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Abstract and multiple solutions are typically generated with an as- 
sessment of their respective strengths. If external feedback 
is provided to the system, newly solved problems can be 
added to the case base to strengthen it, thereby realiz- 
ing a form of knowledge acquisition that is qualitatively 
distinct from the knowledge engineering techniques tradi- 
tionally associated with rule-based systems. 

Knowedge-based problem solvers traditionally 
merge knowledge about a domain with more gen- 
eral heuristics in an effort to confront novel prob- 
lem situations intelligently. While domain knowl- 
edge is usually represented in terms of a domain 
model, the case-based reasoning (CBR) approach 
to problem solving utilizes domain knowledge in 
the form of past problem solving experience. In 
this paper we show how the CBR approach to 
problem solving forms the basis for a class of 
heuristic search techniques. Given a search space 
and operators for moving about the space, we 
can use a case-base of known problem solutions 
to guide us through the search. In this way, 
the case-base operates as a type of evaluation 
function used to prune the space and facilitate 
search. We will illustrate these ideas by present- 
ing a CBR search algorithm as applied to the 
8-puzzle, along with results from a set of exper- 
iments. The experiments evaluate 8-puzzle per- 
formance while manipulating different case-bases 
and case-base encoding techniques as indepen- 
dent variables. Our results indicate that there 
are general principles operating here which may 
be of use in a variety of applications where the 
domain model is weak but experience is strong. 

P Introduction 
Case-based reasoning (CBR) systems have been designed 
to address a variety of task orientations including diagnos- 
tic reasoning, adaptive planning, hypothesis generation, 
explanation, adversarial reasoning, analogical reasoning, 
and hypothetical reasoning [Rissland, 19871. Tradition- 
ally, CBR techniques are invoked when a domain is char- 
acterized by problems that do not have right or wrong 
answers as much as answers that are strong or weak along 
various dimensions. When a novel problem is encountered, 
a case base of previously encountered problems and solu- 
tions is consulted to determine what experiences are rel- 
evant to the current situation. Solutions from more than 
one case may be merged to address the current problem, 
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In an effort to test the boundaries of CBR technology, 
we have applied CBR to a classic problem in heuristic 
search: the 8-puzzle. We have demonstrated that a heuris- 
tic search for the 8-puzzle can be conducted by accessing 
nothing more than a case base of previous problem solu- 
tions. For this application, the problem solutions consist 
of board sequences that take us from an arbitrary 8-puzzle 
problem state to a final goal state using legal 8-puzzle op- 
erators. No additional knowledge about subgoals [Korf, 
19851, chunking [Laird et u1., 1987; Laird et al., 19841, 
or any other form of derivations1 abstraction [Carbonell, 
1986; Carbonell, 19831 is used. 

We further wanted to ask questions about the construc- 
tion of an effective case base, and the techniques used to 
index available cases in memory. Is it possible to optimize 
a case base? Or customize effective indices for a given 
case base? How can learning curves be influenced by in- 
dexing techniques or initial case bases? Although space 
limitations prohibit us from reporting all of our experi- 
mental results, we will describe a few of our experiments, 
some of which were suggested by a preliminary investi- 
gation [Lehnert, 19871. We will also describe an index 
that makes it possible to generate optimal solutions for 
any solvable 8-puzzle state from a case base containing a 
single case of 31 moves. 

We have implemented a Case-Based Search algorithm 
(CBS) which attempts to transform a given problem state 
into a targeted final state by copying past problem solv- 
ing performance. Each case in the case-base is a list of 
problem states from a start state to a goal state. Figure 1 
shows one (very short) case consisting of four states. Note 
that if we were to remove the start state from any given 
case, we would be left with a new case showing the solu- 
tion from a new start-state to the same goal state. Thus 
each case implicitly contains many others as sub-cases. 

CBS has a number of operations for transforming prob- 
lem states. But it should only choose good operations, that 
is, operations that transform problem states into states 
closer to the goal state. The case-base is intended to help 
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Figure 1: A Solution Case for the 8-puzzle. 

the system find good operations and operation sequences. 
However, the case-base cannot be used to store solutions 
for all possible start states. Even the simple 8-puzzle has 
181,440 legal board positions. CBS must be able to gen- 
eralize from the solutions it finds in its case-base. 

Generalization from old solutions to new solutions is 
done in three steps. 

1. CBS uses a coarse indez function to encode the cases 
in the case-base. The coarse index function maps 
problem states onto a set of integers (or symbols), 
dividing the problem states into equivalence classes. 
It is possible for different problem states, and thus 
different cases (sequences of problem states) to be 
mapped to equivalent coarse-coded representations. 
In particular, it is possible for the coarse index func- 
tion to place a number of problem states in the same 
equivalence class as the goal state. This is not a prob- 
lem as long as there is a known path from each goal- 
equivalent state to the goal state. These paths can 
be pre-computed and automatically appended to any 
solution found by CBS as needed. The coarse index 
function acts like a partial pattern matcher, relaxing 
similarities between structures (problem states) at the 
risk of allowing inappropriate matches. 

2. Case-base solutions implicit in the coarse-coded case- 
base must be made explicit. This can be done effi- 
ciently by organizing each case in the case-base within 
a discrimination net. Figure 2 shows a coarse-coded 
case-base containing five cases, and the discrimina- 
tion net that results. Every path from the dummy 
root node to a goal node represents a solution. Every 
node with no children is a goal node. 

3. The final step in generalizing from old solutions to 
new solutions occurs during the actual search con- 
ducted for a given problem. CBS restricts exploration 
of the problem space by using the discrimination net 
described above and a masking procedure. The mask 
works by overlaying the discrimination net of old so- 
lutions on top of the search space generated by the 
given initial state. Any branches not allowed by the 
discrimination net are then pruned from the tree. 

This masking process is best described by example. Fig- 
ure 3 shows a portion of the search space reachable from 
a designated start state. Each node on the tree has been 
labelled with its coarse index value. (The actual index- 
ing function used is not important at this time.) The tree 
has already been pruned so that no node is shown twice. 

Discrimination Net 

Note: Links proceed 
from top to 
bottom 

Case Ba 
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Figure 2: A Case-base and Corresponding Discrimination 
Net. 

Nodes marked (a), (b), (c), and (goal) in figures 2 and 3 
correspond to one another as the mask overlays the search 
space and the discrimination net. Example: 

1. Take the index value of the current problem state. 
The index value of the start state is 3. Since the root 
node of the discrimination net has a child with index 
3, move a marker from the root node to that child, 
labelled (a). 

2. Look at the indices of the states reachable from the 
start state in the search space. These are 3, 2, and 
3. But the only transitions allowed from our current 
position in the discrimination net are to states with 
indices 1 or 2. Therefore, the successor states with 
indices 3 are pruned from the search space. Move the 
discrimination net marker to node (b), and reset the 
current search space problem state to the successor 
with index 2. 

3. Continue in this manner, moving down both the dis- 
crimination net and the problem search tree until we 
reach the goal node, or until we reach a point from 
which we cannot advance. If we reach a stuck state, 
we backtrack and continue until the entire search 
space is exhausted. 

3 Overcoming an Inadequate 
Case-base 

If we apply the mask to a search space and find a solution, 
we are done. But it is possible that the experience cap- 
tured in the case-base is inadequate to solve the current 
problem. Then the mask-directed search will fail. In this 
event, standard heuristic search techniques can be used to 
move from an unsolvable initial problem state to a new 
problem state that, we hope, is solvable using the current 
case-base. 

In CBS, we have implemented two simple heuristics to 
assist inadequate casebases. The first is a “near-miss” 
heuristic based on neighborhoods within the search space. 
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Figure 3: The Search Space Beneath a Given Problem State. 

Let us define the N-family of a state to be the set of all 
states that can be obtained by application of N or fewer 
operators. If the masked search fails to produce a solution 
for the initial state, we then execute additional searches 
for each element of the initial state’s N-family until either 
(1) a solution is found, or (2) the N-family is exhausted 
without success. 

The second, “far-miss”, heuristic is applied if the near- 
miss heuristic fails. Suppose we have conducted a near- 
miss search on the N-family of a state, and no solution 
has been located. Rather than extend the near-miss search 
into the (N+l)-family or (N+2)-family (increasing the size 
of the near-miss search space exponentially with each ex- 
pansion), we apply a different modification to the initial 
state in order to generate a new search space. Given the 
initial state, we take a random walk of M legal moves. 
The resulting state will now serve as the basis for contin- 
ued search. We first apply the case-based search to the 
new state, and if this search fails, we then apply an N- 
family near-miss search with the hope that our luck will 
be better in this region of the state space. We can keep 
alternating between the near-miss and far-miss heuristics 
until we have found a solution or we terminate at some 
predefined cutoff point. 

4 Experiments 

We ran a series of experiments to test CBS’s performance 
on the &puzzle, given a variety of case-bases and coarse 
index functions. Each experiment tests system perfor- 
mance on finding solutions to 1000 randomly selected ini- 
tial boards. The parameters M and N from the near-miss 
and far-miss heuristics were set to 10 and 4 for all experi- 
ments. The (mask, near-miss heuristic, far-miss heuristic) 
cycle was repeated until a maximum of 200 boards derived 
from the initial board via the near and far miss heuristics 
were looked at. 

The cases-bases used in all experiments are summarized 
in table 1. The cases in the Random case-base were gen- 
erated by randomly walking away from the goal state for 
an average of fifty moves, and then reversing the sequence 
of boards visited. The random walk was constrained to 
never repeat a state. The cases in the Human case-base 
were generated by presenting random board positions to 
a human player and recording the board sequences result- 
ing from her solutions. The human player followed the 
usual strategy of breaking the problem into a sequence of 
subgoals, each to move the next tile into position while 
preserving the solutions to the previous subgoals [Korf, 
19851. The cases in the Perfect case-base were generated 
by choosing a random board and then generating and sav- 
ing a minimum length solution from that position. The 
Random-2, Human-2, and Perfect-2 case-bases were gen- 
erated in the same way, except that we tried to keep the 
number of unique boards equal instead of the total number 
of boards. 

j~Gie~?is /,19f~‘,,,,,~_/ _ _---- 
Random 21 1002 898 
Human 23 1002 662 
Perfect 45 1002 731 
Random-2 23 1160 1009 
Human-2 31 1514 1015 
Perfect-2 65 1492 1016 

Table 1: The case-bases. 

We used seven different index functions, summarized in 
table 2. The city-block index function computes the city- 
block or “Manhattan” distance from the current board to 
the goal board. This index has frequently been used in 
previous studies of heuristic search techniques using the 
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Index function 
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Table 2: The index functions. 

8-puzzle [Nilsson, 19801. The binary city-block index is a 
generalization. It computes the minimum distance from 
the current board to the goal board and to the 180’ rota- 
tion of the goal board. The quad city-block index further 
generalizes the city-block index by computing the mini- 
mum distance from each of the four possible rotations of 
the goal board. 

The four adjacency indices are based on a comparison 
between the neighbors each tile has in the current board 
and the neighbors each tile would have in the goal board. 
Different definitions of “neighbor” give rise to the different 
indices. The neighborhood of a tile under the adjacency 
index consists of those tiles to the right and below. The 
neighborhood under the relaxed adjacency index consists 
of those tiles to the right, left, above, and below. The 
neighborhood under the toroidal adjacency index is the 
same as for the basic adjacency index, but the board is 
placed on a torus, so that the first row is below the third 
row and the first column is to the right of the third column. 
The neighborhood under the relaxed toroidal adjacency 
index is the same as for the relaxed adjacency index, but 
also on a torus. 

5 esdts 
Table 3 summarizes CBS’s problem solving performance 
over two sets of 21 experiments, each matching one of 
the coarse index functions against one of the Random, 
Human, and Perfect (Random-2, Human-2 and Perfect-2) 
case-bases. The parenthesized numbers are the results of 
the second set of experiments. System performance was 
measured on two criteria: the number of problems solved 
(out of lOOO), and the average number of boards that had 
to be considered before finding a solution. 

The 1000 test boards were randomly and independently 
selected from the set of all possible 8-puzzle boards. As- 
suming, then, that we have chosen a representative test 
set, standard statistical analysis shows that we can be 
95% certain that CBS’s performance over the entire 8- 
puzzle problem space lies within 3% of the results given in 
the “# solved” column of table 3l. 

Analysis of the first set of experiments reveals two 
things. 

‘Dennis Kibler and David Ruby have been independently 
investigating the properties of case-based search algorithms. 
We would like to thank them for suggestions on possible in- 
dex functions for the 8-puzzle, and for advice on statistical 
significance. 
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Random 
Human 
Perfect 
Random 
Human 
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Random 
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Random 
Human 
Perfect 
Random 
Human 
Perfect 
Random 
Human 
Perfect _.- __ .- __ 
Random 
Human 
Perfect 

# solved 

___-.--__ _-- - 598.c62~)- 

385 (487) 
533 (596) 
827 (863) 
639 (770) 
775 (849) 
939 (943) 
846 (914) 
906 (932) 
485 (486) 
305 (375) 

GE-f+ 
689 (841) 
809 (899) 
708 (699) 
581 (668) 
617 (745) 

1066 (Mdo) 
998 (1000) 
1000 (1000) 

I Avg. # 
searches 

87.2-(86.5)- 
88.1 (87.0) 

(82.7) 87.9 
67.3 (65.3) 
80.6 (76.8) 
73.3 (68.5) 
55.5 (46.8) 
66.1 (57.9) 
62.2 (55.7) 
93.1 (88.3) 
91.1 (84.1) 

(90.5) 97.1 
66.4 (64.4) 
72.9 (70.6) 
74.8 (63.9) 
79.7 (79.2) 
88.7 (79.3) 
82.3 (79.0) -.--- ___ - 
21.9 (21.0) 
31.5 (24.9) 

(18.3) 26.5 

Table 3: Experimental Results. 

First, as might be expected, CBS’s performance de- 
pends on the number of goal equivalent states under the 
current coarse index function, but not all indices with the 
same number of goal equivalent states yield the same per- 
formance. Consider CBS’s performance for a given case- 
base and across the coarse index functions from the city- 
block group. The number of problems solved rises as we 
move from the city-block to the binary city-block to the 
quad city-block index, and the average number of searches 
falls. Notice that the number of goal states varies from 1 
to 2 to 4. The results aren’t so clean cut within the adja- 
cency index group. The overall trend matches that within 
the city-block group, except that the relaxed adjacency in- 
dex (with 4 goal states) leads to better performance than 
the toroidal adjacency index (with 9 goal states). This can 
be explained to some extent by noticing that the relaxed 
adjacency and the toroidal adjacency indices are different 
kinds of generalizations upon the basic adjacency index, 
while the binary and quad city-block indices are the same 
kinds of generalizations. 

Second, we hypothesize that CBS’s performance de- 
pends on the number of unique problem states represented 
in the unencoded case-base. Consider, for example, CBS’s 
performance using the city-block index. CBS does better 
as we move from the Human (662 unique boards) to the 
Perfect (731 unique boards) to the Random (898 unique 
boards) case-base. 

We performed the second set of experiments to test this 
hypothesis. The results are given in parentheses in table 3. 
CBS’s performance for a given index function is now much 
more equal across the three case-bases. The remaining 
variations in performance may be ascribed to a combina- 
tion of two factors. First, it may be that the different case- 
bases are more or less efficient in encoding problem solving 
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information. The cases in the Human case-bases are con- 
structed following an algorithm that quickly moves into a 
small area of the search space. It seems, then, that the 
human case-base would encode less of the problem solving 
strategy for this domain. Second, our far-miss heuristic in- 
troduces a random element which would account for some 
of the variation. 

The striking performance of the relaxed toroidal adja- 
cency appears to correlate with its relatively high number 
of goal states (36 goal states vs. an average of 3.5 goal 
states for the other indices). As long as we have a finite- 
table lookup routine that can direct us home from each of 
these 36 boards, we are fine. Indeed, one could argue that 
the overhead required to handle 36 boards is not signifi- 
cantly greater than the overhead associated with 4 boards, 
especially in view of the dramatic reduction in the number 
of-searches required by this index. Without question, the 
relaxed toroidal adjacency index is superior to all other 
indices tested. 

CBS perform nearly as well using the Random and Hu- 
man case-bases. Again, the average number of searches 
was somewhat higher. In retrospect, these results are not 
really surprising, because they, too, follow from the argu- 
ment for the existance of a minimum perfect case-base. 
The argument follows. Take an arbitrary solution path 
and encode it using the perfect index. The index profile 
for this case may ineffeciently wander up and down hill, 
but it will eventually reach zero, the index of the goal 
state. Since the index of every state can vary from those 
of its neighbors by no more than 1, any state whose index 
appears somewhere on the arbitrary solution path will be 
solvable by following a path with exactly the same index 
profile of the arbitrary solution, though the sequence of 
operators employed may be quite different. 

Case-base # solved Avg. # searches 

Random 1000 1.01 
Human 1000 1.85 

/ EZZturn 1 -i:$-- I--- _ :ji- _ _ / 

Table 4: Performance of the perfect index. 

‘Assuming that there is a maximally difficult problem. CBS 
will have difficulties performing in domains where there is no 
bound on the possible distance of a problem from the goal. 
Some mechanism to allow looping, as described in [Cheng and 
Carbonell, 19861, is needed. 

piled, the operation of CBS is trivial, but a substantial 
preprocessing overhead is required to compute this index. 

Another computational trade-off can be found when we 
examine the computational complexity of the CBS algo- 
rithm against the overhead of a growing case base. On 
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the one hand, it is computationally more expensive to ex- 
haust a larger case base (which happens whenever we fail 
to find a solution). On the other hand, the chances of 
finding a solution increase as the case base grows larger 
(and a successful search terminates before the case base is 
exhausted). Additional experiments have been conducted 
to examine this trade-off, and those results show that the 
computational effort associated with successful CBS exe- 
cutions remains constant as new cases are added to the 
case base [Ruby and Kibler, 19881. 

In closing, we must note that CBS is not a good proto- 
type for CBR system development in general. Because the 
8-puzzle has so little domain knowledge associated with 
it, CBS is strictly limited to a heuristic search algorithm. 
This makes it impossible to merge multiple solutions from 
the case base, or generate multiple solutions to the cur- 
rent problem state that can be compared in interesting 
ways. Unlike most other CBR applications, answers to 
an 8-puzzle problem are either right or wrong. We must 
also point out that CBS cannot make any claims about 
psychological plausibility, whereas most CBR systems are 
inspired by techniques presumed to be useful in human 
problem solving. 

While the results reported here may not provide answers 
to the most compelling problems of CBR system develop- 
ment in domain-rich applications, we believe we have made 
a contribution to the CBR research effort by showing how 
general the CBR approach to problem solving really is. 
We have successfully applied CBR to a classic problem in 
heuristic search, and have therefore extended the range the 
potential CBR applications beyond their previous scope. 
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