
ADstract : The constrained Rectangular 
Guillotine Knapsack Problem (CRGKP) is a 
variant of the two-dimensional cutting 
stock problem. In the CRGKP, a stock rec- 
tangle of dimensions (L,W) is given. There 
are n different ty es of demanded 
rectangles, with the i eh . having 
length l:, width wi' value?e &% demand 
constrai& b. S must be cut! using only 
orthogonal &illotine cuts to produce 
a. copies 
kximize a v 

Of rir lLiLnr so as to 

to the co&s raints k 
+ a2v2 ,':.;.; aq.,; s;bje;t 

All parameters are ir+tggeri: Here a-new 
best-first search algorithm for the CRGKP 
is described. The heuristic estimate func- 
tion is monotone, and optimal solutions 
are guaranteed. Computational results in- 
dicate that this method is superior in 
performance to the two existing algorithms 
for the problem. 

I Introduction 

Best-first search algorithms like A* use heuristic 
estimates to direct search in large state spacesp 
as arise for example in solving puzzles such as 
the 15-puzzle. But not very many significant ap 
plications of best-first search to real-life 
problems are known. It is true that in many pro- 
blems that are encountered in Operations Research, 
a search procedure must be empioyed to arrive at 
the best answer. The search typically involves 
visiting the nodes of an implicitly-specified 
tree, the order of traversal being determined by 
an evaluation function associated with the nodes. 
In a branch-and-bound formulation the search is 
often depth-first, the basic idea being to measure 
newly created nodes (potential solutions) against 
the best solution currently known, and to discard 
I-hnna fmmil wm$-inr;. The mea&d tends iy, p-pra? -.*--u LVU..U 
to be time consuming, since an essentially exhaus- 
tive search of the tree is undertaken to find the 
best solution. Best-first search can be viewed as 
a very special kind of branch-and-bound procedure 
wnere cne search stops as soon as a compiete soiu- 
tion (goal node) is found. Since heuristic es- 
timates in practice are almost always admissible 
and generally monotone as well [Nilsson, 19801, an 
optimal solution is obtained. One expects a best- 
first search to run more quickly than a depth- 
first branch-and-bound procedure, but if both node 
expansion and heuristic computation are ac- 
complished efficiently, a depth-first implementa- 

tion can be very fast. This occurs with the well 
known method of [Little et al.! 19631 for solving 
the travelling salesman problem. Even for the 15- 
puzzle, the modified depth-first alqorithrn called 
IDA [Korf, 19851 is quicker than A . Depth-first 
methods have the additional advantage that memory 
requirements are very low. 

We describe here an application of best-first 
search to the Constrained Rectangular Guillotine 
Knapsack Problem (CRGKP), which is a variant of 
the two-dimensional cutting-stock (trim-loss) 
problem [Christofides and Whitlock, 19771, [Viswa- 
nathan, 19881, [Wang, 19831. Christofides and 
Whitlock have described a depth-first branch-and- 
bound algorithm for the CRGKP which guarantees op- 
timal solutions. Wang has studied a less general -i- ---- form of the CRGKP where vaiues of the rectangles 
are proportional to their areas: his approach is 
heuristic, and solutions are not always optimal. 
No other algorithms for the CRGKP are known. Our 
method is superior to the abovementioned ones in 
that fewer nodes (rectangles) are generated, and 
the running time is smaller. The heuristic es- 
timate function is monotone and optimal solutions 
are guaranteed. Cutting stock problems of one and 
two-dimensions arise in the glass! paper, steel, 
wood and other industries [Dyckhoff et al., 19851, 
and a close look at the CRGKP could help us to 
discover related problems which have efficient 
solutions using best-first search. 

II Statement of the Problem --- 

In the Constrained Rectanqular Guillotine Knapsack 
Problem (CRGKP), we are given a single rectangular - 
stock sheet S which must be cut in an optimal way 
into demanded rectangles of smal .ler size without 
violating specified constraints. All cuts must be 
orthogonal,-i.e, parallel to one of the sides of 
C. mnrnn~7nr _ ‘IIVA. bV. -A, , apay m1t Or! S Or O!? 22 reCtZlg2.e Ob 
%ned from S musi?& a guillotine cut, i.e, it 
must run from end to end on the rectangle. Fig 
l(a) shows a non-orthogonal cutting pattern and 
Fig l(b) a non-guillotine cutting pattern (shaded 
parts indicate wastej. -- --- Formaiiy, in the cRGKpl a 
stock sheet S of length L and width W is given. 
Tie arh; nit$xs 

ieng;ih li, 

of demanded rectangles ri, 1 ia: 
type of demanded rectangle 

width WiI value vi and demand 
ri 

con- 
straint %.. We a3e required 
only guill&tine cuts into 

to cut S using 
a. pieces of type i, 

lLi<n, such that 2 = ilvl + a2v 
is max&ized, subject to the constrain s 5 

+.. +av 
C-L" ai -_i, 
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1 < i-c n. It is assumed that 
i> c, W and 1 i, Wi, Vi' bi, 15 iFnr are all 

integers: 
ii) the orientation of the rectangular pieces is 

fixed, i.e. a piece of length x and width y 
is not the same as a piece of length y and 
width X; 

iii) all cuts on a rectangle are infinitesimlly 
thin. 

(a) 

Fig. 1 

lb) 

(C,2) / 0,2) / 

0s I 
0 4 P 

Fig. 2 

Example 1 : Suppose L = 7, W = 5 and n = 3, and 
the other parameters are as given below : 

----I------ --- 

i li W. I. V. 1 bi 
----------se-- 

13 1 10 3 
2 3 2 15 2 
3 4 2 25 3 

A solution to the problem, as shown in Fig 2# is 

i a. 1 z 

12 
2 2 100 
3 2 

In the figure, the shaded part indicates waste. 

III Proposed Algorithm 

The proposed algorithm BF CRGKP can be viewed as 
resulting from a modificaion and extension of 
Wang's method. There are two lists, OPEN and 
CLIST. OPEN initially contains each of the n 
demanded rectangles r;, 1 5 i 5 n. CLIST is ini- 
tially empty. The evaluation function f assigns a where (x 
total value f(R) to each rectangle R in OPEN: f(R) 

,y 
SW 

) are the coordinates of the top right 
corner 0 

is the sum of the internal value g(R) and the 
in Fig 4. However, it could happen 

heuristic estimate h(R). At -iteration, the 
that the additional demanded rectangles in P 
together with the demanded rectangles in R violate 

rectangle R with-the largest total value in OPEN 
is removed from OPEN and put in CLIST. Ties are 
resolved arbitrarily. New rectangles are then 
created from R by taking in turn each rectangle R1 
in CLIST (including R) and combining R and R' to 
form a horizontal build (see Fig 3(a)) and a ver- 
tical build (see Fig 3(b)). If the dimensions of R 
and R* do not match, a portion of a newly created 
rectangle will be waste. The new rectangles are 
put in OPEN and are thought of as the sons of R. 
Note however that a newly created rectangle Q is 
entered in OPEN only if Q has length 5 L and width 
5 W (i.e only if Q fitsinto the stock rectangle), 
and Q satisfies the given demand constraints on 
the demanded rectangles: otherwise Q is just 
thrown away. The algorithm terminates when a rec- 
tangle R is selected from OPEN with heuristic h(R) 
= 0; then g(R), the internal value of R, is the 
optimal solution to the given instance of CRGKP. 

(3 Horizontal build (b) Vertical build 

Fig. 3 

As mentioned above, f(R) = g(R) + h(R). The inter- 
nal value g(R) of a rectangle R is simply the sum 
of the values Vi of each of the demanded rec- 
tangles that lie within R. To find h(R), F@ take 
the given stock rectangle S, and put R in the bot- 
tom left corner of S, as shown in Fig 4; we can 
then take h(R) to be some upper bound on the 
potential internal value of the portion P of S 
that lies outside R. A good upper bound can be 
found as follows : For the given demanded rec- 
tangles with their specified dimensions and 
values, let F(x,y) denote the optimal solution to 
the unconstrained rectangular guillotine knapsack 
problem for a stock rectangle of size (x,y). 
F(x,y) can be readily computed using the dynamic 
programming recursion of [Gilmore and Gomory, 
19661. Define the function ho(x,y) by the recursion 

ho(w) = max i hl(x,y),h2(x,y)lr 

hl(xtY) = mx { ho(x+u,y) + F(u,Y& 
0 < u 1. L-x 

h2(x,y) = mx ( ho(xly+v) + F(x,v)], 
O~v~w-y 

ho(V) = 0, 

and let h(R) = ho<xR,yR) 
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the given demand constraints on the demanded 
rectangles. This is why the evaluation function f 
gives only an upper bound on the optimal solution. 
To prevent the heuristic estimate from being 
misleading, we take the following additional 
precaution; if it is found that the introduction 
of even a sinqle demanded rectangle whatsoever 
into P upsets-the demand constraints, then 
h(R) = 0 even though hO(xR,yR) > 0. 

we set 

s 

Fig.4 
The above computation for ho need only be done for 
those x which correspond to sums of multiples of 7rrmr.ct.r. rrc 4-Lrr am-nmna~a v-n,+- annl a.2 LnlyL”3 "I L‘,I= U~,1ci1 xu--zu ard for (-hose Lczt.LU‘&yl\r”, U..U 

y which correspond to sums of multiples of widths 
of the demanded rectangles. It is convenient and 
computationally feasible to tabulate the values of 
ho(xry) in advance , so that when a new rectangle R --7‘- - -_- -._ is generated in UPGN during the execution of 
BF CRGKP, only a table look-up is needed for as- 
siqning a value to h(R). 

Algorithm BF CRGKP 
begin 

n7xw == I+ "rcll" . I  l PT .TCT :’ p,“rr=ty set ;  

finished 
q,rp.. . .r 

:= false: nJr "U&U* 
repeat 

choose a rectangle R from OPEN having 
highest total value; 

if h(Rj = 0 then fjJ+&pd := true 
else begin - 

transfer R from OPEN to CLIST; 
ahr.nt %-,."a- 311 nr*; 1 ld-;na rnfltanrrlac n L"‘,JLLULC c4J.A yjurrr"L.rrr~ L=Gb.b~lzyr~" u 

such that 
i) Q is a horizontal or vertical 

build of R with some rectangle R' of 
CLIST, 

ii) dimensions of Q 5 (L,W), 
iii) Q satisfies the demand constraints: 

put all newly constructed guillotine rec- L----l -_ 1 -L- fit-+-* ..1LL -.Nwrr.rrr:eCh m 
Lanyles lIlcu urmv wlLIl awruplaLc yf hp 
f values; 

end; 
untrfinished; 
output R: 

end -* 
: Consider the problem L = 5, W = 3, n = 

---------- -- 
i li W. 1 V. 1 bi 

---------I---- 
1 2 2 25 1 
2 3 1 10 5 

The values of ho(x,y) are given in Table 1. 

w------------w---- 
X Y ho(w) X Y ho(w) 

--------------1-------I_ 
2 2 35 4 2 10 
3 
3 i 

50 4 3 0 
35 5 2 10 

3 3 25 5 3 0 

Table1 

Nodes (rectangles) are generated as shown in Fig 
5. The root node corresponds to the null rect- 
angle. Details about the generated rectangles are 
given in Table 2. Since ties can be resolved arb- 
itrarily, we have assumed that nodes get selected L--- Arm.7 2 - IL- 
LLUIII urm4 in tne order 

Rectangle R 1 2 3 6 7 8 
f(R) 60 60 55 55 55 55 

The solution obtained is shown in Fig 6(a). If we 
had chosen rectangle 9 instead of 8 at the end we 
would have obtained the same solution. The uncon- 
strained optimum is shown in Fig 6(bj, whiie the 
non-guillotine optimum is shown in Fig 6(c). Each 
row in Table 2 corresponds to a node (rectangle) in tkle tree of Fig 5. ma- ---I_ rcx eci~n ~WSUiCji~ ii, t’ne 
table gives the number of occurrences of rl and r2 
in R, the length and width of RI whether R has 
been created by a horizontal (H) or vertical (V) 
build, and the values of g(R), h(R) and f(R). Note 
that rectangle 5 has a heuristic estimate of 0 be- 
cause it is not possible to include a demanded 
rectangle in the remaining part of the stock rec- 
tangie S without vioiating the demand constraints 
on rl. 

Rect No. rl r2 length width V/H g h f 
-----------------~ Y----B---- 

2 - 25 35 60 
1 - 10 50 60. 

3 0 2 3 2 v 20 35 55 
4 1 1 2 H 35 10 45 
5 11 3 v 35 0 35 
6 -2 5 2 H ‘a--n 

0' 3 ;; %a 
55 

7 3 3 V 55 
8 13 5 v 55 0 55 
9 13 5 3 H 55 0 55 

Table 2 

It can be shown formally that algorithm BF-CRGKP 
terminates and yieids an optimal solution. We out- 
line below the main steps in the proof. 

A solution to the CRGKP specifies a guillotine 
pattern, cutting i.e a sequence of guillotine cuts 

on S and on rectangles obtained from S. Such cut- 
ting patterns have the following interesting 
property : 

mmeorem 1 g _A_“-y ailil lntine mlttinn ruttern T- ~fl S  =I---------- m.---a...-J p----“’ 
sr!arranged to get a new guillotine citting 
pattern T2 on S, such that any arbitrarily chosen 
rectangle in T 

i! 
, whether a demanded rectangle or a 

composite ret angle, is moved to the bottom left 
corner of T , 

z 
and T2 has the same composition of 

&demanded ret angles as Tl. 

\,l-...---Lx--- ---I D---1-f vniwanasnan anu Dascril 147 



pattern that is constrained to include R. 

Theorem 3 : The heuristic estimate function h is 
monotone: 

Fig. 5 

5 
Constrained optimum Unconstrained optimum 

Value 45 Value =60 

(4 (b) 

Non guillotine optimum 
Value -70 

.(cl 

Fig; 6 

Theorem 1 motivates and clarifies our method of, 
computing heuristic estimates. The next theorem 
formalizes the upper bounding property of the 
evaluation function f. 

Theorem 2 -- : Let R be a rectangle generated in the 
course of an execution of Algorithm BF CRGKP. Then 
f(R) = g(R) + h(R) gives an upper bound on the 
maximum value obtainable from a guillotine cutting 

Corollary : i) Let a rectangle R be a horizontal 
(or vertical) build of two rectangles Rl and R2. 
Then f(R) imin{f(Rl),f(R2)). 

ii) The time sequence of f-values of 
rectangles chosen from OPEN is non-increasing. 

iii) At any time the f-value of a rec- 
tangle in CLIST is greater than or equal to the f- 
value of every rectangle of OPEN. 

'For a given instance of the CRGKP, let T be any 
guillotine cutting pattern that corresponds to an 
optimal solution. It should be observed that some 
component rectangle of the pattern T is in OPEN at 
each instance during the execution of BF-CRGKP. By 
our previous results we can then conclude that 

Since Algorithm BF-CRGKP is a tree-search 
procedure, it is important to ensure that dupli- 
cate copies of rectangles are not generated. 
Duplication can cause an exponential explosion in 
the total number of nodes (rectangles) generated z". 111 the I---- ml..-.: -L-C2 2-r. 

LLWZ. LIILlbLULIUes 
arid Whi'Lioc,g I--..- 

IlClVt: 

enumerated some sources of node duplication. Our 
implementation of BF-CRGKP incorporates checks to 
C~~CIIVO that nniia AlIn ipatinn * u.aYUI- b CI‘Ub a*-“- “UyaA”UCA”.. 1s cut anwn f-0 a U”“‘, 

minimum. Details can be found in [Viswanathan, 
1988 1. 

IV Computational Results 

Christofides and Whitlock give details on-three 
test problems. Algorithm BF-CRGKP was run on these 
problem for p'urposes of comppr ison. The results 
are shown in Table 3. Running times are not given 
for the following reason. Christofides and Whit- 
lock had imDlemented their alaorithm in FORTRAN IV --..~ - -_..---___ -__--- ---a-------. 
on the CDC 7600. BF-CRGKP was programmed in Pascal 
and run on the VAX-11/750. We also ran Chris- 
tofides and Whitlock's algorithm in Pascal on the 
VAX-11/7501 but although correct answers were ob- 
4-5: w.*a LsIIlI~U on the +rrr.t -rrrLl n.-.-.e. LC3L pL""lwlw, the imiiir of nodes 
generated did not tally with those reported by 
Christofides and Whitlock and running times were 
nrc3er.c. nf rruani tliilo nr@~ter thnn fnr RB CRPKP -e. . ..--1 V& ..->..- -...-I 1‘. WI”“.. “I.U. &VA. YL “r.Gr\l. 

Wang's method was also programmed in Pascal on the 
VAX-11/750. For different stock sizes, a number of 
test problems were randomly generated using a e-L. ̂ -^ 3^^--2L^J L-- "C-2 -I-C? 3-- 
sic;ne~:lllt: uezic;~ ~ueu wy L~L isr;uriaes aMi WiitiOCk. 
Unfortunately, Wang's method being heuristic in 
nature does not yield optimal solutions in a 
ci nrrl c) i nwrw-at inn Tlcinn r\na nC hi E c~rnnnctinnc i +  u4.aPJA.b .L&..“IU.a&V“. ““Aray “*IL “L I1.A.Q .aJuyysucsvrr.a J..c 

is possible, as a general rule, to get optimal 
solutions in two invocations. Table 4 gives the 
comparative running times for obtaining optimal 
output. 

The heuristic estimate function h described here 
. is not the only possible heuristic that can be 

IlCa=i ipa BF rDr-KD YVb.4 bI.UIu. . For details fin nthnr ~,~~ri&~~ “1, “LIIGL 

estimate functions see [yiswanathan, 19881. 
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------d-------  -  4 -a .  ------  

N O  Size  of stock N u m b e r o f d e m -  Chr is tozzand Whit lock's m e t- B F  C R G K P  
rec tang le  (L ,w? a n d e d  rects h o d  : nu!!r  of n o d e s  in  t ree N luF !~U of 

As  repor ted  As  ob ta ined  by  us  n o d e s  in  t ree 
- - - - - -VW ---- -I- 

1  (15 ,101  7  3 ,794  49 ,638  4 9 8  
2  (40 ,701  1 0  18 ,602  39 ,308  4 ,110  
3  t-u, IA n  7n\  IV )  2 0  2 2  , i84 -l'lr lzce-9 110~33 l J  14 ,936  

- - -  - - -  

Tab le  3  . 

-P- -F-  _I__----- - - - - -  -m-- -w 
N o  S tock S ize  N u m b e r  of d e m -  N u m b e r  of p ro -  W a n g 's M e thod  B F  C R G K P  

!L,W ! a n A d  red-c  hl  c l rnc cr\ l x r a r 7  Astrr  n n  r \C A r m  PDI l  B I? tY  v u - s  z =  n r , r r  - 7 1  
UA.U”” 4 .  b”CY U.3 .bL . l .a  “VI. “U c a r y  ‘I” “A. Ax ry  -Ii” r&vy  8,” “I L - L v y  Lr” 

rec tang les  T ime  rec tang les  T ime  
----I--- -  ---  

1  (40 ,701  5  4  6 7 8  32 .23  6 6 9  16 .21  
2  (53 ,651  5  4  9 2 0  106 .91  1 7 8  9 .88  
3  (xJ,lUUI *-- ---* 5  5 4 9  - _ -  23 .80  1 1 4  
4  (15 ,101  6  Y i  5 1 5  26 .65  3 9 5  

20 .53  
1 .54  

5  (40 ,701  7  4  5 9 9  26 .35  3 7 6  10 .91  
6  (40 ,701  1 0  4  1 2 2 1  135 .11  1 2 5 1  16 .30  

- - - - - - -~~-  --  - - -P- -Ppc-  
Tab le  4  

Cut t ing stock p rob lems  ar ise of ten in  industry,  
a n d  var ious interest ing techn iques  h a v e  b e e n  
dev ised  for so lv ing them (see  for examp le  [G i lmore  

:and  Gomory ,  19611) .  M a n y  var iants of o n e  a n d  two-  
.d imens iona l  cutt ing stock p rob lems  h a v e  b e e n  
studied.  This  p a p e r  has  b e e n  conce rned  with the 
Cons t ra ined  Rec tangu la r  Gui l lo t ine Knapsack  
P r o b l e m  (CRGKP) ,  A  conven ien t  dynamic  p r o g r a m m i n g  
formulat ion for the uncons t ra ined  vers ion of the 
p rob lem is known,  but  the C R G K P  cal ls for a  m o r e  
e labora te  p rocedure .  W e  h a v e  descr ibed  a  best-  
first a lgor i thm for the C R G K P  wh ich  appea rs  to b e  
super io r  to ear l ier  m e thods.  T h e  s igni f icance of 
the a lgor i thm l ies in  the fact that not  too m a n y  
successful  appl icat ions of best-f irst search  to 
real- l i fe p rob lems  a re  known.  For  m a n y  t ree-search 
prob lems,  depth-f i rst  m e thods h a v e  b e e n  dev ised  
wh ich  run  faster than  best-f irst m e thods.  U n d e r  
what  condi t ions is a  best-f irst a p p r o a c h  l ikely to 

<preva i l  over  a  depth-f i rst  o n e  ?  It wou ld  s e e m  
that the p rob lem must  b e  such  that the total tim e  
taken to e x p a n d  a  n o d e  , i .e the tim e  taken to 

i) gene ra te  the sons  of the node ,  a n d  
::\ trr A A m - 3 . t n  J-J.1 hen*.- :  ad -  :m  rret :m-t r re for tk;e so i1s L "  L " l l l~ULC I ICZUL J.G L 4 .b C 3 C U L y 1 L G 3  
cannot  b e  m a d e  too smal l .  In the 15-puzz le ,  o r  in  
the m e thod  p r o p o s e d  by  Litt le et al. for the 
t ravel l ing sa lesman  prob lem,  it is poss ib le  to 
reduce  this tim e  to such  a  smal l  va lue  that 
repea ted  n o d e  expans ion  b e c o m e s  a  feasib le 
al ternat ive. B u t not  so  for ou r  p rob lem.  In 
B F _ C R G K P , the heur ist ic est imate computa t ion  is 
essent ia i iy  a  tab ie  iook-up,  but  the genera t ion  of 
sons  of a  n o d e  takes signif icant tim e ; moreover ,  
the a lgor i thm d o e s  not  h a v e  a  conven ien t  dep th -  
first formulat ion.  Is it poss ib le  to categor ize 
the class of t ree-search p rob lems  for wh ich  best-  
first imp lementa t ions  a re  p re fe rab le  to dep th -  c::rrrt .-.wsA,. 3  LJ .13C "Al-c:3 i 
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