
Rina Dechter
Judea Pearl

T-PROCESSING *

Cognitive System Labcbratory, Computer Science Department
University of California, Los Angeles, CA 90024

Net address: dechter@csmla.edu
Net address: judea@cs.ucla.edu

ABSTRACT

The paper offers a systematic way of regrouping con-
straints into hierarchical structures capable of sup-
porting information retrieval without backtracking.
The method involves the formation and preprocess-
ing of an acyclic database that permits a large variety
of queries and local perturbations to be processed
swiftly, either by sequential backtrack-free pro-
cedures, or by distributed constraint-propagation
processes.

1. Introduction

Solving Constraint-Satisfaction Problems (CSP) usually
involves two phases: a preprocessing phase that establishes
local consistencies, followed by a backtracking procedure that
actually produces the solution desired. While the preprocess-
ing phase is normally accomplished by local, constraint-
propagation mechanisms, the answer-producing phase occa-
sionally runs into difficulties due to excessive backtrackings.
If a given set of constraints is to be maintained over a long
stream of queries, it may be advisable to invest more effort
and memory space in restructuring the problem so as to facili-
tate more efficient answer-producing routines. This paper pro-
poses such a restructuring technique, based on clique-tree
clustering. The technique guarantees that a large variety of
queries could be answered swiftly either by sequential
backtrack-free procedures, or by distributed constraint propa-
gation methods.

The technique proposed exploits the fact that the
tractability of CSPs is intimately connected to the topological
structure of their underlying constraint graphs [Freuder, 1982,
Dechter, 1987al. The simplest result in this regard asserts that
if the constraint-graph is a tree then the corresponding CSP
can be solved efficiently, in O(nk2) steps, where n is the
number of variables and k is the number of values. Another
important feature of tree topology lies in facilitating unsuper-
vised, constraint-propagation mechanisms. Distributed relaxa-
tion algorithms applied to constraint trees reach equilibrium in

* This work was supported in part by the National Science
Foundation, Grant #DCR 85-01234 and by the Airforce Office of
Scientific Research Grant #AFOSR-88-0177.

I50 Automated Reasoning

time proportional to the tree’s diameter and, more
significantly, the local consistencies established by such algo-
rithms also guarantee a global consistency, namely, any value
in the resultant graph is guaranteed to participate in a solution.

A general strategy of utilizing these merits of tree
topologies in non-tree CSPs is to form clusters of variables
such that the interactions between the clusters is tree-
structured, then solve the problem by efficient tree algo-
rithms. This amounts to first, deciding which variables should
be grouped together, finding the internally consistent values in
each cluster and, finally, processing these sets of values as sin-
gleton variables in a tree.

In this paper we present a general and systematic
method of accomplishing this strategy, applicable for both
binary and non-binary CSPs. The method is based on a combi-
nation of the theory of acyclic databases [Beeri, 19831,
Freuder’s conditions for backtrack-free search [Freuder,
19821 and the notion of directional consistency [Dechter,
1987a]. Related methods were also used for structuring sta-
tistical databases [Malvestuto, 19871, Bayesian inferences
[Lauritzen, 19881, and the analysis of belief functions [Shafer,
19881.

2. CSPs and their graph-representations

A constraint satisfaction problem involves a set of n variables
X1 ,... Jr,, each represented by its domain values, R 1, . . . , R,,
and a set of constraints. A constraint Ci (Xi,, * . . Jr,) is a sub-
set of the Cartesian product RilX * . . XRi, which specifies
which values of the variables are compatible with each other.
A solution is an assignment of values to all the variables
which satisfy all the constraints and the task is to find one or
all solutions. A Binary CSB is one in which all the con-
straints involve only pairs of variables. A binary CSP can be
associated with a constraint-graph in which nodes represent
variables and arcs connects pairs of constrained variables.
Graph representations for high-order constraints can be con-
structed in two ways, Primal-constraint-graph and Dual-
constraint-graph. A Primal-constraint-graph represents
variables by nodes and associates an arc with any two nodes
residing in the same constraint. A Dual-constraint-graph
represents each constraint by a node (called a c-variable) and
associates a labeled arc with any two nodes that share

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

variables. The arcs are labeled by the shared variables.

For example, Figure la and lb depict the primal and
dual constraint-graph respectively, of a CSP with variables
A,B,C,D,E,F and constraints on the subsets
(MC),(AEF), (CDE) and (ACE) (the constraints themselves
are not explicitly given).

(a> (b)
Figure 1: A primal and dual constraint graphs of a CSP.

Since trees are desirable structures we want to
transform any constraint-graph into a tree. One way of doing
it is to form larger clusters of c-variables, another is to identify
and remove redundant arcs. A constraint is considered
redundant if its elimination from the problem does not change
the set of solutions. Since all constraints in the dual-graph are
equalities, an arc can be deleted if its variables are shared by
every arc along an alternative path between the two end
points. The subgraph resulting from the removal of redundant
arcs is called a join graph, and it has the following property:
for each two nodes that share a variable there is at least one
path of labeled arcs, each containing the shared variable. For
example, in figure lb, the arc between (AEF) and (ABC) can
be eliminated because the variable A is common along the
cycle (AEF) -- A -- (MC) -- AC -- (ACE) -- AE -- (AEF)
and, so, a consistent assignment to A is ensured by the
remaining arcs. By a similar argument we can remove the
arcs labeled C and E, thus turning the join-graph into a tree,
called join-tree.

A CSP organized as a join-tree can be solved
efficiently. If there are p constraints in the join-tree, each
with at most I subtuples, then, a straight application of the
algorithm developed for a tree of singletons (i.e., O(nk2))
would yield a solution in O(pZ2). However, by ordering the
tuples of each constraint lexicographically, the task of match-
ing two tuples can be reduced to O(logZ) steps, and so arc-
consistency between two constraints, (which is O(k2) for
binary constraints), can be enforced in O(Zlog2) steps, thus
reducing the overall complexity to O(p -2 slogl). The set of
CSPs that possess a join-tree is called acyclic-databases
(called Acyclic-CSPs here), and their desirable properties are
discussed at length in [Beeri, 19831.

3. The Tree-Clustering Scheme

Our aim is to transform any CSP into an acyclic representa-
tion, even when the dual constraint graph of the original
representation of the problem cannot be reduced to a join-tree.
We do it by systematically forming larger clusters than those
given in the dual constraint graphs.

A CSP is acyclic iff its primal graph is both chordal
and conformal [Beeri, 19831. A graph G is chordal if every
cycle of length at least four has a chord, i.e., an edge joining
two nonconsecutive vertices along the cycle. A graph is con-
formal if each of its maximal cliques corresponds to a con-
straint in the original CSP.

The clustering scheme is based on an efficient tri-
angulation algorithm [Tarjan, 19841 which transforms any
graph into a chordal graph by adding edges to it. It consists of
two steps: 1. Compute an ordering for the nodes, using a max-
imum cardinality search. 2. Fill-in edges between any two
non-adjacent nodes that are connected via nodes higher up in
the ordering. The maximal cliques of the resulting chordal
graph are the clusters necessary for forming an acyclic CSP.

The maximum-cardinality-search numbers vertices
from 1 to n , in increasing order, always assigning the next
number to the vertex having the largest set of previously num-
bered neighbors, (breaking ties arbitrarily). Such ordering
will be called m-ordering. If no edges are added in step two,
the original graph is chordal, otherwise the new filled graph is
chordal.

The above theory suggests the following clustering
procedure for CSPs:

1.

2.

3.

4.

5.

Given a CSP and its primal graph, use the triangula-
tion algorithm to generate a chordal primal graph.

Identify all the maximal cliques in the primal-chordal
graph. Let C l,...,Ct be all such cliques indexed by
the rank of its highest nodes.

Form the dual-graph corresponding to the new clus-
ters and identify one of its join-trees by connecting
each Ci to an ancestor Ci 0’ < i) with whom it shares
the largest set of variables mier, 19831.

Solve the subproblems defined by the clusters
Cl,. . . , C,, (this amounts to generating and listing
the consistent subtuples for each cluster).

Solve the tree problem with treating the clusters as
singleton variables: a. perform directional arc-
consistency (DAC) on the join-tree [Dechter, 1987a].
b. solve the join-tree in a backtrack-free manner.

Dechter and Pearl 151

For example, consider a CSP defined by the
constraint-sets: (AC), (AD), (BD), (CE), (DE). The primal
graph is given in figure 2a.

f4 fb)

Figure 2.

The ordering d = E, D , C, A, B is one possible m-ordering
(Figure 2b). The fill-in required by this ordering adds the arc
(C , D) and results in the chordal graph of figure 2b. The
maximal cliques associated with this graph are: (AK),
(DCE), and (DB). A join-tree of these constraints is shown in
figure 2~. The three subproblems associated with the sets of
variables (ADC), (DCE) and (DB), are solved and then, using
these local solutions as domains for the c -variables, the tree is
solved in the usual manner (step 5).

The first three steps of the algorithm, i.e., triangula-
tion and fill-in, cluster-identification and join-tree generation,
all manipulate the topology of the primal graph and all are
bounded by 0 (n2), the size of the resultant chordal graph.
Cliques identification is easy since in the filled-in cordal
graph, any vertex V and its parent set C(V) form a clique, and
thus all maximal cliques (there are at most n) can be deter-
mined in decreasing order of V, discarding a newly generated
clique that is contained in a previous clique. Determining the
join-tree, is linear in the size of the triangulated primal graph
and can be performed greedily (see step 3).

The fourth step which requires solving the subprob-
lems defined by each clique may dominate the overall compu-
tation since it takes O(k’) when k is the number of values and
r is the size of the maximal clique. Finally, the last step of
solving the join-tree is O(n St logt) when t is the maximum
number of solutions in each clique. Considering all the above
steps the overall complexity of the clustering scheme is
roughly bounded by 0 (k*). The space complexity is also
0 (k’) since the solution set explicated for each clique at step
4 may be exponential in the size of the clique. For more
details see [Dechter, 1987b]

We will see next that some computation can be saved
in steps 4 and 5, by executing the clustering steps in a coordi-
nated way, by consulting the solutions found in one clique for
pruning the set of solutions assembled in adjacent cliques.

i 52 Automated Reasoning

4. Adaptive-consistency

Studies on the level of local consistency required to guarantee
that solutions can be retrieved in a “backtrack-free” manner,
show [Freuder, 1982, Dechter, 1987a] that an ordered
constraint-graph is backtrack-free if the level of directional
strong-consistency along this order is greater then the width of
the ordered graph. We show how this theory leads to a clus-
tering scheme similar to that of section 3.

The width of a node in an ordered graph is the
number of links connecting it to nodes lower in the ordering.
The width of an ordering is the maximum width of nodes in
that ordering, and the width of a graph is the minimal width
of all its orderings. A CSP is i-consistent if for any consistent
value-assignment for i-l variables, there exists a value for
any P variable, such that the i values together are consistent.
d-i-consistency requires only that the i-l values can be con-
sistently extended by any variable that succeed all instantiated
variables in the ordering d. Strong-i-consistency holds when
the problem is j-consistent for jli . strong-d-i-consistency
can be defined accordingly.

If the width of the graph is i-1 but the problem is not
i-consistent, algorithms enforcing i-consistency can be applied
to it, e.g., the algorithms known as arc-consistency and
path-consistency enforce 2-consistency and 3-consistency
respectively [Montana& 1974, Mackworth, 1984, Dechter,
1987a]. However, since i-consistency may add arcs to the
graph and thus change its width, there is a need to adapt the
level of consistency imposed during this process in order to
guarantee backtrack-free search. The following procedure,
we first presented in [Dechter, 1987a] takes this issue into
consideration. A similar algorithm, suggested by Seidel
[Seidel, 19811 accomplished, essentially, the same idea.

Given an ordering, d, we establish d-i-consistency
recursively, letting i change dynamically from node to node
to match its width at the time of processing. Nodes are pro-
cessed in decreasing order, so that by the time a node is pro-
cessed, its final width is determined and the required level of
consistency can be achieved. For each variable, X, let
PARENTS(X) be the set of all variables connected to it and
preceding it in the graph.

Adaptive-consistency(X1, . . . ,X,)
Begin

l.fori=ntolLby-ldo
2. Compute PARENTS(Xi)
3. connect all elements in PARENTS

(if not yet connected)
4. perform consistency(Xi , PARENTS(
5. find solution using backtrack(X 1, . . . ,X,)

End

The procedure consistency(V ,SET) generates and
records those tuples of variables in SET that can be consistent
with at least one value of V. The procedure may impose new
constraints over clusters of variables as well as-tighten exist-
ing constraints. The topology of the induced graph can be
found prior to executing the procedure, by recursively con-
necting any two parents sharing a common successor.

Consider our example of figure 2 in an ordering
(E JJ ,C ,A ,B) shown in figure 3a. Adaptive-Consistency
proceeds from B to E and imposes consistency constraints on
the parents of each processed variable. B is chosen first and
the algorithm enforces a 2-consistency on D (namely an arc-
consistency on (D,B)), since the width ofB is 1. A is selected
next and, having width 2, the algorithm enforces a 3-
consistency on its parents (C fl} . This operation may require
that a constraint between C and D be added, and in that case
an arc (C ,D) is added. when the algorithm reaches node C its
width is 2 and, therefore, a 3-consistency is enforced on C’s
parents (E ,D) . The arc (E p) already exists so this opera-
tion may merely tighten the corresponding constraint. The
resulting graph is given in Figure 3b.

(4

Figure 3.

(b)

Let W(d) be the width of the ordering d and W* (d)
the width of the induced graph. The complexity of solving a
problem using Adaptive-Consistency preprocessing phase
(steps l-4) and then backtracking (freely) along the order d
(step 5) is dominated by the former. The worst-&se complex-
ity of the “consistency(V, PARENT(V)) step” is exponential
in the cardinality of variable V and its parents. Since the max-
imal size of the parent-sets is equal to the width of the induced
graph we see that solving the CSP along the ordering d is
0 0w-N~ W+l)).

5. Rehtionships between Adaptive-Consistency (A -C) and
Tree-Clustering (T-C)

The two schemes presented, although unrelated at first glance,
share many interesting features. First, for any given ordering
d, the set of fill-in arcs added by triangulation, is equal to the
set of arcs added by Adaptive-Consistency scheme. Both
methods recursively connect sets of nodes that share a

common successor in the ordering, (see figures 2b and 3b). In
particular, A -C ‘s induced graph is always chordal and, if the
original graph is chordal and ordered by a max-cardinality
search, its width will not change (no arcs are added in this
case).

In addition, a strong structural resemblance exists
between the clusters chosen by T-C and the constraints (new
or old) recorded by A-C. In each clique C of size P (in the
induced graph) A-C will record or tighten one constraint of
size r-l. Namely, every cluster in T-C (i.e., a maximal
clique) is represented in A-C by the constraints originally
contained in that cluster, and at most one additional constraint
for each size less then the cluster’s cardinality. See in figure
4a and 4b the clusters generated by T-C and the constraints
recorded by A -C .

(4 04

Figure 4. (a) clusters of T-C, (b) constraints of A-C.

Rough asymptotic bounds on the time and
space-complexity of both schemes reveal that they are about
the same. If W* (d) is the width of the induced graph, then
W* (d)+l is the size of the largest clique and, therefore, both
A-C and T-C are space-bounded and time-bounded by
0 (kw* (d)), k be’ mg the number of values. These bounds can
be further tightened to yield 0 (exp (W*+l)) where

W* = min {W* (d)]. However, computing an optimal d was
d

shown to be an NP-complete task [Arnborg, 19871, and among
the various heuristic orderings studied in the literature [Ber-
tele, 19721, the most popular are the minimal width and the
m - orderings. The ease of finding these orderings enables us
to calculate W* (d) under both orderings, and take the lowest
value as a better upper bound estimate of W* . Moreover, any
minimum-width ordering, denoted d,, , can be used for gen-
erating both a lower and an upper bound for W* since
W(d,,,,,,)<W* sW*(d,,,,).

In practice we may find cases favoring either one of
the two schemes space-wise, because the explicit representa-
tion of T-C may sometimes be more economical. Regarding
actual time complexity we argue that A-C outperforms T-C,
and in effect can be considered a more efficient approach to
tree-clustering. The reason is that clusters are not assembled
independently, but are pruned during construction. Algorithm
A-C constructs, in effect, a join-tree that is already
directional-arc-consistent and, so, renders step 5a of T-C

Dechter and Pearl 153

unnecessary. The only difference is that A -C does not expli-
citly enumerate the domains of the c-variables but, instead,
represents them as local conjunctions of lower-a&y con-
straints (see figure 4). This enumeration can be accomplished
by step 5 of A-C using backtrack. In that case the resulting
(implicit) join-tree would be fully arc-consistent. For more
details see [Dechter, 1987b].

The question arises whether there is ever a need to
fully explicate the domain of each clique in the join-tree,
Obviously, if the ultimate task is merely finding one (or all)
solution to the given CSP, then the representation constructed
by the A-C (steps l-4) is sufficient. However, not all appli-
cations are suitable for a solution process committed to a fixed
ordering. For example, to answer the query: “Is there a solu-
tion in which variable Xi attains the value x?” it is convenient
to begin the search at Xj rather then at some other variable. In
general, if the ultimate task is to maintain an effective data-
base for answering a variety of queries, a balanced, undirec-
tional representation is preferred, facilitating information
retrieval in all orderings.

6. Conclusions

Tree-Clustering offers a systematic way of regrouping ele-
ments into hierarchical structures capable of supporting infor-
mation retrieval without backtracking. The basic Tree-
Clustering scheme involves triangulating the constraint graph,
identifying the maximal cliques of the triangular graph, solv-
ing the constraints associated with each clique and organizing
the solutions obtained in a tree structure. A routine called
Adaptive Consistency has been identified as an effective
method of assembling the desired tree.

Once the clusters are formed and their join-tree es&
blished and processed, the resulting structure offers an effec-
tive database, to be amortized over many problem instances.
A large variety of queries could be answered swiftly either by
sequential backtrack-free procedures, or by distributed con-
straint propagation processes. In addition, when local new
constraints (which do not alter the structure of the tree) are
added, global consistency can still be maintained by unsuper-
vised constraint-propagation processes.

The tree-clustering scheme can facilitate efficient
computation of many functions which are easily solvable on a
tree of binary constraints. Such application is shown for belief
propagation in Bayesian-networks [Lauritzen, 19881, for
belief-functions in Dempster-Shafer formalism [Shafer, 19881,
and for constraint-optimization [Dechter, 19881.

Future experimental work is required to compare
Tree-clustering schemes and backtrack algorithms in order to
determine whether the advantages of these schemes, as mani-
fested by their worse-case bounds, are translated into an actual
improvement in performance.

154 Automated Reasoning

References

[Arnborg 19871 Amborg, S., D.G. Come& and A.
Proskurowski, “Comulexitv of finding embeddings in a
k-tree,” Siam- Journal of Algorithm aid Discrete-Math.,
Vol. 8, No. 3,1987, pp. 277-284.

[Beer-i 19831 Beeri, C., R. Fagin, D. Maier, and Nihalis
Yanakakis, “On the desirability of acyclic database
schemes, ” JACM, Vol. 30, No. 3, 1983, pp. 479-513.

[Bertele 19721 Bertele, U. and F. Brioschi, Nonserial dynamic
programming, New York: Academic press, 1972.

[Dechter 1987a] Dechter, R. and J. Pearl, “Network-based
heuristics for constraint-satisfaction problems,” Artificial
Intelligence Journal, Vol. 34, NO. 1,1987, pp. l-38.

[Dechter 1987bl Dechter. R. and J. Pearl. “Tree-clustering for
constraint-networks,‘i Technical Report #R-92, UCLA
Cognitive Systems Laboratory, Los Angeles, CA., 1987.
(Artificial Intelligence, forthcoming).

[Dcchter 19881 Dechter,’ R., A. Dechter, and J. Pearl, “Op-
timization in constraint-networks.” In Proceedings,
Conference on Influence Diagrams for Decision Analysis,
Inference, and Prediction, June 9-11, Berkeley, CA.,
1988.

Freuder 19823 Freuder, E.C., “A sufficient condition of
backtrack-free search,” Journal of the ACM, Vol. 29, No.
1, 1982, pp. 24-32.

Shafer, 6. and P.P. Shenoy, “Bayesian and belief-function
propagation,” School of Business working paper No. 192,
University of Kansas, Lawrence, Kansas, April 1988.

Lauritzen 19881 Lauritzen, S.L. and D.J. Spiegelhalter, “Lo-
cal computations with probabilities on nraDhical struc-
tures and their applications to expert syst&s:” To appear
in J.R. Statist. Sot. B. Vol. 50, 1988.

[Maier 19831 Maier, D., The theory of relational databases,
Rockville, Maryland:Computer Science Press, 1983.

[Malvestuto 19871 Malvestuto, F.M., “Answering queries in
categorical databases.” In Proceedings, Sixth conference
on the Principals of Database Systems, San Diego, CA.,
1987, pp. 87-96.

[Montanari 19741 Montanari, U., “Networks of constraints,
fundamental properties and applications to picture pro-
cessing,” Information Science, Vol. 7, 1974,95-132.

[Seidel 19811 Seidel, R., “A new method for solving
constraint-satisfaction problems.” In Proceedings, IJCAI,
1981, pp. 338-342.

fTarjan 19841 Tarjan, R.E. and M. Yannakakis, “Simple
linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs and selectively reduce acyclic
hypergraphs,” SIAM Journal of Computing, Vol. 13, No.
3, 1984, pp. 566-579.

