to nodes waiting to be expanded in other proces- 
sors. 

adorn Communication 
Strategy 

In this strategy, each processor periodically puts the newly 
generated successors of the selected node into the OPEN 
list of a randomly selected processor. This ensures that if 
some processor has a good part of the search space, then 
others get a part of it .5 This strategy can be easily im- 
plemented on distributed-memory systems with low diam- 
eter (such as Hypercube[26], Torus[3]) as well as shared 
memory multiprocessors such as the Butterfly. If the fre- 
quency of transfer is high, then the redundancy factor can 
be small; otherwise it can be very large. The choice of 
frequency of transfer is effectively determined by the cost 
of communication. If communication cost is low (e.g., on 
shared-memory multiprocessors) then it would be best to 
perform communication after every node expansion. 

4.3 The Ring Communication Strategy 
In this strategy, different processors are assumed to be con- 
nected in a virtual ring. Each processor periodically puts 
the newly generated successors of the selected node into the 
OPEN list of one of its neighbors in the ring.6 This allows 
transfer of good work from one processor to another. This 
strategy is well suited even for distributed-memory ma- 
chines with high diameter (e.g., ring). Of course, it can be 
equally easily implemented on low diameter networks and 
shared memory architectures. As in the previous scheme, 
the cost of communication determines the choice of fre- 
quency of transfer. 

4.4 Performance Results 
We implemented the three communication schemes to solve 
the TSP and VCP on the Butterfly parallel processor. Ex- 
periments were run on the same problem instances that 
were used with the centralized scheme. In the case of the 
ring and random communication schemes, the exchanges 
were done after each node expansion. In the case of the 

‘This strategy is very similar to the one in which periodi- 
cally, a processor puts some of its best nodes into the OPEN 
list of a randomly selected processor. 

‘This strategy is very similar to the one in which periodi- 
cally, a processor puts some of its best nodes into the OPEN 
list of one of its neighbors in the ring. 
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blackboard strategy, the tolerance factor was kept quite 
low. Results are shown in Figures 3 and 4. The black- 
board scheme does very well for both problems. The ran- 
dom communication scheme does very well for the VCP 
and only moderately well for the TSP. The ring communi- 
cation scheme has a reasonable performance on the VCP 
but does very poorly on the TSP. The performance drop 
for the ring communication and the random communica- 
tion scheme is primarily due to the increased redundancy 
factor. If nodes are transferred less frequently in the ring 
and random communication strategies, or if the tolerance 
factor for the blackboard strategy is made high, then the 
speedup drops significantly in all cases.7 Hence it seems 
that a tightly coupled architecture (such as the Butterfly) 
would perform much better than loosely coupled architec- 
tures on all the formulations. 

5 Analysis of Performance 
Here we present a discussion of a certain feature of the state 
spaces of the TSP and VCP that explains the difference in 
performance of distributed communication strategies on 
the two problems. 

In A*, if the heuristic is consistent[22], then the cost 
of the nodes expanded in successive iterations never goes 
down (it either goes up or stays the same). Let I$ be the 
set of nodes expanded by A* after the cost has gone up 
ith time but before it has gone up i+l th time. Clearly 
the cost of each node in K (for any i) is the same, and 
the heuristic function does not provide any discrimination 
among different nodes in Vi. Vo represents the expanded 
nodes that have the same cost as the start node. If the 
cost goes up L times in the search, then VL is the set of 
nodes expanded whose cost is the same as the optimal so- 
lution. Note that the heuristic functions used in the TSP 
and the VCP (and most other problems solved by branch- 
and-bound) are consistent. Figure 5 plots Vi for an in- 
stance of the VCP and an instance of the TSP. Plots for 
the other instances are very similar in each case. Clearly, 
for the VCP, V;: grows very rapidly, and for the TSP it 
grows very slowly. For the VCP, expansions of nodes in 
VL represents a very large fraction (nearly 75 percent) of 
the total work done by A *. Since all the nodes in VL have 
the same cost, the heuristic function does not provide much 
discrimination between these nodes, and the loose coupling 
of the random and ring communication schemes seem to 
be good enough. For the TSP, there are only a few nodes 
at each cost (L is 54, and most of the Vi have between 50 
and 400 nodes); hence the communication scheme should 
be “tightly-coupled” to be able to effectively utilize the 
heuristic guidance. Note that the rapid growth of K does 
not mean that the heuristic is bad. In a 65-node VCP, it 
reduces the search space from 265 to around 11300 nodes. 
The LMSK heuristic used for a 25-city TSP reduces the 
search space from 25 * 225 to roughly 3600 nodes. Interest- 
ingly, even for the 15-puzzle Vi grows very rapidly, and its 
performance on the distributed communication schemes is 
very similar to that of the VCP. 

It is easy to see that IDA*[8] outperforms A* on those 
problems for which E grows very rapidly. We have already 
presented a parallel implementation of IDA* that is able 

7These results are n ot shown in the speedup graphs. 

to provide virtually unlimited speedup (for large enough 
problems) on a variety of architectures[20; lo]. Also IDA*, 
unlike A* requires very little memory, hence can solve large 
problem instances without running out of memory. 

The speedup anomalies on the VCP are fully explained 
by the fact that a large number of nodes have the the cost 
equal to that of the optimal solution. Hence, the amount 
of work done by any search scheme (sequential or parallel) 
depends upon when the set of nodes leading to the optimal 
solution are expanded. Although a number of researchers 
have investigated the phenomenon of speedup anomalies in 
best-first branch-and-bound, all of them hypothesized that 
the phenomenon is unlike to occur in real problems[l2; 
251. Since, for the VCP (and the 15-puzzle), Vi grows 
very rapidly, and the length of the solution grows linearly 
with problem size, for large problem instances the speedup 
anomaly can be very pronounced. 

Many of the parallel formulations of A*/Branch-and- 
Bound presented in this paper have been investigated by 
other researchers as well. The centralized scheme has been 
studied in [16; 25; 41. P arallel A* with the centralized 
scheme for solving the TSP is essentially the same as Mo- 
han’s parallel algorithm for TSP in [16]. Mohan reported 
a speedup of 8 on 16 processors on the Cm*. Our results 
show that for high granularity problems such as TSP, this 
scheme can provide several orders of magnitude speedup on 
commercially available multiprocessors. The use of concur- 
rent heap further extends the upper limit on the speedup 
obtained using the centralized approach. We have also in- 
vestigated various means of artificially increasing the gran- 
ularity of the problem (i.e., increase T&,).s These results 
are not presented in this paper. 

A number of researchers have suggested distributed 
strategies similar to the random communication scheme 
[29; 31, and the ring communication scheme [28; 301. Wah 
and Ma [30] f ound the ring communication scheme to give 
good speedup on the vertex cover problem and hypoth- 
esized that this could be a good strategy for best-first 
Branch-and-Bound in general. Our work has clearly shown 
that these strategies are effective only for those problems in 
which the search space has many nodes of the same cost. 
To the best of our knowledge the blackboard communi- 
cation strategy for parallel A* has not been investigated 
before. 

ing emarks 
We have presented many different ways of parallelizing the 
A* algorithm, and have studied their performance on the 
Vertex Cover problem (VCP) and the Traveling Salesman 
Problem (TSP). The performance of different formulations 
depends on the characteristics of the problems. 

The centralized scheme has a very low redundancy fac- 
tor, but causes contention for the centralized OPEN (im- 
plemented as a simple heap or as a concurrent heap) unless 
the granularity of the problem is large. In the distributed 
schemes, each processor has its own OPEN list (the OPEN 

‘One such scheme is: pick one node from OPEN, generate 
a large number of nodes, and then put them back into OPEN. 
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list is implemented as a distributed heap); hence there is 
no contention for shared data structures. But the redun- 
dancy factor can be large, as some processors may have 
all the good nodes while others may have only bad nodes. 
The communication strategies (blackboard, ring, random) 
try to make sure that all of the local OPEN lists (priority 
queues) have even distribution of good nodes. Contrary 
to the belief of many researchers, the random and ring 
communication strategies are not very effective evenly dis- 
tributing good nodes. They appear to perform well only on 
those problems in which the search space has many nodes 
of the same cost (e.g., the 15-puzzle, the VCP). For other 
problems (such as the TSP), they have a large redundancy 
factor, and give poor speedup. The blackboard strategy 
clearly outperforms the other two distributed strategies 
for both kinds of problems. A major drawback of the 
blackboard strategy is that it requires a shared-memory 
architecture, which is more expensive to construct than 
the distributed memory architectures such as ring or hy- 
percube. Also, contention for the blackboard limits the 
ultimate scalability of the strategy. We are currently in- 
vestigating strategies that do not suffer from these draw- 
backs. 

It is expected that all the parallel control strategies pre- 
sented in this paper would be applicable to many other 
problems solvable by A*/branch-and-bound. Concurrent 
and distributed priority queues used in these parallel for- 
mulations can be useful in many parallel algorithms other 
than parallel A*/b ranch-and-bound. Our work has demon- 
strated that it is possible to exploit parallelism in search 
to get several orders of magnitude speedup on commer- 
cially available multiprocessors. Given that each processor 
in these systems is an off-the-shelf microprocessor, these 
parallel processors can be cost effective high performance 
computing engines for solving AI search and optimization 
problems. 
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Figure 4: Performance of the Distributed Strategies on the VCP 
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