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Abstract 

We present a simple algorithm for determining 
the satisfiability of propositional formulas in Con- 
junctive Normal Form. As the procedure searches 
for a satisfying truth assignment it dynamically 
rearranges the order in which variables are con- 
sidered. The choice of which variable to assign a 
truth value next is guided by an upper bound on 
the size of the search remaining; the procedure 
makes the choice which yields the smallest upper 
bound on the size of the remaining search. We 
describe several upper bound functions and dis- 
cuss the tradeoff between accurate upper bound 
functions and the overhead required to compute 
the upper bounds. Experimental data shows that 
for one easily computed upper bound the reduc- 
tion in the size of the search spa,ce more than 
compensates for the 0verhea.d involved in select- 
ing the next variable. 

1 Introduction 

Determining the satisfiability of propositional formulas in 
Conjunctive Normal Form has been an important prob- 
lem for Computer Science. It was the first problem to 
be proven N7J-complete [Cook, 19711. This problem is 
important because any inference system for propositional 
logic that is complete must effectively determine propo- 
sitional satisfiability. In addition, many search problems 
have natural encodings as CNF formulas. We are particu- 
larly interested in constraint sa.tisfaction problems, a class 
which includes suclz problems of interest to the Artificial 
Intelligence community as the n-queens problem. These 
problems have simple encodings as CNF formulas, so an 
algorithm for determining satisfiability provides a way of 
solving them. 

It is well known that the size of the search tree for a given 
problem can depend heavily on the order in which choices 
are made. We have designed an algorithm for determining 
propositional satisfiability that, dynamically rearranges the 
order in which propositional variables a.re assigned truth 
va,lues. This selection is guided by an upper bound on 
the size of the remaining search problem; we arrange the 
sea,rch ordering to decrease this upper bound as quickly as 
possible. 

We present two different upper bounds on the size of the 
search remaining. The first bound is related to a-level dy- 
na.mic search rearrangement, a strategy described by Pur- 
dom, Brown and R,obertson in [1981]. This bound provides 
a good estimate of t,he size of the remaining search but t,he 
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overhead of computing it appears to be too high for practi- 
cal application. Our second upper bound is weaker but can 
be calculated in constant time at any node in the sea,rch 
tree. The rea.rrangement search procedure based on this 
upper bound appears to be a slight improvement for the 
n-queens problem over the best of the 10 algorithms sur- 
veyed in [Haralick and Elliot,, 19801, and shows promise on 
certain graph-coloring problems. 

This paper begins with some notes on propositional sat- 
isfiability. We also present some simple algorithms for 
determining satisfiability, culminating in a version of the 
Davis-Putnam procedure. SecGon 3 describes the upper 
bound functions and the rearrangement search procedures 
based on them. Section 4 compares our algorithms with 
other work, focusing on ‘L-level dynamic search rearrange- 
ment. Section 5 provides some empirical results about the 
performance of our algorithms. 

2 e Sat isfiability roblem 

In order to discuss the problem of sa.tisfia.bility, we first 
need some definitions and some notation. 

Definition: A literal 1 is either a proposition 
(symbol) ‘p or the negation l’p of a proposition ‘p. 
A clause C is a disjunction of literals dl V 12 V. . . V 
I,. A Conjunctive Normal Form (CNF) formula 
\zr is a conjunction of clauses Cl A Cz A. . . A C,. A 
literal occurrence is a pair (I, C) such that, 1 E C. 
I*[ is the number of distinct lit’eral occurrences 
in Q‘, i.e., the length of Q written as a formula. 
11Q11 is the number of distinct proposition symbols 
which appear in \][I (~~~~~ is no larger than 191, and 
usually much smaller). 

Definition: A labeling p is a mapping from 
propositions to truth values, i.e. the set {I, _T}. 
If a labeling is defined on all the propositions that 
appear in a formula, then we will say that label- 
ing is complete; otherwise, t’he labeling is partial. 
Let llpll denote the number of different proposi- 
tions that p assigns a truth value. If p(p) is t,lie 
truth value ‘u then we define p(-cp) to be the op- 
posite of 1’. A labeling p thus gives a truth values 
to literals aa well as propositions. For any label- 
ing p, literal 1, and truth value U, we define p[l+--n] 
as the la.beliug which is identical t,o p except, t#hat 
it assigns the literal I the value v. 

Definition: A clause C E \zI is violated by a. la- 
beling p if p labels all of C’s literals with FT. A 
clause C is satisfied by p if p labels any literal in 
C with 1. If C is neither violat,etl nor satisfied 
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by p, then we say C is open. If C is open and p 
labels all but one of C’s literals with ,T, then C 
is a unit open clause. 

Definition: A formula 9 is violated by a labeling 
p if there exists some clause CE q that is violated 
by p. Similarly, 8 is satisfied by p if every clause 
CE @ is satisfied by p. 

We are interested in determining the satisfiability of an 
arbitrary CNF formula ?zi. @ is satisfiable just in case there 
exists a labeling of the propositions in 9 that satisfies \Ir; 
otherwise, Q is unsatisfiable. The set of satisfiable CNF 
formulas is known as SAT. 

CNF formulas arise in a variety of applications. We 
are particularly interested in constraint satisfaction prob- 
lems [Montanari, 19741. Constraint satisfaction problems 
require finding a consistent value assignment to a set of 
variables subject to constraints. Many well-known prob- 
lems from artificial intelligence or combinatorics, such as 
the n-queens problem and finding a coloring for a graph, 
are constraint satisfaction problems. Any constraint satis- 
faction problem can be straightforwardly (and efficiently) 
compiled into an equivalent CNF formula. Solutions to the 
original problem will naturally correspond to truth label- 
ings on the formula, and vice versa. 

We can always determine the satisfiability of a CNF for- 
mula Q by enumerating all complete labelings of Q’s propo- 
sitions. This produces a search of size 0(211”11). Because 
SAT is NP-complete, we cannot expect to find a poly- 
nomial time algorithm for computing satisfiability. We are 
interested in correct algorithms that perform well on prob- 
lems of practical interest. We will present algorithms that 
attempt to search the labelings as efficiently as possible. 

2.1 A Simple Algorithm 

Our first algorithm is slightly more clever than enumera.t- 
ing all the 211’@ll labelings of Q. We look at a clause at a. 
time, construct a. labeling that satisfies that clause, and 
move on to the next clause to be satisfied. We choose 
clauses rather than propositions for reasons that will be- 
come clear in section 3. 

ALGORITHM Clause-Search(Q, p): 

1. [Termination check] If p violates a clause in Q, then 
return. If there are no remaining open clauses, then 
print out p and halt. 

2. 

3. 

We 

[Clause selection] Select a clause C from \II which is 
open under p. 

[Recursion] For each unlabeled literal 1 E C, call 
Clause-Searcli( *, p[I+l]). 

can now determine the satisfiability of Q by calling 
Clause-Sear&(*, S), 1 w lere 0 is the empty labeling. If Q 
is satisfiable, this will produce a labeling that satisfies 9; 
otherwise, Q is unsatisfiable. (Strictly speaking, we might 
not produce a. complet,e labeling satisfying 8. However, 
a. partial labeling that satisfies Q and leaves m proposi- 
tions unlabeled can be viewed as standing for 2” complete 
labelings tha,t satisfy @.) 

This algorithm can be improved in a fairly straightfor- 
ward way. Suppose that C = II V Z2 is the open clause we 
choose in step 2, and that p doesn’t label either II or /2. 

The first recursive call in step 3 will find any solution for 
9 that is an extension (superset) of p[Zlbl]. The second 
recursive call will find any solution that extends ~[d2tl]. 
In the second recursive call we can assume without loss of 
generality that II is labeled ,T, since we already checked 
for solutions with II labeled I in the first, recursive call. 
Thus we can replace step 3 with: 

3’. [Recursion] Repeat the following while C is open un- 
der p. Choose an unlabeled literal 1 EC, call Clause- 
Sear&( !I!, p[Z+l]), and set p equal t,o p[Zt-;F3. 

Using step 3’ the first literal in the chosen clause will be 
set to F before the other literals are considered. The pro- 
cedure iteratively chooses a literal and first, searches for 
solutions where the literal is true, then searches for solu- 
tions where the literal is false. In this way it explores a 
binary search tree where each node in the tree is associ- 
ated with a particular proposition. The number of nodes 
in such a search tree is 0(211*11). 

2.2 Boolea Comtraillt Propagatiol~ 

There is another easy improvement, we can make in our 
search procedure. The algorit,hm Clause-Search deals 
badly with unit open clauses. Suppose that as a result of 
the ext,ension of p we incrementally construct in step 3’, 
some clause C in \I’ is now a uiiit open clause with unla- 
beled literal 1. Then we can extend p to p[l+-‘T] without 
loss of genera.lity, because any extension of p which la.bels 
1 with J= will vioLate C. Furthermore, replacing p with 
p[Z+l] can cause other clauses of \II to become unit, open 
clauses, as 11 can appear in other clauses, and so the pro- 
cess can repeat. Boolean ConstcraintJ Propagat,ion ext,ends 
a truth labeling by closing all unit, open clauses. 

ALGORITHM BCP(Q,p): 

1. [Clause propagattiion] If \T! contains any unit open 
clauses under p, then select such a clause C, find the 
unlabeled literal IE C and return BCP(Q, p[l+l]). 

2. [Termination] Otherwise return the la.beling p. 

For a CNF formula !I! and partia,l labeling p, every exten- 
sion of p that satisfies Q is also an extension of the partial 
labeling BCP(Q, p). U n 1 ess the labeling returned in step 2 
violates @‘, the order in which unit open clauses are chosen 
has no effect on the result. 
BCP is sufficient to determine t,he sat,isfiability of a rea- 
sonable class of CNF formulas (including, but, not limited 
to, Horn clauses). With appropria.te preprocessing and use 
of efficient data structures, BCP can be made to run in 
time proportional to IQ\, t#h e number of literal occurrences 
in 9. h/lore precisely, one can implement a version of BCP 
that does no more than a constant amount of work for ev- 
ery literal occurrence in the input, formula. These points 
a.re discussed in more detail in [McAllest’er, 19871. 

2.3 Using- Constrailit Propagation 

We can now improve our clause search algorithm by run- 
ning Boolean Constraint Propaga.tion t,o extend p. 

ALGORITHM BCP-Searcll(,Q, p): 

0. [Propagation] Set p = BCP(Q 4. 
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1. 

2. 

3/. 

[Termination check] If p violates a clause in Q, then 
return. If there are no remaining open clauses, t#hen 
print out p and halt. 

[Clause selection] Select a clause C from Xl! which is 
open under p. 

[Recursion] Repeat the following while C is open un- 
der p. Choose an unlabeled literal Z E C, call BCP- 
Search(\-I, p[Z+l]), and set p to BCP(Q,p[ZtF]). 

BCP-Search is essentially the propositional compo- 
nent of the procedure that Davis and Putnam described in 
[1960]. Davis and Putnam, however, did not provide any 
heuristics for selecting clauses in step 2 of the procedure. 
The size of the search space can depend strongly on the 
decision made in step 2. Our focus is on novel heuristics 
for clause selection. 

3 Search Rearrangement 
euristics 

Our basic observation is that at every point in the search 
tree there is a natural upper bound on the size of the re- 
maining search. Suppose that we are looking for extensions 
of a partial labeling p which leaves unlabeled n proposi- 
tions that appear in open clauses. Then there are only 2” 
extensions of p that can satisfy \II. Formally, we have the 
following definition and simple lemma. 

Definition: A future proposition for Q and p is a 
proposition that is not labeled by p which appears 
in an open clause of 9 under p. We define K(Q, p) 
to be the number of future propositions for 11 and 

P. 
Lemma: The number of terminal nodes in the 
search tree generated by BCP-Search(Q, p) is 

no larger than 2K(‘@~P). 

Now consider the recursive calls to BCP-Search in step 
3 of the procedure. In each recursive call some unlabeled 
literal 1 of the chosen clause C will be assigned the the 
value 7. A recursive call with Z+-7 will produce a search 
tree with at most 

0(2”(%4”71)) 

nodes. If we sum this quantity over the unlabeled lit,era.ls 
of C, we have a bound on the size of the search remaining 
if we pick the clause C. 

Our idea is to pick the clause which minimizes such a 
bound on the remaining search space. We genera.te a much 
better bound than this, however. Notice t#hat a.t st,ep 0 
we replace p by BCP(Q,p). This fact, together with t,he 
lemma, produces the following corollary. 

Corollary: The number of terminal nodes in t,he 
search tree generated by BCP-Search(\II,p) is 

no larger than 2”(“tBCP(s+)). 

Since BCP can considerably reduce the number of future 
propositions, this is a much better upper bound. We will 
use this to select among clauses. 

Suppose that at step 2 we select a clause C which has 
unlabeled literals S = {II, 12, . . . , a,.}. If we define 

Clause-BCP-Bound(S, C, p) 

clef 
Z c 2n(s,BCP~*,p[~+~],) 

[ES 

then we have the following result. 

Corollary: If st,ep 2 of BCP-search(S, p) se- 
lects clause C, then the number of terminal nodes 
in the search tree generated by step 3 is no larger 
than Clause-BCP-Bound(9, C, p). 

We can now simply pick the clause to work on which min- 
imizes the above upper boufld on the remaining search. 
This produces our new reordering search algorithm. 

ALGORITHM BCP-Reorder(Q, p): 

0. 

1. 

2l. 

3. 

[Propagation] Set p = BCP(Q, p). 

[Termination check] If p violates a clause in Q, then 
return. If there are no remaining open clauses, then 
print out p and halt. 

[Clause selection] Select the clause CE @ that is open 
under p and that minimizes the value of Clause- 
BCP-Bound(@, C, p). 

[Recursion] Repeat the following while C is open 
under p. Ch oose an unlabeled literal I E C, call 
BCP-Reorder(Q,p[Z+7j), and then set p equal to 
BCP(9, p[ZtF]). 

BCP-Reorder can be characterized as a “greedy” algo- 
rithm, because it at’tempts to decrease an upper bound on 
the remaining sea.rch space as quickly as possible. 

3.1 Using Stored Labelings 

In order to select the correct clause at step 2, we must 
calculate BCP(Q, p[Z t 71) for every unlabeled literal 1 
that appears in some open clause. The overhead involved 
can be greatly reduced by incrementally maint,aining ad- 
ditional la.belings. More specifically, for each literal Zi we 
explicitly store a distinct labeling pi. The labelings pi are 
related to t(he base labeling p by the invariant 

Pi = BCP(S, p[&l]). 

Whenever p is updated in the above procedure, each of 
the stored Labelings pi must also be upda.ted to ma.intain 
this invariant. There are at most 2 . llQ[l literals Z which 
appear in 9, so explicitly storing the labelings pi requires 

0(~~~~~2) space. 
The total time required to incrementally update all t,he 

stored labelings down a single path in the search tree is 
O(llQlI . IQ/) [there are 2. llQ[j labelings, each of which caa 

require at most 19 I total updating time). By spreading the 
cost of updat#ing the stored labelings over all the search 
nodes in a given search path, we can reduce the overhead 
significantly. 

There are also important improvements which can be 
made by t(aking advantage of the incrementally stored la,- 
belings pi. Recall that tjhe procedure must maintain t,he 
invariant that, pi equa.ls BCP( @, p[Zi +--I]). This implies 
that if pi violat,es Q then any ext(ension of p which sat,is- 
fies Q must assign Zi the value FT. In &is case we can set, 
the base labeling p to be p[Zi-F] and correspondingly up- 
date all the other labelings pi. We will ca.11 t,his cassignlnent 
hy refutation; we assign I+--F because BCP(Q,p[Z-71) 
violates Q, Uius refuting Z+7. 

We can take advantage of storing the labelings p; t,o 
provide a somewhat stronger propagat#ion a.lgorit,hm than 
BCP. 
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ALGORITHM BCP2(\Ir, p): 

1. [Propagation] Set p equal to BCP(Q,p). 

2. [Recursion] If there exists a literal Z which is not 
labeled by p, which appears in some clause of 9 
which is open under p, and which has the prop- 
erty that BCP(Q, p[Z + I]) violates Xl?, then return 
BCP2(\1T, p[Z+F]). Otherwise, return p. 

This algorithm extends the labeling p so that there are 
no unit open clauses left, and is at least as strong as BCP. 
BCP2(Q, p) may produce an extension of BCP(Q, p), so 
BCP2 is a stronger propagator than BCP. 

As the notation BCP2 suggests, one can define a se- 
ries of ever more powerful constraint propagation function 
BCP3, BCP4, etc. However, the constraint propagators 
stronger than BCP2 have a very large overhead which 
probably renders them useless in practice. If we are main- 
taining the labelings pi for other reasons, as in the above 
search procedure, then there is no additional overhead in 
replacing the search procedure’s explicit calls to BCP with 
calls to the more powerful BCP2. 

3.2 An Easily Computed Upper Bound 

The need to explicitly calculate the O(]]S]]) different par- 
tial labelings of the form BCP(Q, p[Ztl]) results in con- 
siderable overhead. It turns out that useful, but weaker, 
upper bounds on the search size can be computed much 
more efficiently. In order to define the clause selection 
process based on this weaker upper bound some new .ter- 
minology is needed. 

Definition: An open binary clause under a label- 
ing p is a clause with two literals, neither of which 
is labeled by p. Let Open-Binaries(XV, p, Z) de- 
note the number of open binary clauses in 9 
which contain the literal 1. Let E(Q, p, Z) denote 

4% P) - Open-Binaries(S, p, ~a). 

This is the number of future propositions minus 
the number of open binary clauses containing the 
opposite literal of 1. 

It is not immediately obvious that this is a useful quantity 
to compute. However, it can provide a bound on the size 
of the search remaining. 

Lemma: The number of terminal nodes in the 
search tree that BCP-Search(‘\Ir, p[Zc’TJ) gener- 

ates is no larger than =Zz(*aPl’). 

Proof: Let p’ be BCP(Q,p[Zt7l). If p’ violates 
some clause in !IJ then there are no search nodes 
under the node with the labeling p’, so the rela- 
tion holds. Now assume p’ does not violate any 
clause in Q. In this case we can prove 

IIP’II 1 IIPII + OP en-Binaries( !I!‘, p, -I). 

To see this note that when we set Z equal to I 
every open binary clause which contains the op- 
posite of Z will be come an open unit clause and 
thus lead to propagation. All of the open binary 
clauses which contain the opposite of 1 are dis- 
tinct (assuming 9 contains no duplicate clauses), 
so each clause will lead to a truth assignment to 

a different literal. If BCP(Xl!,p[Ztl]) does not 
violate any clause in * then all these literals must 
involve distinct propositions and the above rela- 
tion holds. There are no more than 211‘Ell-ll~‘ll 
distinct extensions of p’ that can satisfy 9, and 
every terminal node of the search tree is a distinct 
extension, so the lemma follows. •I 

This lemma states that z(KI!‘, p, Z) yields an upper bound 
on the search remaining when we label Z&l. Furthermore 
the number E?(*, p, Z) can be computed without knowing 
BCP(XI!,p[Z+l]). In fact, it can be calculated with con- 
stant overhead. It is also easy to verify 

v %P,Z UP> BWQJ p[Z+Tl)) 5 VT P, a>, 

which shows that E(*, p, Z) provides a weaker upper bound 
than IE(!~!, BCP(Q, p[Z+Tj)). 

If we choose to work next on an open clause C with 
unlabeled literals S = {Ii, Zz, . . . Zr} then the remaining 
search will be no larger than 

def 
Clause-Occur-Bound(C, p) = 

X2( 
E Q,PJ) 

We can now simply pick the clause to work on which mini- 
mizes this upper bound on the remaining search. This pro- 
duces a variant of the previous reordering search algorithm 
where the clause selection at step 2’ uses Clause-Occur- 
Bound rather than Clause-BCP-Bound. We call the 
resulting procedure Occur-Reorder. 

One objection to Occur-Reorder might be that it re- 
lies on the existence of binary clauses in the original CNF 
formula 9. While this may be a problem in general, it 
is not a problem for formulas which represent constraint 
satisfaction problems with only binary constraints, such 
as the n-queens problem or graph co1oring.r The natu- 
ral translation of a binary constra.int satisfaction problem 
uses binary clauses to represent the fact that two values 
of mutually constrained variables are mutually inconsis- 
tent. These binary clauses play a central role when us- 
ing Occur-Reorder to find a satisfying assignment to the 
CNF encoding of a binary constraint satisfaction problem. 

4 Related Work 
The algorithm BCP-Reorder is closely related to dy- 
namic 2-level search rearrangement, a.s described by Pur- 
dom, Brown and Robertson in [19Sl]. Purdom, Brown and 
Robertson use a simple backtrack procedure which, like our 
procedure, takes a given partial assignment p a.nd searches 
for an extension of p which satisfies the given CNF formula 
9. If the given partial labeling p does not already satisfy 
every clause in Q‘, and if p does not violate a.ny clause in Q, 
then the Purdom, Brown and Robertson procedure selects 
some proposition de and recursively searches for extensions 
of p[@ t I] and p[@ t 31. The efficiency of the search is 
sensitive to exactly which proposition is selected for assign- 
ment in the recursive calls. Different selection techniques 
correspond to different search algorithms. 

‘Since any non-binary constraint satisfaction problem can 
be converted into a binary one in polynomial time, it, is pos- 
sible that this algorithm could be effective even on constraint8 
satisfaction problemswith non-binary constraints. 
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Let us call a proposition ‘p forced for a partial assign- 
ment p and a CNF formula Q if one of the assignments 
p[cp t ‘JJ or p[v t -T] violates some clause in e. The 
Purdom, Brown and Robertson procedure always selects 
forced propositions before non-forced propositions. For 

each forced proposition one of the two recursive calls to 
the search procedure immediately fails. The process of se- 
letting a series of forced propositions corresponds precisely 
to running BCP. 

Reordering Strategy Search size Assignments Time 

Occur-Reorder 642 5,619 8.5 
MIN 704 6,362 9.7 
BCP-Reorder 316 311,272 1420 

Figure 1: Performance of various algorithms on the 8- 
queens problem. Running time in seconds on a Symbol- 
its 3650. 

If there are no forced propositions then the procedure 
must select among the unforced propositions. Purdom, 5.1 Methodology 

Brown and Robe&on’s procedure involves a parameter 
/3; they suggest setting ,f3 equal to the average branching 
factor in the search tree. If ,0 is set equal to 2 then the 
2-level choice heuristic described by Purdom, Brown and 
Robertson selects the proposition ‘p which minimizes the 
sum 

K(Q, BCP(Q, /++~I)) + +, BCP(@, P[P+q>* 

We measure performance with three metrics. The size of 
the search tree, the total number of labelings considered, is 
our first metric. Our second metric is the number of truth 
assignments, which is the number of times that a labeling 
p is extended to p[l+l] f or some literal 1. The first metric 
tells how good a search t,ree a given algorithm produces, ig- 
noring any ext,ra overhead that it introduces. The second 
metric nrovides an measure of the total amount of work 

This sum is an upper bound on the number of leaf nodes 
in the search tree generated when Q is selected as the next 
proposition. This upper bound is simpler than our clause- 
based upper bound. 

that an’ algorithm does, taking overhead into account. It 
can be thought, of as the running time of an ideal imple- 
mentation. Our final metric is the actual running time of 
our implementa.tion. 

To compare our clause-based bound and the above 
proposition-based bound, some general observations about 
upper bounds are needed. Different choices of proposition 
order result in different search trees. For each proposition 
order one caa examine a root fragment of the search tree 
and compute an upper bound on the number of leaf nodes 
in the total tree. R/Iore specifically, for each node n let 
k(n) be the number of future propositions at search node 

Ties provide the major source of statistical fluctuation in 
our data. When an several appear equally good, we choose 
one at raadom. This effects both the size of the search tree 
and the number of truth assignments. Another source of 
randomness is the precise order in which BCP examines 
unit open clauses when it discovers a contradiction. This 
will not effect t#he size of the search tree, but does effect 
t,he number of t,ruth assignments and the actual running 
time. 

n. .Given a fra.gment, of the search tree below a node n 
one can compute the sum of 2”cm) for all nodes m at the 

The a,lgorithm tha.t we use as a standard of compari- 

fringe of the fragment tree. This sum is an upper bound on 
son is what Haralick and Elliot [1980] call “optimal order 

the number of leaf nodes in the entire search tree below n. 
forward checking”, which is the best algorithm of the 10 

In summary, given a proposition order one can compute a 
they survey. We follow Stone’s terminology [1986] and re- 

root fragment of the remaining search tree and from that 
fer to this algorithm as MIN. This algorithm operates on 

fra.gment one can compute an upper bound on the size of 
constraint satisfaction problems by selecting the most con- 

the remaining seasch. One can then choose the proposition 
strained variable to examine a.t each point in the search.2 

order which minimizes t#his computed upper bound. 
Since we are int,erested in solving constraint satisfaction 
problems by compiling them to SAT, we have implemented 

The Purdom, Brown and Robertson 2-level procedure MIN as a SAT algorithm. 
performs a certain lookahead into the search tree for each 
possible proposition which might be selected. Our selec- 

Our implemeutations of MIN and Occur-Reorder 

tion procedure can also be viewed as computing an up- 
share all of their code except for the function that chooses 

per bound by looking ahead into the search. By selecting 
the next, clause to examine. This makes it plausible to 

clauses rather tha.n propositlions, however, our procedure 
compare t,heir running t,imes. Our implementation of 2- 

makes a. commitment to a. cert’ain order of propositions 
level dynamic search rearrangement makes use of stored 

down one branch of the search tree. Given this commit- 
labelings in much the same way as our implementation of 

ment,, we can compute an upper bound which is based on 
BCP-Reorder; t#hese two algorithms also share almost all 
of their code. 

a larger root fragment, of the search tree. Thus our proce- 
dure gets a. tighter upper bound by effectively examining 
a larger fragment of the search tree. 

5.2 Preliminary Data 

We have compared MIN with our two new algorithms. 

5 Experimenta Results 
The performance of these algorithms on the $-queens prob- 
lem is represent,ative of t,heir behavior on n.-queens. 

\lJe ha.ve implementsed the algorithms described in this pa- 
per, and used t,hem to find all the solutions to several prob- 
lems. The problem we have examined most intensively is 
t,he n-queens problem, which is to place 1 queen in each 
column of an n-by-n chessboa.rd so that no 2 queens attack. 

Figure 5.2 suggests that BCP-Reorder is impractical 
for the n-queens problem. If we were only concerned with 
the size of t,he search trees BCP-Reorder would be very 

2The origirlal source for this algorithm is a paper by Bitner 
and Reingold [ 1!)75]. 
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Reordering Strategy Search size Assignments 

Occur-Reorder 1,259 * 1,000 32,141 f 20,000 
MIN 2.583 rrt 1.000 63.789 f 40.000 

Figure 2: Performance on 5 randomly generated graph 
problems, each with 50 nodes, edge probability .15, and 
no solutions. Numbers shown are averages and standard 
deviations. 

impressive. However, the additional truth assignments 
that the lookahead introduces cost far too much. 

The constant-overhead version of our algorithm, how- 
ever, is a practical approach to this problem. We produce 
better search trees and fewer truth assignments (although 
the improvement is slight for this problem). Occ~zr- 
Reorder provides an improvement on the n-queens prob- 
lem over MIN of about 2%-10% for n between 4 and 12. 

We have also compared MIN and Occur-Reorder on a 
few randomly generated constraint satisfaction problems. 
We have looked at 4-coloring a random graph with 50 ver- 
tices, with a uniform probability p that there will be an 
edge between any pair of vertices. We have done some 
experiments with for p = .15, shown in Figure 5.2. 

The improvement in average performance that Occur- 
Reorder provides seems promising, but we need to do 
more measurements to determine if the difference is signif- 
icant. 

6 Conclusions 

The algorithms we have presented are based on re-ordering 
the choice of clauses to work on to take advantage of 
bounds on the size of the search remaining. One upper 
bound adds overhead per node that ranges from quadratic 
to linear. Our implementation of this bound is clearly too 
expensive to be practical, although the search tree that 
it produces is promisingly small. The other upper bound 
adds constant overhead, and produces an a.lgorithm that 
performs well enough to be practical. We intend to con- 
tinue to investigate the behavior of these algorithms, either 
by empirical investigations or by mathematical analysis. 
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