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ABSTRACT 

The paper offers a systematic way of regrouping con- 
straints into hierarchical structures capable of sup- 
porting information retrieval without backtracking. 
The method involves the formation and preprocess- 
ing of an acyclic database that permits a large variety 
of queries and local perturbations to be processed 
swiftly, either by sequential backtrack-free pro- 
cedures, or by distributed constraint-propagation 
processes. 

1. Introduction 

Solving Constraint-Satisfaction Problems (CSP) usually 
involves two phases: a preprocessing phase that establishes 
local consistencies, followed by a backtracking procedure that 
actually produces the solution desired. While the preprocess- 
ing phase is normally accomplished by local, constraint- 
propagation mechanisms, the answer-producing phase occa- 
sionally runs into difficulties due to excessive backtrackings. 
If a given set of constraints is to be maintained over a long 
stream of queries, it may be advisable to invest more effort 
and memory space in restructuring the problem so as to facili- 
tate more efficient answer-producing routines. This paper pro- 
poses such a restructuring technique, based on clique-tree 
clustering. The technique guarantees that a large variety of 
queries could be answered swiftly either by sequential 
backtrack-free procedures, or by distributed constraint propa- 
gation methods. 

The technique proposed exploits the fact that the 
tractability of CSPs is intimately connected to the topological 
structure of their underlying constraint graphs [Freuder, 1982, 
Dechter, 1987al. The simplest result in this regard asserts that 
if the constraint-graph is a tree then the corresponding CSP 
can be solved efficiently, in O(nk2) steps, where n is the 
number of variables and k is the number of values. Another 
important feature of tree topology lies in facilitating unsuper- 
vised, constraint-propagation mechanisms. Distributed relaxa- 
tion algorithms applied to constraint trees reach equilibrium in 
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time proportional to the tree’s diameter and, more 
significantly, the local consistencies established by such algo- 
rithms also guarantee a global consistency, namely, any value 
in the resultant graph is guaranteed to participate in a solution. 

A general strategy of utilizing these merits of tree 
topologies in non-tree CSPs is to form clusters of variables 
such that the interactions between the clusters is tree- 
structured, then solve the problem by efficient tree algo- 
rithms. This amounts to first, deciding which variables should 
be grouped together, finding the internally consistent values in 
each cluster and, finally, processing these sets of values as sin- 
gleton variables in a tree. 

In this paper we present a general and systematic 
method of accomplishing this strategy, applicable for both 
binary and non-binary CSPs. The method is based on a combi- 
nation of the theory of acyclic databases [Beeri, 19831, 
Freuder’s conditions for backtrack-free search [Freuder, 
19821 and the notion of directional consistency [Dechter, 
1987a]. Related methods were also used for structuring sta- 
tistical databases [Malvestuto, 19871, Bayesian inferences 
[Lauritzen, 19881, and the analysis of belief functions [Shafer, 
19881. 

2. CSPs and their graph-representations 

A constraint satisfaction problem involves a set of n variables 
X1 ,... Jr,, each represented by its domain values, R 1, . . . , R,, 
and a set of constraints. A constraint Ci (Xi,, * . . Jr,) is a sub- 
set of the Cartesian product RilX * . . XRi, which specifies 
which values of the variables are compatible with each other. 
A solution is an assignment of values to all the variables 
which satisfy all the constraints and the task is to find one or 
all solutions. A Binary CSB is one in which all the con- 
straints involve only pairs of variables. A binary CSP can be 
associated with a constraint-graph in which nodes represent 
variables and arcs connects pairs of constrained variables. 
Graph representations for high-order constraints can be con- 
structed in two ways, Primal-constraint-graph and Dual- 
constraint-graph. A Primal-constraint-graph represents 
variables by nodes and associates an arc with any two nodes 
residing in the same constraint. A Dual-constraint-graph 
represents each constraint by a node (called a c-variable) and 
associates a labeled arc with any two nodes that share 
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variables. The arcs are labeled by the shared variables. 

For example, Figure la and lb depict the primal and 
dual constraint-graph respectively, of a CSP with variables 
A,B,C,D,E,F and constraints on the subsets 
(MC),(AEF), (CDE) and (ACE) (the constraints themselves 
are not explicitly given). 

(a> (b) 
Figure 1: A primal and dual constraint graphs of a CSP. 

Since trees are desirable structures we want to 
transform any constraint-graph into a tree. One way of doing 
it is to form larger clusters of c-variables, another is to identify 
and remove redundant arcs. A constraint is considered 
redundant if its elimination from the problem does not change 
the set of solutions. Since all constraints in the dual-graph are 
equalities, an arc can be deleted if its variables are shared by 
every arc along an alternative path between the two end 
points. The subgraph resulting from the removal of redundant 
arcs is called a join graph, and it has the following property: 
for each two nodes that share a variable there is at least one 
path of labeled arcs, each containing the shared variable. For 
example, in figure lb, the arc between (AEF) and (ABC) can 
be eliminated because the variable A is common along the 
cycle (AEF) -- A -- (MC) -- AC -- (ACE) -- AE -- (AEF) 
and, so, a consistent assignment to A is ensured by the 
remaining arcs. By a similar argument we can remove the 
arcs labeled C and E, thus turning the join-graph into a tree, 
called join-tree. 

A CSP organized as a join-tree can be solved 
efficiently. If there are p constraints in the join-tree, each 
with at most I subtuples, then, a straight application of the 
algorithm developed for a tree of singletons (i.e., O(nk2)) 
would yield a solution in O(pZ2). However, by ordering the 
tuples of each constraint lexicographically, the task of match- 
ing two tuples can be reduced to O(logZ) steps, and so arc- 
consistency between two constraints, (which is O(k2) for 
binary constraints), can be enforced in O(Zlog2) steps, thus 
reducing the overall complexity to O(p -2 slogl). The set of 
CSPs that possess a join-tree is called acyclic-databases 
(called Acyclic-CSPs here), and their desirable properties are 
discussed at length in [Beeri, 19831. 

3. The Tree-Clustering Scheme 

Our aim is to transform any CSP into an acyclic representa- 
tion, even when the dual constraint graph of the original 
representation of the problem cannot be reduced to a join-tree. 
We do it by systematically forming larger clusters than those 
given in the dual constraint graphs. 

A CSP is acyclic iff its primal graph is both chordal 
and conformal [Beeri, 19831. A graph G is chordal if every 
cycle of length at least four has a chord, i.e., an edge joining 
two nonconsecutive vertices along the cycle. A graph is con- 
formal if each of its maximal cliques corresponds to a con- 
straint in the original CSP. 

The clustering scheme is based on an efficient tri- 
angulation algorithm [Tarjan, 19841 which transforms any 
graph into a chordal graph by adding edges to it. It consists of 
two steps: 1. Compute an ordering for the nodes, using a max- 
imum cardinality search. 2. Fill-in edges between any two 
non-adjacent nodes that are connected via nodes higher up in 
the ordering. The maximal cliques of the resulting chordal 
graph are the clusters necessary for forming an acyclic CSP. 

The maximum-cardinality-search numbers vertices 
from 1 to n , in increasing order, always assigning the next 
number to the vertex having the largest set of previously num- 
bered neighbors, (breaking ties arbitrarily). Such ordering 
will be called m-ordering. If no edges are added in step two, 
the original graph is chordal, otherwise the new filled graph is 
chordal. 

The above theory suggests the following clustering 
procedure for CSPs: 

1. 

2. 

3. 

4. 

5. 

Given a CSP and its primal graph, use the triangula- 
tion algorithm to generate a chordal primal graph. 

Identify all the maximal cliques in the primal-chordal 
graph. Let C l,...,Ct be all such cliques indexed by 
the rank of its highest nodes. 

Form the dual-graph corresponding to the new clus- 
ters and identify one of its join-trees by connecting 
each Ci to an ancestor Ci 0’ < i) with whom it shares 
the largest set of variables mier, 19831. 

Solve the subproblems defined by the clusters 
Cl,. . . , C,, (this amounts to generating and listing 
the consistent subtuples for each cluster). 

Solve the tree problem with treating the clusters as 
singleton variables: a. perform directional arc- 
consistency (DAC) on the join-tree [Dechter, 1987a]. 
b. solve the join-tree in a backtrack-free manner. 
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For example, consider a CSP defined by the 
constraint-sets: (AC), (AD), (BD), (CE), (DE). The primal 
graph is given in figure 2a. 

f4 fb) 

Figure 2. 

The ordering d = E, D , C, A, B is one possible m-ordering 
(Figure 2b). The fill-in required by this ordering adds the arc 
(C , D ) and results in the chordal graph of figure 2b. The 
maximal cliques associated with this graph are: (AK), 
(DCE), and (DB ). A join-tree of these constraints is shown in 
figure 2~. The three subproblems associated with the sets of 
variables (ADC), (DCE ) and (DB ), are solved and then, using 
these local solutions as domains for the c -variables, the tree is 
solved in the usual manner (step 5). 

The first three steps of the algorithm, i.e., triangula- 
tion and fill-in, cluster-identification and join-tree generation, 
all manipulate the topology of the primal graph and all are 
bounded by 0 (n2), the size of the resultant chordal graph. 
Cliques identification is easy since in the filled-in cordal 
graph, any vertex V and its parent set C(V) form a clique, and 
thus all maximal cliques (there are at most n) can be deter- 
mined in decreasing order of V, discarding a newly generated 
clique that is contained in a previous clique. Determining the 
join-tree, is linear in the size of the triangulated primal graph 
and can be performed greedily (see step 3). 

The fourth step which requires solving the subprob- 
lems defined by each clique may dominate the overall compu- 
tation since it takes O(k’) when k is the number of values and 
r is the size of the maximal clique. Finally, the last step of 
solving the join-tree is O(n St logt ) when t is the maximum 
number of solutions in each clique. Considering all the above 
steps the overall complexity of the clustering scheme is 
roughly bounded by 0 (k*). The space complexity is also 
0 (k’) since the solution set explicated for each clique at step 
4 may be exponential in the size of the clique. For more 
details see [Dechter, 1987b] 

We will see next that some computation can be saved 
in steps 4 and 5, by executing the clustering steps in a coordi- 
nated way, by consulting the solutions found in one clique for 
pruning the set of solutions assembled in adjacent cliques. 
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4. Adaptive-consistency 

Studies on the level of local consistency required to guarantee 
that solutions can be retrieved in a “backtrack-free” manner, 
show [Freuder, 1982, Dechter, 1987a] that an ordered 
constraint-graph is backtrack-free if the level of directional 
strong-consistency along this order is greater then the width of 
the ordered graph. We show how this theory leads to a clus- 
tering scheme similar to that of section 3. 

The width of a node in an ordered graph is the 
number of links connecting it to nodes lower in the ordering. 
The width of an ordering is the maximum width of nodes in 
that ordering, and the width of a graph is the minimal width 
of all its orderings. A CSP is i-consistent if for any consistent 
value-assignment for i-l variables, there exists a value for 
any P variable, such that the i values together are consistent. 
d-i-consistency requires only that the i-l values can be con- 
sistently extended by any variable that succeed all instantiated 
variables in the ordering d. Strong-i-consistency holds when 
the problem is j-consistent for jli . strong-d-i-consistency 
can be defined accordingly. 

If the width of the graph is i-1 but the problem is not 
i-consistent, algorithms enforcing i-consistency can be applied 
to it, e.g., the algorithms known as arc-consistency and 
path-consistency enforce 2-consistency and 3-consistency 
respectively [Montana& 1974, Mackworth, 1984, Dechter, 
1987a]. However, since i-consistency may add arcs to the 
graph and thus change its width, there is a need to adapt the 
level of consistency imposed during this process in order to 
guarantee backtrack-free search. The following procedure, 
we first presented in [Dechter, 1987a] takes this issue into 
consideration. A similar algorithm, suggested by Seidel 
[Seidel, 19811 accomplished, essentially, the same idea. 

Given an ordering, d, we establish d-i-consistency 
recursively, letting i change dynamically from node to node 
to match its width at the time of processing. Nodes are pro- 
cessed in decreasing order, so that by the time a node is pro- 
cessed, its final width is determined and the required level of 
consistency can be achieved. For each variable, X, let 
PARENTS(X) be the set of all variables connected to it and 
preceding it in the graph. 

Adaptive-consistency( X1, . . . ,X,) 
Begin 

l.fori=ntolLby-ldo 
2. Compute PARENTS(Xi ) 
3. connect all elements in PARENTS 

(if not yet connected) 
4. perform consistency(Xi , PARENTS( 
5. find solution using backtrack(X 1, . . . ,X,) 

End 



The procedure consistency(V ,SET) generates and 
records those tuples of variables in SET that can be consistent 
with at least one value of V. The procedure may impose new 
constraints over clusters of variables as well as-tighten exist- 
ing constraints. The topology of the induced graph can be 
found prior to executing the procedure, by recursively con- 
necting any two parents sharing a common successor. 

Consider our example of figure 2 in an ordering 
(E JJ ,C ,A ,B ) shown in figure 3a. Adaptive-Consistency 
proceeds from B to E and imposes consistency constraints on 
the parents of each processed variable. B is chosen first and 
the algorithm enforces a 2-consistency on D (namely an arc- 
consistency on (D,B)), since the width ofB is 1. A is selected 
next and, having width 2, the algorithm enforces a 3- 
consistency on its parents (C fl} . This operation may require 
that a constraint between C and D be added, and in that case 
an arc (C ,D ) is added. when the algorithm reaches node C its 
width is 2 and, therefore, a 3-consistency is enforced on C’s 
parents (E ,D ) . The arc (E p ) already exists so this opera- 
tion may merely tighten the corresponding constraint. The 
resulting graph is given in Figure 3b. 

(4 

Figure 3. 

(b) 

Let W(d) be the width of the ordering d and W* (d) 
the width of the induced graph. The complexity of solving a 
problem using Adaptive-Consistency preprocessing phase 
(steps l-4) and then backtracking (freely) along the order d 
(step 5) is dominated by the former. The worst-&se complex- 
ity of the “consistency(V, PARENT(V)) step” is exponential 
in the cardinality of variable V and its parents. Since the max- 
imal size of the parent-sets is equal to the width of the induced 
graph we see that solving the CSP along the ordering d is 
0 0w-N~ W+l)). 

5. Rehtionships between Adaptive-Consistency (A -C ) and 
Tree-Clustering (T-C) 

The two schemes presented, although unrelated at first glance, 
share many interesting features. First, for any given ordering 
d, the set of fill-in arcs added by triangulation, is equal to the 
set of arcs added by Adaptive-Consistency scheme. Both 
methods recursively connect sets of nodes that share a 

common successor in the ordering, (see figures 2b and 3b). In 
particular, A -C ‘s induced graph is always chordal and, if the 
original graph is chordal and ordered by a max-cardinality 
search, its width will not change (no arcs are added in this 
case). 

In addition, a strong structural resemblance exists 
between the clusters chosen by T-C and the constraints (new 
or old) recorded by A-C. In each clique C of size P (in the 
induced graph) A-C will record or tighten one constraint of 
size r-l. Namely, every cluster in T-C (i.e., a maximal 
clique) is represented in A-C by the constraints originally 
contained in that cluster, and at most one additional constraint 
for each size less then the cluster’s cardinality. See in figure 
4a and 4b the clusters generated by T-C and the constraints 
recorded by A -C . 

(4 04 

Figure 4. (a) clusters of T-C, (b) constraints of A-C. 

Rough asymptotic bounds on the time and 
space-complexity of both schemes reveal that they are about 
the same. If W* (d) is the width of the induced graph, then 
W* (d)+l is the size of the largest clique and, therefore, both 
A-C and T-C are space-bounded and time-bounded by 
0 (kw* (d)), k be’ mg the number of values. These bounds can 
be further tightened to yield 0 (exp (W*+l)) where 

W* = min {W* (d)]. However, computing an optimal d was 
d 

shown to be an NP-complete task [Arnborg, 19871, and among 
the various heuristic orderings studied in the literature [Ber- 
tele, 19721, the most popular are the minimal width and the 
m - orderings. The ease of finding these orderings enables us 
to calculate W* (d) under both orderings, and take the lowest 
value as a better upper bound estimate of W* . Moreover, any 
minimum-width ordering, denoted d,, , can be used for gen- 
erating both a lower and an upper bound for W* since 
W(d,,,,,,)<W* sW*(d,,,,). 

In practice we may find cases favoring either one of 
the two schemes space-wise, because the explicit representa- 
tion of T-C may sometimes be more economical. Regarding 
actual time complexity we argue that A-C outperforms T-C, 
and in effect can be considered a more efficient approach to 
tree-clustering. The reason is that clusters are not assembled 
independently, but are pruned during construction. Algorithm 
A-C constructs, in effect, a join-tree that is already 
directional-arc-consistent and, so, renders step 5a of T-C 
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unnecessary. The only difference is that A -C does not expli- 
citly enumerate the domains of the c-variables but, instead, 
represents them as local conjunctions of lower-a&y con- 
straints (see figure 4). This enumeration can be accomplished 
by step 5 of A-C using backtrack. In that case the resulting 
(implicit) join-tree would be fully arc-consistent. For more 
details see [Dechter, 1987b]. 

The question arises whether there is ever a need to 
fully explicate the domain of each clique in the join-tree, 
Obviously, if the ultimate task is merely finding one (or all) 
solution to the given CSP, then the representation constructed 
by the A-C (steps l-4) is sufficient. However, not all appli- 
cations are suitable for a solution process committed to a fixed 
ordering. For example, to answer the query: “Is there a solu- 
tion in which variable Xi attains the value x?” it is convenient 
to begin the search at Xj rather then at some other variable. In 
general, if the ultimate task is to maintain an effective data- 
base for answering a variety of queries, a balanced, undirec- 
tional representation is preferred, facilitating information 
retrieval in all orderings. 

6. Conclusions 

Tree-Clustering offers a systematic way of regrouping ele- 
ments into hierarchical structures capable of supporting infor- 
mation retrieval without backtracking. The basic Tree- 
Clustering scheme involves triangulating the constraint graph, 
identifying the maximal cliques of the triangular graph, solv- 
ing the constraints associated with each clique and organizing 
the solutions obtained in a tree structure. A routine called 
Adaptive Consistency has been identified as an effective 
method of assembling the desired tree. 

Once the clusters are formed and their join-tree es& 
blished and processed, the resulting structure offers an effec- 
tive database, to be amortized over many problem instances. 
A large variety of queries could be answered swiftly either by 
sequential backtrack-free procedures, or by distributed con- 
straint propagation processes. In addition, when local new 
constraints (which do not alter the structure of the tree) are 
added, global consistency can still be maintained by unsuper- 
vised constraint-propagation processes. 

The tree-clustering scheme can facilitate efficient 
computation of many functions which are easily solvable on a 
tree of binary constraints. Such application is shown for belief 
propagation in Bayesian-networks [Lauritzen, 19881, for 
belief-functions in Dempster-Shafer formalism [Shafer, 19881, 
and for constraint-optimization [Dechter, 19881. 

Future experimental work is required to compare 
Tree-clustering schemes and backtrack algorithms in order to 
determine whether the advantages of these schemes, as mani- 
fested by their worse-case bounds, are translated into an actual 
improvement in performance. 
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