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Abstract 
Theorem provers are prone to combinatorial explosions, espe- 
cially when the reasoning chains needed to establish a desired 
result are lengthy. To alleviate this problem, special purpose 
inference methods have been developed that exploit 
properties of certain domains to shorten chains of reasoning 
with types, temporal relations, colors, numeric relations, and 
sets, to name a few. 
The problem investigated here is how to use these efficient, but 
limited methods in a more general enviromrrent. Although 
much research has been done on this problem, most of the 
resulting systems either restrict what they can represent and rea- 
son with, limit the types of special mechanisms that can be used, 
or are difficult to extend with other specialists. 
We develop a uniform interface to specialists which allows 
them to assist a resolution-based theorem prover in function 
evaluation, literal evaluation, and generalized resolving and fac- 
toring. The specialists incorporated into this system include a 
temporal reasoner, a type hierarchy, a number specialist, a set 
specialist, and a simple color specialist. Each new specialist 
was found to make possible fast proofs of questions previously 
beyond the scope of the theorem prover. Examples from the 
fully operational hybrid system are included. 

1. Introduction 
General theorem provers all suffer from combinatorial explo- 

sions. However, for some frequently encountered subdomains, 
special purpose inference methods have been developed that 
reason faster than any general method can by exploiting the pro- 
perties of those subdomains. These specialists may use com- 
pletely different representations and methods to achieve their 
performance. For example, a type specialist can use a type 
hierarchy to short-cut the chain of reasoning involved in deter- 
mining that a wolf is a living-thing (the sequence of inferences 
wolf -2 warm-blooded-quadruped -> larger-animal -> animal 
-> creature -> living-thing can be reduced &I wolf -> living- 
thing, using a preorder numbering scheme in the hierarchy). 
Similarly, a time specialist would compress reasoning about 
transitive temporal orderings, such as inferring that event1 is 
before event4, given that event1 is before eve&, event2 is 
before eve&, and event3 is before event4. Other specialists 
could deal with arithmetic relationships, sets, spatial relation- 
ships, colors, and so on. 

The question then arises as to how to use these efficient, but 
limited methods in a more general environment. This is the 
problem central to this paper. Ideally, the specialists should be 
integrated with the general mechanism in such a way that the 
specialists will be used when appropriate, and the general 
method when no specialists apply. This would give us a system 
with a wider domain than all the specialists combined, while 
avoiding much of the combinatorial searching usually associ- 
ated with a large domain. 

We shall describe such a hybrid approach, in which a 
resolution-based theorem prover which operates on a semantic 
net is combined with several specialists (building on the ideas 
in [Schubert et al., 19871). The specialists include a temporal 

inference specialist, a number/arithmetic specialist, a type 
hierarchy specialist, a set specialist and a very simple color spe- 
cialist. Although hybrid approaches have been tried for these 
subdomains before, most use disjoint specialists, and do not 
systematically address the problem of communication among 
specialists. 

The combined inference system developed here is intended 
for low level inferencing in a natural language understanding 
system (ECoSystem [de Haan and Schubert, 19861) under 
development at the University of Alberta. The portion of 
Ecosystem presented here is called ECoNet. It accepts asser- 
tions in the form of first order predicate logic propositions, and 
answers questions phrased in the same form. The system is 
implemented in Lucid Common Lisp and runs on a Sun 3/75. 
A related paper wller and Schubert, 19881 contains details on 
the temporal specialist incorporated into this system. 
2. Specialists 

Before going any further, we should indicate what is meant 
by specialists, or special purpose inference mechanisms, and 
what can be gained by using these methods. A special inference 
method takes advantage of special properties of the predicates, 
terms and functions in the domain it works with, using efficient 
representations and methods for reasoning in that domain. Its 
reasoning steps may shortcut lengthy chains of standard infer- 
ences. For example, the temporal specialist uses a graph struc- 
ture to represent times and temporal relations passed to it, and 
uses efficient graph algorithms to do its reasoning. Because 
lengthy chains of temporal cormections may determine the rela- 
tionship between two times, establishing such relationships by 
general methods can be computationally expensive. 

Any inference made by a specialist must be sound, but there 
is no requirement that the specialist be complete, as the general 
method can fill in any inference gaps, albeit less efficiently. 
Also, since the specialists are to be used to accelerate the sys- 
tem, they must ALWAYS return an answer, and do so quickly 
(unknown is an acceptable answer). 

Schubert et al. [Schubert et al., 19871 suggest several ways 
for a specialist to accelerate a theorem prover using derived 
rules of inference, including literal evaluation and generalized 
resolution and factoring. They discuss the relationship to 
Stickel’s theory resolution [Stickel, 19831 in detail. In addition, 
a specialist can evaluate functional terms to simplify literals. 

Literal evaluation uses a specialist’s special representation to 
evaluate literals to true or false, and hence to simplify input 
clauses, and resolvents generated by the theorem prover. For 
example, if “a strictly before b” was represented in the temporal 
specialist’s representation (the timegraph), it can be used to 
simplify literal [a titer b] to false. Function evaluation 
simplifies a term by evaluating it (for example, (m-of nl) may 
be simplified to a number, say 3 by the number specialist). 
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Generalized resolving and factoring quickly determine 
incompatibility or subsumption of one literal by another. This 
allows resolution and factoring to be done where they usually 
cannot (in one step). For example, the type specialist can 
resolve [d dog] against 1 [x animal], to get the null clause, 
even though the two predicates are distinct. Similarly, the color 
specialist can resolve [x bhe] against [c red] to get the null 
clause, even though the signs are the same. The type specialist 
can give us generalized factor [d animal] from literals [d dog] 
and [x animal]. Similarly, the temporal specialist can factor [T 
[x during a] or [x during b]] to [a during b] (if we have [a dur- 
ing b] represented in the timegraph). In addition, even though 
we may not have incompatibility, a specialist can determine the 
conditions for incompatibility and return these as a residue. A 
residue (from Stickel’s partial theory resolution), is a literal or a 
set of literals whose negation would make the two literals being 
resolved incompatible (resolvable in one or more steps to the 
null clause). For example, if we resolve [a before b] against [a 
after b], we get a residue of [a equaZ b]. If that residue is later 
determined to be false, we have the null clause. 

--..--m* Represents literals for ent or evaluation functions 
for simplification pairs of Ti terals for resohion 
or factoring, rem.& of requested evaluations 

As long as the operations a specialist is allowed to perform 
are equivalent to sets of standard deductive steps, the specialist 
is guaranteed to be logically sound. This restriction is satisfied 
by the operations we have implemented (literal evaluation, gen- 
eralized resolving, etc). 
3. Overview of the System 

gr Re resents sim lified functional terms evaluations 
of lterals, rest ues from resolving. and factors P 2 
from factoring. Alsq, functional terms and literals 
to be evaluated and mterested party specifications 
for concepts 

Figure 1. Architecture of ECoNet 

Having discussed how a specialist can assist a resolution- 
based theorem prover, we now need to consider the design of a 
general interface that will allow the theorem prover to invoke 
the specialists when appropriate. This interface should be gen- 
eral enough to handle any specialist we might imagine, and 
efficient enough that its cost is modest in comparison with the 
savings made possible by the specialists. 

ECoNet’s architecture is shown in Figure 1. The core of the 
system is a resolution-based theorem prover which has been 
under development at the University of Alberta for several 
years, most recently by de Haan [de Haan and Schubert, 19861. 
The theorem prover uses a semantic net representation, and 
features automatic topical classif?cation of entered clauses and 
organization in a topic hierarchy. The inference method used is 
resolution, enhanced by topical retrieval of clauses to resolve 
against the problem clauses. Inference is also accelerated by a 
concept hierarchy that enables type inheritance. Since the 
hierarchy specialist is used both for organizing knowledge in 
the theorem prover, and as a type specialist, it is shown inside 
the theorem prover box. 

members of the curriculum committee are members of the 
faculty council, we should be able to figure out that John is a 
member of the faculty council. To accelerate reasoning in these 
areas, the number/arithmetic specialist and the set specialist 
were incorporated. The number specialist uses a graph structure 
to represent and reason about orderings on integers and real 
numbers, and can evaluate numeric functions like add. The set 
specialist maintains the contents of sets, and can do simple 
operations on sets, like union, intersection, and testing set 
membership. 

In addition, there is a very simple color specialist, which 
currently assumes that all color predicates are disjoint (e.g. btue 
and red are incompatible). A much better specialist based on a 
geometric three-dimensional color space has been designed 
[Schubert et al., 19871, which can handle subsumption of colors 
(e.g., crimson is subsumed by red), intermediate shades (e.g., 
blue-green), and some modified shades (e.g., sort of brown), 
and will eventually replace this one. 
4. The Specialist Interface 

The most elaborate specialist in this system is the temporal 
specialist. The system is to be used for natural language under- 
standing, which often deals with a number of temporally related 
events or episodes. Reasoning about these orderings, as well as 
the quantitative aspects of time (durations and dates) is 
required. As mentioned earlier, such inferences in a general 
theorem prover can be computationally expensive. Details of 
the temporal specialist can be found in 
[Miller and Schubert, 19881. 

There were several issues to consider in designing the inter- 
face. When and how does a specialist get invoked? How is the 
decision made that a particular specialist is likely to be helpful? 
How can useful information be transmitted between the snecial- 
ists and the general theorem prover, and between spe&lists? 
To answer these questions, we first need to review how the gen- 
eral theorem prover works. Figure 2 shows a high level absuac- 
tion of the algorithm used by the general theorem prover, with 
notes in bold print showing where the various specialist opera- 
tions described earlier fit. 

An agenda is used to keep track of possible actions which 
Temporal reasoning is certainly not the only domain requir- can be used to carry out a proof - resolving actions and access 

ing potentially explosive inferencing. Reasoning about actions. A successful resolving action causes the resolvent to 
numbers, and about set membership are also problems which be entered; a successful access action causes clauses to be 
we will have to deal with, even for understanding ordinary retrieved which are likely to resolve against a particular clause. 
discourse. For example, if we are told that eleven of twelve 
jurors agreed on a guilty verdict, we should be able to figure out 

Agenda items are ordered so that the action most likely to result 

that exactly one juror demurred. Similarly, if we are told that 
in success (i.e. the null clause) is at the top. When given a 

John is a member of the curriculum committee, and all 
question, the theorem prover starts with the clauses correspond- 
ing to the question, and the clauses corresponding to the nega- 
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tion of the question, and enters both sets just like resolvents 
(and flags them appropriately). The classification phase of this 
entry will add the first access actions to the agenda. If a con- 
tradiction is eventually derived from the question clauses and 
the knowledge base, the answer will be NO (hence it is called 
the disproof attempt); with the negation of the question clause, 
the answer will be YES (the proof attempt). The proof and dis- 
proof attempts are carried out concurrently, using a common 
agenda. 
Assertion 

Simplify asserted clause 
-> literal evaluation 
-> function evaluation 

Classify asserted clause 
Enter into Semantic net and concept and topic hierarchies 
-> entry into specialists’ representations 

Question 
Loop through agenda; take top item from agenda: 

If Resolving Action: 
Calculate resolvent 
Simplify resolvent 

-> literal evaluation 
-> function evaluation 

Classify resolvent and add relevant access actions 
to agenda 
Check for factoring possibilities 

-> generalized factoring 
Enter into semantic net and concept and topic hierarchies 

If Access action (involves ckzuse, fopic, and concepf): 
Compare each clause retrieved under topic of concept 

with the given clause 
If resolvable, add a resolving action to agenda 
-B generalized resolving 

Figure 2. Overview of Algorithm 
During an access action where literals are being compared 

for resolvability, if the traditional test fails (same predicate, 
different signs), a specialist could potentially find a generalized 
resolving action. “Generalized resolutions” found by the spe- 
cialists are added directly to the agenda. Similarly, if a factor- 
ing test fails (same predicate, same sign), a specialist might find 
a generalized factor. 

Clause simplification involves both literal evaluation and 
function evaluation (a form of term simplilication), both of 
which a specialist may assist with. Even if a literal or its nega- 
tion have not been asserted before, a specialist may be able to 
detect its truth or falsity. 

In all of these cases, a decision process must be invoked that 
can quickly decide which specialists, if any, apply, and invoke 
them. 
4.1. Extensions to the Theorem R-over 

To get maximum flexibility for the specialists and the spe- 
cialist interface without sacrificing efficiency, some enhance- 
ments to the theorem prover were needed. 
4.1.1. Expressiveness 

First, some syntactic refinements were needed. To enable 
the specialist interface to decide when a specialist is appropriate 
for some problem, terms serving as predicate arguments should 
be sortally distinct, so that predications about physical objects, 
events, numbers, and so on, are easily distinguished from each 
other. (Predicates alone do not necessarily determine their 
argument sorts in our system. For example, the predicate equal 
may relate a number of different kinds of entities, including 
events or numbers.) This is accomplished by allowing a “sort 
tag” to accompany an argument, expressed by following the 
term with an underscore and the sort. Possible sorts include: 
physical object, event/episode, time, number, symbolic expres- 

sion and set. Sorts are considered pairwise disjoint (in contrast 
with types, which in this system are unary predicates whose 
extensions may overlap). 

Also, some entities, such as numbers, structured values, and 
symbolic expressions are not easily expressed as semantic net 
concepts, or are too numerous to represent that way. For exam- 
ple, we do not want an individual concept for every possible 
number! To avoid this problem, we allow quoted expressions 
as terms. For example, the functional expression (date ‘1987 
mm-number ‘1 ‘0 ‘0 ‘0) evaluates to a quoted expression 
representing a structured value, ‘(time 1987 mm I 0 0 0), which 
is an absolute time representation recognized by the time spe- 
cialist. A quoted atom is assumed to denote the string of char- 
acters making up the atom. For example, the denotation of 
‘Mary is the string of alphabetic characters ‘Mary”, and the 
denotation of ‘35 is the string of numerals “35”. By formally 
identifying the natural numbers with the strings of numerals 
normally used to represent them (in base lo), we ensure that 
quoted numerals are denotationally equivalent to unquoted 
ones’. The denotation of ‘(t 1 t2 . * * t,) is the tuple consisting 
of the denotation of t 1, followed by the denotation of t2, . . . . fol- 
lowed by the denotation of t, . Thus, the above structured value 
is the 7-tuple whose lirst element is the string “time”, and whose 
remaining elements are numbers (the second one of these being 
whatever number is denoted by mm). Note that although this 
structured value looks very similar to the original functional 
term, if the terms for the function had been more complex (like 
(add ‘I ‘1986) instead of ‘1987), the quoted expression would 
look considerably simpler than the original term. Term 
simplification is done bottom up, and guarantees to the special- 
ists that when they are invoked with a literal or functional term, 
the terms have been simplified as much as possible. This 
allowed simpler and more elegant implementations of the inter- 
face and specialists. 

Because the “generalized resolutions” performed by special- 
ists do not necessarily involve identical predicates, and may do 
the work of many ordinary resolution steps, the order of 
unification of arguments in two literals need not be the same. 
This is decided by the specialists, and details depend on the 
axiomatization (theory) assumed to underlie the specialist’s 
domain. After the specialists have decided in what order the 
arguments should be unified when resolving or factoring, they 
invoke the unification process themselves. If a factoring or 
resolving action results, the specialist passes these substitutions 
back to the theorem prover. 

Specialists may also return a residue (see example given ear- 
lier). The theorem prover has to incorporate this residue into 
the resolvent. 

Also, when attempting to resolve, specialists may provide 
more than just substitutions and residues - they may also supply 
the evaluations of the two literals after substitution. Then, even 
if the two literals are not incompatible, we can use the evalua- 
tions to simplify the clauses. For example, when resolving --, [x 
before a] in [-I [x before a] I [x during a]] against a clause con- 
taining literal [b after y], and if furthermore, we have “a strictly 
before b” represented in the timegraph, we can simplify the first 
clause to 1 [b before a]. This simplification will then be added 
to the clauses to be considered. 

This enables us to confine numbers 
to be computationally convenient. 

to quoted contexts, which turns out 
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4.2. The Decision Process 
This section briefly outlines how the specialists are selected 

for each operation they may perform. Details are in 
[Miller, 19881. The mechanism for deciding which specialists 
should be called is just a cursory check to find specialists that 
are likely to be interested. Since much of the time no specialist 
will be involved, we do not want to waste too much time decid- 
ing which, if any, to call. To get quick and easy access to the 
specialists that may be useful, they are kept on the predicate’s 
or function’s property list. 
4.2.1. Literal Entry and Evaluation 

For literal entry and evaluation, the predicate involved, and 
its first argument are used to determine which specialist to call. 
The specialist itself is responsible for checking the other argu- 
ments to ensure that they are in its domain. Another possibility 
was to use pattern matching on the predicate-argument patterns, 
but this can be quite slow. On entry, all applicable specialists 
are called, as any one might later be required to use the informa- 
tion in inferencing. For literal evaluation, each specialist is 
called, one at a time, mtil an answer other than unknown is 
returned. For example, asserting [nl-integer less-than r2_real] 
would cause the number specialist to be invoked to enter it. 
4.2.2. Generalized Resolution and Factoring 

For generalized factoring and resolution, the two predicates 
alone are used to decide which specialists to call, using the 
intersection of the lists of interested specialists for each. No 
checking is done on arguments yet, as unification has not taken 
place (and cannot until the specialist decides how it is to be 
done), and substitutions may be involved. Final checks on 
whether the resulting literals (after unification and substitution) 
are in a specialist’s domain must be done by the specialist. For 
example, when resolving 

[tl-time before t2_time] vs [x equal t3 time], 
both predicates have the temporal special% on their property 
lists (although equal has other specialists as well), and so only 
that specialist would be called to try to resolve them. All appli- 
cable specialists are called for both generalized resolving and 
factoring, as each may find different resolving or factoring 
actions. 
4.23. Function Evaluation 

The function alone is used to determine which specialist(s) 
to call. All arguments are simplified before the function is 
evaluated, recursively. For example 

(date (add ‘1987 ‘I) ‘4 ‘1 ‘12 ‘0 ‘0)’ 
would first use the number specialist to calculate the year argu- 
ment, and then the temporal specialist to calculate the absolute 
time with all the arguments 
5. Communication between Specialists 

Sometimes a specialist may need additional information to 
complete its task, and it is possible that another specialist may 
be able to supply it. For example, assertion of 
[el-episode before (date ‘1987 nun number ‘01 ‘12 ‘00 ‘OO)] 
would require that the time specia&t ask about the bounds of 
mm (the territory of the number specialist). Similarly, a naive 
or qualitative physics specialist might need to know if the event 
of the robot hand going across the table happened before or 
after the vase of flowers was placed there in order to determine 
the current position of the vase. Also, when the information 
requested is not immediately available, or likely to be further 
constrained by clauses added later (for example, bounds on 
numbers), we want the specialist to be not&d if and when it is. 

The essential idea of our approach is to channel all commun- 
ication between specialists through the interface. Thus special- 
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ists need not know which other specialists can help them. Two 
types of communication have been implemented for the special- 
ists: immediate evaluation, where a specialist asks for the 
evaluation of a particular functional term or literal, and delayed 
communication, where the specialist is notified that something 
of interest in another domain has been asserted. Immediate 
evaluation may be useful during either assertion or question 
answering, while delayed communication can only be used to 
further enhance asserted information. 
5.1. Immediate Evaluation 

For immediate evaluation, the functional term or literal is 
sent out from the specialist to the specialist interface for evalua- 
tion. The interface decides which specialist(s) will be able to 
evaluate it as described earlier, and passes the item on. The 
result (a concept or quoted expression for a functional term; yes, 
no, or unknown for a literal), is sent back to the specialist that 
requested it. In the previous example, the temporal specialist 
could request the value of (max-of ~GWZ)~, and use that value in 
the absolute time specification. 
5.2. Delayed Communication 

A specialist can communicate to the interface a particular 
concept (currently only constants) it wants “watched”, and a 
literal to reassert when something involving that concept is 
asserted. This information is kept on m interested party list for 
the concept. Whenever anything new is asserted about that con- 
cept, each literal on the interested party list is reasserted to the 
specialist that put it there. There is no point asserting the new 
literal to an interested specialists because it may not recognize 
the predicates and terms involved. In the previous example, the 
temporal specialist would add an entry to mm’s interested party 
list, consisting of the specialist (time-specialist) and the literal 
given to the temporal specialist (after term evaluation) [el 
before ‘(time 1987 mm 1 12 0 O)]. Later, if [mm less-than ‘31 
were asserted, [el before ‘(time 1987 mm 1 12 0 0)] would be 
re-asserted to the temporal specialist. 
6. Example 

The system can answer questions which involve mixed rea- 
soning - both specialist inference and ordinary resolution. The 
example in Figure 3 from the story of Little Red Riding Hood 
shows a few capabilities of the system. The example does not 
show either the number or set specialists, as examples involving 
them were too lengthy to include. Currently the number spe- 
cialist is used mainly to support the temporal specialist by 
assisting it in maintaining the most constrained absolute times 
and durations. The set specialist is quite new and its capabili- 
ties have not been fully exploited in our Little Red Riding Hood 
knowledge base yet. 
7. Comparison with Other Approaches 

ECoJet’s representational capabilities allow it to handle 
first order predicate calculus, minus equality. (The specialists 
provide partial handling of equality, but full equality reasoning 
should be added to the general theorem prover). The special- 
ists, in principle, are used only to accelerate inference. This 
differentiates it from systems like KL-TWO [V&in, 19851, 
where the core of the system is a computationally efficient sub- 
set of first order logic, and the specialist (a terminological infer- 
ence mechanism) adds both to the overall expressiveness and 
reasoning power of the system. 

’ We always want the most complete, but correct information available. 
Since mm can never get bigger than its maximum, this is the safest bound to 
use on assekon. However, if we were trying to evaluate this literal, we would 
use the minimum, since if el were less than the minimum of that time. we can 
be assured that it will be less than any other value that time might have. 



; did a creature kill the wolfwhile he was in the cottage? 
==> ?(E J E z-ep (y kill W z) & (y creature) & (z during wolf-in-cot)) 
Entering proof clauses: 
((- U-VAR-1 CREATURE) I (” U-VAR-1 KILL W EPISODE-VAR-1) 

I (- EPISODE-VAR-1 DURING WOLF-II?-COT)) 
Using the temporal specialist: 

Time Sue&list: Truing to resolve 
(- EPiSODE-VA%l-DURING WOLF-IN-COT) 
against (WOLF-DEMISE DURlNG-l-0 WOLF-IN-COT) 

T$e Specialist: Resolved with evaluation: NO with substitutions: 
((EPISODE-VAR- 1 by WOLF-DEMISE 2)) 

Resolved (- EPISODE-VAR- 1 DURING WOLF-IN-COT) iu the proof clause 
((- U-VAR.1 CREATURE) I (- U-VAR- 1 KILL W EPISODE-VAR.1) I 
(- EPISODE-VAR.1 DURING WOLF-IN-COT)) 

against (WOLF-DEMISE DURING-l -0 WOLF-IN-COT) iu 
(WOLF-DEMISE DURING- 1-O WOLF-IN-COT) 

yielding . . . 
((- U-VAR.1 CREATURE) I (- U-VAR.1 KILL W WOLF-DEMISE)) 

Ordinary resolution: 
Resolved (- U-VAR- 1 KILL W WOLF-DEMISE) iu the proof clause 

((- U-VAR.1 CREATURE) I (- U-VAR.1 KILL W WOLF-DEMISE)) 
against (WOODCUTTER KILL W WOLF-DEMISE) in 

(WOODCUTTER KILL W WOLF-DEMISE) 
yielding . . . 

(-WOODCUTTER CREATURE) 
Using the type hierarchy specialist: 

Resolved (- WOODCU’ITER CREATURE) in the proof clause 
(-WOODCUTTER CREATURE) 

against (WOODCUTTER MAN) iu (WOODCUTTER MAN) 
yielding the null clause. 

YES 
. Were all the capes blue? 8 
==> ?(A x (x cape) =B (x blue)) 
Entering disproof clauses: 
((- U-VAR.1 CAPE) I (U-VAR.1 BLUE)) 

Using the color specialist: 
Resolved (U-VAR.1 BLUE) iu the disproof clause 

((- U-VAR.1 CAPE) I (U-VAR-1 BLUE)) 
against (SCON-340 RED) in (SCON-340 RED) 
yielding . . . 

(- SCON-340 CAPE) 
(SCON-340 CAPE) evaluated to YES. 
The clause evaluated to NO. 

NQ 
Figure 3. Example of ECoNet in operation3 

Another hybrid, Krypton [Bra&man et al., 119851 has a 
powerful core system, also enhanced with a terminological spe- 
cialist. It is unclear whether the technique used to integrate this 
specialist could be used for other specialists as well (like time). 
Krypton is one of the few other systems that actually allow the 
specialists to do generalized resolving. However, the residues 
calculated by Krypton can be quite complex, involving 
quantification. Although ECoNet has no constraint on the com- 
plexity of residues that a specialist may create, the specialists 
implemented so far generate quite simple residues, further sim- 
plifying the resolving process. 

The domain independent special mechanisms used by Bundy 
et al. [Bundy et al., 19821 allow for more than one specialist, 
but all must be in the form of specialized logical rules (preclud- 
ing more efficient representations, like graphs). The only hmi- 
tations on the specialists that may be incorporated into ECoNet 
are that they must make sound inferences. 

Another thing that makes ECoNet unique is the communica- 
tion among specialists. Although some earlier systems did have 

3 This example shows actual output of the system, edited for clarity aud 
brevity. Bold prmt is user input; comments iu italics; the rest, system output. 
The timegraph contained, among other relations, that wolf-demise (episode 
correspoudiug to the wolf being killed) is during wolf-in-cot (episode 
corresponding to the wolf beiig in the cottage). [a during-l -0 b] => [(start-of 
a) > (start-of b)] & [(end-of a) = (end-of b)]. 

some forms of communication (for example, Nelson and Oppen 
[Nelson and Oppen, 19791, and Shostak [Shostak, 1984]), only 
equalities could be communicated. ECoNet is much more flexi- 
ble, and unlike these systems, does not require that the special- 
ists be disjoint (no overlapping functions or predicates). 
8. Conclusions 

Our intent was to combine efficient special methods with a 
general purpose theorem prover in such a way that the 
efficiency of the special methods ‘averts the combinatorial 
explosions usually associated with a general theorem prover. 
Previous approaches limit the overall domain, or cannot easily 
accomodate a variety of specialists, or don’t fully exploit the 
specialists’ capabilities. 

The interface we developed allows specialists to accelerate 
the resolution-based theorem prover in literal evaluation, func- 
tion evaluation, and generalized resolution and factoring. In 
addition, assertions are given to the specialists to store in their 
own representations. Several specialists were incorporated into 
the system using the interface, including a type specialist, a 
temporal specialist. a number/arithmetic specialist, a set/list 
specialist, and a very simple color specialist. Communication 
between specialists is achieved by allowing specialists to 
request evaluation of functional terms or literals, and by main- 
taining interested party lists to notify specialists that something 
of interest to them has been derived. The temporal and number 
specialists communicate through absolute time and duration 
specifications. 

Experience with the interface conkms that new specialists 
can be added with relative ease. This is because the specialists 
interact with the general theorem prover in a small, fixed set of 
ways. Each new specialist was found to make possible fast 
proofs of questions previously beyond the scope of the theorem 
prover. 
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