
A Rearrangement Search Strategy for
Determining Propositional Satisfiability

Ramin Zabih
Computer Science Department

Stanford University

Abstract

We present a simple algorithm for determining
the satisfiability of propositional formulas in Con-
junctive Normal Form. As the procedure searches
for a satisfying truth assignment it dynamically
rearranges the order in which variables are con-
sidered. The choice of which variable to assign a
truth value next is guided by an upper bound on
the size of the search remaining; the procedure
makes the choice which yields the smallest upper
bound on the size of the remaining search. We
describe several upper bound functions and dis-
cuss the tradeoff between accurate upper bound
functions and the overhead required to compute
the upper bounds. Experimental data shows that
for one easily computed upper bound the reduc-
tion in the size of the search spa,ce more than
compensates for the 0verhea.d involved in select-
ing the next variable.

1 Introduction

Determining the satisfiability of propositional formulas in
Conjunctive Normal Form has been an important prob-
lem for Computer Science. It was the first problem to
be proven N7J-complete [Cook, 19711. This problem is
important because any inference system for propositional
logic that is complete must effectively determine propo-
sitional satisfiability. In addition, many search problems
have natural encodings as CNF formulas. We are particu-
larly interested in constraint sa.tisfaction problems, a class
which includes suclz problems of interest to the Artificial
Intelligence community as the n-queens problem. These
problems have simple encodings as CNF formulas, so an
algorithm for determining satisfiability provides a way of
solving them.

It is well known that the size of the search tree for a given
problem can depend heavily on the order in which choices
are made. We have designed an algorithm for determining
propositional satisfiability that, dynamically rearranges the
order in which propositional variables a.re assigned truth
va,lues. This selection is guided by an upper bound on
the size of the remaining search problem; we arrange the
sea,rch ordering to decrease this upper bound as quickly as
possible.

We present two different upper bounds on the size of the
search remaining. The first bound is related to a-level dy-
na.mic search rearrangement, a strategy described by Pur-
dom, Brown and R,obertson in [1981]. This bound provides
a good estimate of t,he size of the remaining search but t,he

David McAllester
Computer Science Department

Cornell University

overhead of computing it appears to be too high for practi-
cal application. Our second upper bound is weaker but can
be calculated in constant time at any node in the sea,rch
tree. The rea.rrangement search procedure based on this
upper bound appears to be a slight improvement for the
n-queens problem over the best of the 10 algorithms sur-
veyed in [Haralick and Elliot,, 19801, and shows promise on
certain graph-coloring problems.

This paper begins with some notes on propositional sat-
isfiability. We also present some simple algorithms for
determining satisfiability, culminating in a version of the
Davis-Putnam procedure. SecGon 3 describes the upper
bound functions and the rearrangement search procedures
based on them. Section 4 compares our algorithms with
other work, focusing on ‘L-level dynamic search rearrange-
ment. Section 5 provides some empirical results about the
performance of our algorithms.

2 e Sat isfiability roblem

In order to discuss the problem of sa.tisfia.bility, we first
need some definitions and some notation.

Definition: A literal 1 is either a proposition
(symbol) ‘p or the negation l’p of a proposition ‘p.
A clause C is a disjunction of literals dl V 12 V. . . V
I,. A Conjunctive Normal Form (CNF) formula
\zr is a conjunction of clauses Cl A Cz A. . . A C,. A
literal occurrence is a pair (I, C) such that, 1 E C.
I*[is the number of distinct lit’eral occurrences
in Q‘, i.e., the length of Q written as a formula.
11Q11 is the number of distinct proposition symbols
which appear in \][I (~~~~~ is no larger than 191, and
usually much smaller).

Definition: A labeling p is a mapping from
propositions to truth values, i.e. the set {I, _T}.
If a labeling is defined on all the propositions that
appear in a formula, then we will say that label-
ing is complete; otherwise, t’he labeling is partial.
Let llpll denote the number of different proposi-
tions that p assigns a truth value. If p(p) is t,lie
truth value ‘u then we define p(-cp) to be the op-
posite of 1’. A labeling p thus gives a truth values
to literals aa well as propositions. For any label-
ing p, literal 1, and truth value U, we define p[l+--n]
as the la.beliug which is identical t,o p except, t#hat
it assigns the literal I the value v.

Definition: A clause C E \zI is violated by a. la-
beling p if p labels all of C’s literals with FT. A
clause C is satisfied by p if p labels any literal in
C with 1. If C is neither violat,etl nor satisfied

2abih and McAllester 155

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

by p, then we say C is open. If C is open and p
labels all but one of C’s literals with ,T, then C
is a unit open clause.

Definition: A formula 9 is violated by a labeling
p if there exists some clause CE q that is violated
by p. Similarly, 8 is satisfied by p if every clause
CE @ is satisfied by p.

We are interested in determining the satisfiability of an
arbitrary CNF formula ?zi. @ is satisfiable just in case there
exists a labeling of the propositions in 9 that satisfies \Ir;
otherwise, Q is unsatisfiable. The set of satisfiable CNF
formulas is known as SAT.

CNF formulas arise in a variety of applications. We
are particularly interested in constraint satisfaction prob-
lems [Montanari, 19741. Constraint satisfaction problems
require finding a consistent value assignment to a set of
variables subject to constraints. Many well-known prob-
lems from artificial intelligence or combinatorics, such as
the n-queens problem and finding a coloring for a graph,
are constraint satisfaction problems. Any constraint satis-
faction problem can be straightforwardly (and efficiently)
compiled into an equivalent CNF formula. Solutions to the
original problem will naturally correspond to truth label-
ings on the formula, and vice versa.

We can always determine the satisfiability of a CNF for-
mula Q by enumerating all complete labelings of Q’s propo-
sitions. This produces a search of size 0(211”11). Because
SAT is NP-complete, we cannot expect to find a poly-
nomial time algorithm for computing satisfiability. We are
interested in correct algorithms that perform well on prob-
lems of practical interest. We will present algorithms that
attempt to search the labelings as efficiently as possible.

2.1 A Simple Algorithm

Our first algorithm is slightly more clever than enumera.t-
ing all the 211’@ll labelings of Q. We look at a clause at a.
time, construct a. labeling that satisfies that clause, and
move on to the next clause to be satisfied. We choose
clauses rather than propositions for reasons that will be-
come clear in section 3.

ALGORITHM Clause-Search(Q, p):

1. [Termination check] If p violates a clause in Q, then
return. If there are no remaining open clauses, then
print out p and halt.

2.

3.

We

[Clause selection] Select a clause C from \II which is
open under p.

[Recursion] For each unlabeled literal 1 E C, call
Clause-Searcli(*, p[I+l]).

can now determine the satisfiability of Q by calling
Clause-Sear&(*, S), 1 w lere 0 is the empty labeling. If Q
is satisfiable, this will produce a labeling that satisfies 9;
otherwise, Q is unsatisfiable. (Strictly speaking, we might
not produce a. complet,e labeling satisfying 8. However,
a. partial labeling that satisfies Q and leaves m proposi-
tions unlabeled can be viewed as standing for 2” complete
labelings tha,t satisfy @.)

This algorithm can be improved in a fairly straightfor-
ward way. Suppose that C = II V Z2 is the open clause we
choose in step 2, and that p doesn’t label either II or /2.

The first recursive call in step 3 will find any solution for
9 that is an extension (superset) of p[Zlbl]. The second
recursive call will find any solution that extends ~[d2tl].
In the second recursive call we can assume without loss of
generality that II is labeled ,T, since we already checked
for solutions with II labeled I in the first, recursive call.
Thus we can replace step 3 with:

3’. [Recursion] Repeat the following while C is open un-
der p. Choose an unlabeled literal 1 EC, call Clause-
Sear&(!I!, p[Z+l]), and set p equal t,o p[Zt-;F3.

Using step 3’ the first literal in the chosen clause will be
set to F before the other literals are considered. The pro-
cedure iteratively chooses a literal and first, searches for
solutions where the literal is true, then searches for solu-
tions where the literal is false. In this way it explores a
binary search tree where each node in the tree is associ-
ated with a particular proposition. The number of nodes
in such a search tree is 0(211*11).

2.2 Boolea Comtraillt Propagatiol~

There is another easy improvement, we can make in our
search procedure. The algorit,hm Clause-Search deals
badly with unit open clauses. Suppose that as a result of
the ext,ension of p we incrementally construct in step 3’,
some clause C in \I’ is now a uiiit open clause with unla-
beled literal 1. Then we can extend p to p[l+-‘T] without
loss of genera.lity, because any extension of p which la.bels
1 with J= will vioLate C. Furthermore, replacing p with
p[Z+l] can cause other clauses of \II to become unit, open
clauses, as 11 can appear in other clauses, and so the pro-
cess can repeat. Boolean ConstcraintJ Propagat,ion ext,ends
a truth labeling by closing all unit, open clauses.

ALGORITHM BCP(Q,p):

1. [Clause propagattiion] If \T! contains any unit open
clauses under p, then select such a clause C, find the
unlabeled literal IE C and return BCP(Q, p[l+l]).

2. [Termination] Otherwise return the la.beling p.

For a CNF formula !I! and partia,l labeling p, every exten-
sion of p that satisfies Q is also an extension of the partial
labeling BCP(Q, p). U n 1 ess the labeling returned in step 2
violates @‘, the order in which unit open clauses are chosen
has no effect on the result.
BCP is sufficient to determine t,he sat,isfiability of a rea-
sonable class of CNF formulas (including, but, not limited
to, Horn clauses). With appropria.te preprocessing and use
of efficient data structures, BCP can be made to run in
time proportional to IQ\, t#h e number of literal occurrences
in 9. h/lore precisely, one can implement a version of BCP
that does no more than a constant amount of work for ev-
ery literal occurrence in the input, formula. These points
a.re discussed in more detail in [McAllest’er, 19871.

2.3 Using- Constrailit Propagation

We can now improve our clause search algorithm by run-
ning Boolean Constraint Propaga.tion t,o extend p.

ALGORITHM BCP-Searcll(,Q, p):

0. [Propagation] Set p = BCP(Q 4.

156 Automated Reasoning

1.

2.

3/.

[Termination check] If p violates a clause in Q, then
return. If there are no remaining open clauses, t#hen
print out p and halt.

[Clause selection] Select a clause C from Xl! which is
open under p.

[Recursion] Repeat the following while C is open un-
der p. Choose an unlabeled literal Z E C, call BCP-
Search(\-I, p[Z+l]), and set p to BCP(Q,p[ZtF]).

BCP-Search is essentially the propositional compo-
nent of the procedure that Davis and Putnam described in
[1960]. Davis and Putnam, however, did not provide any
heuristics for selecting clauses in step 2 of the procedure.
The size of the search space can depend strongly on the
decision made in step 2. Our focus is on novel heuristics
for clause selection.

3 Search Rearrangement
euristics

Our basic observation is that at every point in the search
tree there is a natural upper bound on the size of the re-
maining search. Suppose that we are looking for extensions
of a partial labeling p which leaves unlabeled n proposi-
tions that appear in open clauses. Then there are only 2”
extensions of p that can satisfy \II. Formally, we have the
following definition and simple lemma.

Definition: A future proposition for Q and p is a
proposition that is not labeled by p which appears
in an open clause of 9 under p. We define K(Q, p)
to be the number of future propositions for 11 and

P.
Lemma: The number of terminal nodes in the
search tree generated by BCP-Search(Q, p) is

no larger than 2K(‘@~P).

Now consider the recursive calls to BCP-Search in step
3 of the procedure. In each recursive call some unlabeled
literal 1 of the chosen clause C will be assigned the the
value 7. A recursive call with Z+-7 will produce a search
tree with at most

0(2”(%4”71))

nodes. If we sum this quantity over the unlabeled lit,era.ls
of C, we have a bound on the size of the search remaining
if we pick the clause C.

Our idea is to pick the clause which minimizes such a
bound on the remaining search space. We genera.te a much
better bound than this, however. Notice t#hat a.t st,ep 0
we replace p by BCP(Q,p). This fact, together with t,he
lemma, produces the following corollary.

Corollary: The number of terminal nodes in t,he
search tree generated by BCP-Search(\II,p) is

no larger than 2”(“tBCP(s+)).

Since BCP can considerably reduce the number of future
propositions, this is a much better upper bound. We will
use this to select among clauses.

Suppose that at step 2 we select a clause C which has
unlabeled literals S = {II, 12, . . . , a,.}. If we define

Clause-BCP-Bound(S, C, p)

clef
Z c 2n(s,BCP~*,p[~+~],)

[ES

then we have the following result.

Corollary: If st,ep 2 of BCP-search(S, p) se-
lects clause C, then the number of terminal nodes
in the search tree generated by step 3 is no larger
than Clause-BCP-Bound(9, C, p).

We can now simply pick the clause to work on which min-
imizes the above upper boufld on the remaining search.
This produces our new reordering search algorithm.

ALGORITHM BCP-Reorder(Q, p):

0.

1.

2l.

3.

[Propagation] Set p = BCP(Q, p).

[Termination check] If p violates a clause in Q, then
return. If there are no remaining open clauses, then
print out p and halt.

[Clause selection] Select the clause CE @ that is open
under p and that minimizes the value of Clause-
BCP-Bound(@, C, p).

[Recursion] Repeat the following while C is open
under p. Ch oose an unlabeled literal I E C, call
BCP-Reorder(Q,p[Z+7j), and then set p equal to
BCP(9, p[ZtF]).

BCP-Reorder can be characterized as a “greedy” algo-
rithm, because it at’tempts to decrease an upper bound on
the remaining sea.rch space as quickly as possible.

3.1 Using Stored Labelings

In order to select the correct clause at step 2, we must
calculate BCP(Q, p[Z t 71) for every unlabeled literal 1
that appears in some open clause. The overhead involved
can be greatly reduced by incrementally maint,aining ad-
ditional la.belings. More specifically, for each literal Zi we
explicitly store a distinct labeling pi. The labelings pi are
related to t(he base labeling p by the invariant

Pi = BCP(S, p[&l]).

Whenever p is updated in the above procedure, each of
the stored Labelings pi must also be upda.ted to ma.intain
this invariant. There are at most 2 . llQ[l literals Z which
appear in 9, so explicitly storing the labelings pi requires

0(~~~~~2) space.
The total time required to incrementally update all t,he

stored labelings down a single path in the search tree is
O(llQlI . IQ/) [there are 2. llQ[j labelings, each of which caa

require at most 19 I total updating time). By spreading the
cost of updat#ing the stored labelings over all the search
nodes in a given search path, we can reduce the overhead
significantly.

There are also important improvements which can be
made by t(aking advantage of the incrementally stored la,-
belings pi. Recall that tjhe procedure must maintain t,he
invariant that, pi equa.ls BCP(@, p[Zi +--I]). This implies
that if pi violat,es Q then any ext(ension of p which sat,is-
fies Q must assign Zi the value FT. In &is case we can set,
the base labeling p to be p[Zi-F] and correspondingly up-
date all the other labelings pi. We will ca.11 t,his cassignlnent
hy refutation; we assign I+--F because BCP(Q,p[Z-71)
violates Q, Uius refuting Z+7.

We can take advantage of storing the labelings p; t,o
provide a somewhat stronger propagat#ion a.lgorit,hm than
BCP.

Zabih and McAlIester 157

ALGORITHM BCP2(\Ir, p):

1. [Propagation] Set p equal to BCP(Q,p).

2. [Recursion] If there exists a literal Z which is not
labeled by p, which appears in some clause of 9
which is open under p, and which has the prop-
erty that BCP(Q, p[Z + I]) violates Xl?, then return
BCP2(\1T, p[Z+F]). Otherwise, return p.

This algorithm extends the labeling p so that there are
no unit open clauses left, and is at least as strong as BCP.
BCP2(Q, p) may produce an extension of BCP(Q, p), so
BCP2 is a stronger propagator than BCP.

As the notation BCP2 suggests, one can define a se-
ries of ever more powerful constraint propagation function
BCP3, BCP4, etc. However, the constraint propagators
stronger than BCP2 have a very large overhead which
probably renders them useless in practice. If we are main-
taining the labelings pi for other reasons, as in the above
search procedure, then there is no additional overhead in
replacing the search procedure’s explicit calls to BCP with
calls to the more powerful BCP2.

3.2 An Easily Computed Upper Bound

The need to explicitly calculate the O(]]S]]) different par-
tial labelings of the form BCP(Q, p[Ztl]) results in con-
siderable overhead. It turns out that useful, but weaker,
upper bounds on the search size can be computed much
more efficiently. In order to define the clause selection
process based on this weaker upper bound some new .ter-
minology is needed.

Definition: An open binary clause under a label-
ing p is a clause with two literals, neither of which
is labeled by p. Let Open-Binaries(XV, p, Z) de-
note the number of open binary clauses in 9
which contain the literal 1. Let E(Q, p, Z) denote

4% P) - Open-Binaries(S, p, ~a).

This is the number of future propositions minus
the number of open binary clauses containing the
opposite literal of 1.

It is not immediately obvious that this is a useful quantity
to compute. However, it can provide a bound on the size
of the search remaining.

Lemma: The number of terminal nodes in the
search tree that BCP-Search(‘\Ir, p[Zc’TJ) gener-

ates is no larger than =Zz(*aPl’).

Proof: Let p’ be BCP(Q,p[Zt7l). If p’ violates
some clause in !IJ then there are no search nodes
under the node with the labeling p’, so the rela-
tion holds. Now assume p’ does not violate any
clause in Q. In this case we can prove

IIP’II 1 IIPII + OP en-Binaries(!I!‘, p, -I).

To see this note that when we set Z equal to I
every open binary clause which contains the op-
posite of Z will be come an open unit clause and
thus lead to propagation. All of the open binary
clauses which contain the opposite of 1 are dis-
tinct (assuming 9 contains no duplicate clauses),
so each clause will lead to a truth assignment to

a different literal. If BCP(Xl!,p[Ztl]) does not
violate any clause in * then all these literals must
involve distinct propositions and the above rela-
tion holds. There are no more than 211‘Ell-ll~‘ll
distinct extensions of p’ that can satisfy 9, and
every terminal node of the search tree is a distinct
extension, so the lemma follows. •I

This lemma states that z(KI!‘, p, Z) yields an upper bound
on the search remaining when we label Z&l. Furthermore
the number E?(*, p, Z) can be computed without knowing
BCP(XI!,p[Z+l]). In fact, it can be calculated with con-
stant overhead. It is also easy to verify

v %P,Z UP> BWQJ p[Z+Tl)) 5 VT P, a>,

which shows that E(*, p, Z) provides a weaker upper bound
than IE(!~!, BCP(Q, p[Z+Tj)).

If we choose to work next on an open clause C with
unlabeled literals S = {Ii, Zz, . . . Zr} then the remaining
search will be no larger than

def
Clause-Occur-Bound(C, p) =

X2(
E Q,PJ)

We can now simply pick the clause to work on which mini-
mizes this upper bound on the remaining search. This pro-
duces a variant of the previous reordering search algorithm
where the clause selection at step 2’ uses Clause-Occur-
Bound rather than Clause-BCP-Bound. We call the
resulting procedure Occur-Reorder.

One objection to Occur-Reorder might be that it re-
lies on the existence of binary clauses in the original CNF
formula 9. While this may be a problem in general, it
is not a problem for formulas which represent constraint
satisfaction problems with only binary constraints, such
as the n-queens problem or graph co1oring.r The natu-
ral translation of a binary constra.int satisfaction problem
uses binary clauses to represent the fact that two values
of mutually constrained variables are mutually inconsis-
tent. These binary clauses play a central role when us-
ing Occur-Reorder to find a satisfying assignment to the
CNF encoding of a binary constraint satisfaction problem.

4 Related Work
The algorithm BCP-Reorder is closely related to dy-
namic 2-level search rearrangement, a.s described by Pur-
dom, Brown and Robertson in [19Sl]. Purdom, Brown and
Robertson use a simple backtrack procedure which, like our
procedure, takes a given partial assignment p a.nd searches
for an extension of p which satisfies the given CNF formula
9. If the given partial labeling p does not already satisfy
every clause in Q‘, and if p does not violate a.ny clause in Q,
then the Purdom, Brown and Robertson procedure selects
some proposition de and recursively searches for extensions
of p[@ t I] and p[@ t 31. The efficiency of the search is
sensitive to exactly which proposition is selected for assign-
ment in the recursive calls. Different selection techniques
correspond to different search algorithms.

‘Since any non-binary constraint satisfaction problem can
be converted into a binary one in polynomial time, it, is pos-
sible that this algorithm could be effective even on constraint8
satisfaction problemswith non-binary constraints.

158 Automated Reasoning

Let us call a proposition ‘p forced for a partial assign-
ment p and a CNF formula Q if one of the assignments
p[cp t ‘JJ or p[v t -T] violates some clause in e. The
Purdom, Brown and Robertson procedure always selects
forced propositions before non-forced propositions. For

each forced proposition one of the two recursive calls to
the search procedure immediately fails. The process of se-
letting a series of forced propositions corresponds precisely
to running BCP.

Reordering Strategy Search size Assignments Time

Occur-Reorder 642 5,619 8.5
MIN 704 6,362 9.7
BCP-Reorder 316 311,272 1420

Figure 1: Performance of various algorithms on the 8-
queens problem. Running time in seconds on a Symbol-
its 3650.

If there are no forced propositions then the procedure
must select among the unforced propositions. Purdom, 5.1 Methodology

Brown and Robe&on’s procedure involves a parameter
/3; they suggest setting ,f3 equal to the average branching
factor in the search tree. If ,0 is set equal to 2 then the
2-level choice heuristic described by Purdom, Brown and
Robertson selects the proposition ‘p which minimizes the
sum

K(Q, BCP(Q, /++~I)) + +, BCP(@, P[P+q>*

We measure performance with three metrics. The size of
the search tree, the total number of labelings considered, is
our first metric. Our second metric is the number of truth
assignments, which is the number of times that a labeling
p is extended to p[l+l] f or some literal 1. The first metric
tells how good a search t,ree a given algorithm produces, ig-
noring any ext,ra overhead that it introduces. The second
metric nrovides an measure of the total amount of work

This sum is an upper bound on the number of leaf nodes
in the search tree generated when Q is selected as the next
proposition. This upper bound is simpler than our clause-
based upper bound.

that an’ algorithm does, taking overhead into account. It
can be thought, of as the running time of an ideal imple-
mentation. Our final metric is the actual running time of
our implementa.tion.

To compare our clause-based bound and the above
proposition-based bound, some general observations about
upper bounds are needed. Different choices of proposition
order result in different search trees. For each proposition
order one caa examine a root fragment of the search tree
and compute an upper bound on the number of leaf nodes
in the total tree. R/Iore specifically, for each node n let
k(n) be the number of future propositions at search node

Ties provide the major source of statistical fluctuation in
our data. When an several appear equally good, we choose
one at raadom. This effects both the size of the search tree
and the number of truth assignments. Another source of
randomness is the precise order in which BCP examines
unit open clauses when it discovers a contradiction. This
will not effect t#he size of the search tree, but does effect
t,he number of t,ruth assignments and the actual running
time.

n. .Given a fra.gment, of the search tree below a node n
one can compute the sum of 2”cm) for all nodes m at the

The a,lgorithm tha.t we use as a standard of compari-

fringe of the fragment tree. This sum is an upper bound on
son is what Haralick and Elliot [1980] call “optimal order

the number of leaf nodes in the entire search tree below n.
forward checking”, which is the best algorithm of the 10

In summary, given a proposition order one can compute a
they survey. We follow Stone’s terminology [1986] and re-

root fragment of the remaining search tree and from that
fer to this algorithm as MIN. This algorithm operates on

fra.gment one can compute an upper bound on the size of
constraint satisfaction problems by selecting the most con-

the remaining seasch. One can then choose the proposition
strained variable to examine a.t each point in the search.2

order which minimizes t#his computed upper bound.
Since we are int,erested in solving constraint satisfaction
problems by compiling them to SAT, we have implemented

The Purdom, Brown and Robertson 2-level procedure MIN as a SAT algorithm.
performs a certain lookahead into the search tree for each
possible proposition which might be selected. Our selec-

Our implemeutations of MIN and Occur-Reorder

tion procedure can also be viewed as computing an up-
share all of their code except for the function that chooses

per bound by looking ahead into the search. By selecting
the next, clause to examine. This makes it plausible to

clauses rather tha.n propositlions, however, our procedure
compare t,heir running t,imes. Our implementation of 2-

makes a. commitment to a. cert’ain order of propositions
level dynamic search rearrangement makes use of stored

down one branch of the search tree. Given this commit-
labelings in much the same way as our implementation of

ment,, we can compute an upper bound which is based on
BCP-Reorder; t#hese two algorithms also share almost all
of their code.

a larger root fragment, of the search tree. Thus our proce-
dure gets a. tighter upper bound by effectively examining
a larger fragment of the search tree.

5.2 Preliminary Data

We have compared MIN with our two new algorithms.

5 Experimenta Results
The performance of these algorithms on the $-queens prob-
lem is represent,ative of t,heir behavior on n.-queens.

\lJe ha.ve implementsed the algorithms described in this pa-
per, and used t,hem to find all the solutions to several prob-
lems. The problem we have examined most intensively is
t,he n-queens problem, which is to place 1 queen in each
column of an n-by-n chessboa.rd so that no 2 queens attack.

Figure 5.2 suggests that BCP-Reorder is impractical
for the n-queens problem. If we were only concerned with
the size of t,he search trees BCP-Reorder would be very

2The origirlal source for this algorithm is a paper by Bitner
and Reingold [1!)75].

Zabih and McAllester 159

Reordering Strategy Search size Assignments

Occur-Reorder 1,259 * 1,000 32,141 f 20,000
MIN 2.583 rrt 1.000 63.789 f 40.000

Figure 2: Performance on 5 randomly generated graph
problems, each with 50 nodes, edge probability .15, and
no solutions. Numbers shown are averages and standard
deviations.

impressive. However, the additional truth assignments
that the lookahead introduces cost far too much.

The constant-overhead version of our algorithm, how-
ever, is a practical approach to this problem. We produce
better search trees and fewer truth assignments (although
the improvement is slight for this problem). Occ~zr-
Reorder provides an improvement on the n-queens prob-
lem over MIN of about 2%-10% for n between 4 and 12.

We have also compared MIN and Occur-Reorder on a
few randomly generated constraint satisfaction problems.
We have looked at 4-coloring a random graph with 50 ver-
tices, with a uniform probability p that there will be an
edge between any pair of vertices. We have done some
experiments with for p = .15, shown in Figure 5.2.

The improvement in average performance that Occur-
Reorder provides seems promising, but we need to do
more measurements to determine if the difference is signif-
icant.

6 Conclusions

The algorithms we have presented are based on re-ordering
the choice of clauses to work on to take advantage of
bounds on the size of the search remaining. One upper
bound adds overhead per node that ranges from quadratic
to linear. Our implementation of this bound is clearly too
expensive to be practical, although the search tree that
it produces is promisingly small. The other upper bound
adds constant overhead, and produces an a.lgorithm that
performs well enough to be practical. We intend to con-
tinue to investigate the behavior of these algorithms, either
by empirical investigations or by mathematical analysis.

6.1 Acknowledgements

We are grateful to Igor Rivin for many useful and stimu-
lating discussions. Alan Bawden, David Chapman, Pang
Chen, Johan deKleer, Jeff Siskind and Joe Weening also
provided helpful comments. Jeff Shrager provided valua.ble
office space.

Our initial implementation of these algorithms was writ-
ten during the summer of 1987 at Rockwell Internationa.l’s
Palo Alto Laboratory; we thank Michael Buckley for mak-
ing this possible. Ramin Zabih is supported by a fellowship
from the Fannie and John Hertz Foundation.

References

[Cook, 19711 Cook, S., “The complexity of t,heorem prov-
ing procedures,” Proceedings of the 3rd Annual AClM
Symposium on Theory of Computin.g (1971).

[Davis and Putnam, 19601 Davis, M. and Putnam, H., “A
computing procedure for quantification theory,” Journal
of the ACM’7 (1960), 201-215.

[Haralick and Elliot, 19801 Haralick, R. and Elliot, G.,
“Increa,sing tree search efficiency for constraint satisfac-
tion problems,” Artificial Intelligence 14 (1980), 263-
313.

[Knuth, 19801 Knuth, D., “Estimating the efficiency of
backtrack programs,” Mathematics of Computation 29
(1975), 121-136.

[McAllester, 19871 McAllester, D., “Ontic: a representa-
tion language for mathematics,” MIT AI Lab Technical
Report 979, July 1987. To be published by the MIT
Press.

[Montanari, 19741 Montanari, U., “Networks of con-
straints: fundamental properties and applications to pic-
ture processing,” I72formation Sciences 7 (1974) 95-132.

[Purdom et al. , 19811 Purdom, P., Brown, C. and Robert-
son, E., “Backtracking with multi-level dynamic search
rearrangement ,” Acta Informatica 15 (1981) 99-114.

[Stone and Stone, 19861 Stone, H., and St,one, J., “Effi-
cient search techniques - an empirical study of t’he
N-queens problem,” IBM Research Report RC 12057
(#54343), 1986.

[Bitner and Reingold, 19751 Bitner, J. and Reingold, E.,
“Backtrack programming techniques”, Communicafiows
of th.e ACM 18 (1975) 651-656.

1 GO Automated Reasoning

