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ABSTRACT 
This paper presents an extension of the semantic 

tableaux approach to theorem proving for the class of normal 
conditional logics. These logics are based on a possible 
worlds semantics, but contain a binary “variable conditional” 
operator =E= instead of the usual operator for necessity. The 
truth of A +B depends both on the accessibility relation 
between worlds, and on the proposition expressed by the 
antecedent A. Such logics have been shown to be appropriate 
for representing a wide variety of commonsense assertions, 
including default and prototypical properties, counterfactuals, 
notions of obligation, and others. 

The approach consists in attempting to find a truth 
assignment which will falsify a sentence or set of sentences. 
If successful, then a specific falsifying truth assignment is 
obtained; if not, then the sentence is valid. The approach is 
arguably more natural and intuitive than those based on 
proof-theoretic methods. The approach has been proven 
correct with respect to determining validity in the class of nor- 
mal conditional logics. In addition, the approach has been 
implemented and tested on a number of different conditional 
logics. Various heuristics have been incorporated, and the 
implementation, while exponential in the worst case, is shown 
to be reasonably efficient for a large set of test cases. 

I. Introduction 
It is by now generally accepted in Artificial Intelligence 

(AI) that statements of default or prototypical properties can- 
not easily or obviously be represented in classical logic by 
means of the material conditional. For example, statements 
such as “birds fly”, along with “penguins are birds”, and 
“penguins do not fly” have no ready consistent translation into 
classical logic, unless one is willing to say that there are no 
penguins. Similarly, “ravens are black” and “albino ravens are 
not black” have no ready consistent translation, unless there 
are no albino ravens. In the tirst case, transitivity of the condi- 
tional is denied and, in the second, a strengthening of the 
antecedent results in a denial of the original consequent. 
Approaches in AI to address such statements include provid- 
ing a schema for adding formulae to a set of sentences 
[McCarthy 801, [McCarthy 841, and extending classical first- 
order logic by the addition of rules of inference [Reiter 801, or 
the addition of unary or binary sentential operators [McDer- 
mott and Doyle 80; Delgrande 871. 

What is perhaps less well-known in Artificial Intelli- 
gence is that such non-standard patterns occur in other types 
of reasoning. For example, it seems quite reasonable to make 

the following counter-factual assertions lLewis 731: 
“If John had gone to the party, it would have been a 
good party” along with 
“If John and Sue had gone, it would not have been a 
good party” but 
“If John, Sue, and Mary had gone, it would have been a 
good party”. 

or the following hypothetical assertions [Nute 803: 
“If John were to work less, he would be less tense”, 
“If John were to lose his job, he would work less”, 
together with 
“If John were to lose his job, he would not be less 
tense”. 
Assertions of obligation also conform to similar pat- 

terns. Thus, for example, one should safely prevent a crime 
from occurring, if possible, unless preventing that crime 
would cause a greater one. These examples all seem to be 
reasonable, consistent, commonsense assertions to make about 
the external world, and hence reasonable statements to 
represent and reason about. However these examples have no 
straightforward translation into classical logic. In philosophy, 
the general framework of conditional logics has been used for 
formalising such reasoning. The general idea is that an opera- 
tor, 3, called the variable conditional, is introduced into 
either classical propositional or first-order logic. The truth of 
a statement A *B however relies not on the present state of 
affairs being modelled, but on other, alternative, states of 
affairs (or possible worlds). In addition there is a binary 
accessibility relation among these states of affairs, where the 
relation provides an ordering among worlds. The truth of 
A =sB then is determined by considering the “least” worlds in 
which A is true; if B is also true in all such worlds, then 
A =sB is true. 

This paper presents an extension to the method of 
semantic tableaux [Smullyan 68; Hughes and Cresswell 681 
for determining the validity of a set of sentences in a wide 
class of conditional logics, called normal conditional logics. 
The general idea is that for a sentence o, an attempt is made to 
construct a model for Y o. If such a model is obtained, o is 
not valid, and moreover one has a specific falsifying interpre- 
tation for o. Otherwise such a model is shown to be impossi- 
ble to construct, and o is valid. The class of logics to which 
this approach may be applied includes those for subjunctive 
conditionals (including counterfactual and hypothetical condi- 
tionals), default conditionals, and deontic conditionals. The 
general approach, being based on the model theory of such 
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systems, is arguably more intuitive than resolution-based or 
other proof-theory based methods. 

The next section introduces and discusses conditional 
logics in a bit more detail. Section 3 introduces theorem prov- 
ing based on semantic tableaux in general, along with the 
present approach; section 4 discusses the approach in detail. 
The fifth section describes an implementation of the method, 
while the last section provides concluding remarks. This work 
derives from that presented in [Groeneboer 871, which 
developed a theorem-prover for conditional statements in a 
logic of defaults; further details, proofs of theorems, etc. may 
be found therein. 

2. Conditional Logics 
Consider again the example concerning the potentiaI, 

but counterfactual, outcomes of a past party. We might write 
the sentences in a propositional system as: 

John-went 3 Goodgarry 
John-went A Sue-went 3 --, Goodgarty 
John-went h Sue-went A Mary-went 3 Goodgarty . 

The pattern in these statements is clear: as the antecedent is 
strengthened, the consequent may change to+ts negation. In 
classical logics of course a set of such conditionals is 
satisfiable only if some of the antecedents are false. In a simi- 
lar fashion, the laws of transitivity of the conditional, and of 
the contrapositive, may be shown to be violated for counter- 
factual assertions. 

Such patterns of inference and deviations from the clas- 
sical norm have been recognised by philosophers in a number 
of types of reasoning. Best known in this regard is counter- 
factual reasoning [Stalnaker 68; Lewis 731. A counterfactual 
statement is one in which, among other things, the antecedent 
is false in the state of affairs being modelled, but the condi- 
tional as a whole may be either true or false. In Lewis’s 
approach, the counterfactual A +B is true if in the set of 
worlds most similar to our own where A is true, B is true also. 
Thus, the counterfactual “if John had come it would have been 
a good party” is true if, in the worlds closest (or, most similar) 
to our own in which John did in fact come to the party, it was 
a good party. More formally, the truth of counterfactuals is 
determined using a possible worlds semantics, where the 
accessibility relation between worlds corresponds to a notion 
of “similarity”. A counterfactual A *B is true in model M at 
a particular world w just when the closest (according to the 
accessibility relation) worlds in which A is true also have B 
true. Appropriate properties of the conditional then are 
obtained by imposing suitable restrictions on the accessibility 
relation. Counterfactual reasoning is in turn an example of 
subjunctive reasoning; lPollock 761 identifies and addresses 
four broad categories of such reasoning. In addition, deontic 
logics of conditional obligation [van Fraassen 72; Chellas 801 
also allow similar patterns of satisfiability. In AI it has more 
recently been demonstrated that default and prototypical pro- 
perties may also be expressed within such a framework 
[Glymour and Thomason 84; Delgrande 871. A formal 
description of counterfactuals which allows applications in 
areas such as diagnosis is presented in [Ginsberg 851. See 
[Chellas 751 and [Nute 803 also for general discussions of 
approaches to such reasoning. 

What we have then with conditional logics is a class of 
modal logics in which the modal operator is binary, rather 
than unary, as is usually the case for notions of necessity, 
knowledge, time, etc. The various logics differ then depend- 
ing on the conditions imposed on the accessibility relation, 
and on how the set of worlds selected depends on the 
antecedent of the conditional. As we impose different restric- 
tions on this accessibility relation, we obtain different condi- 
tional logics with differing characteristics. Thus for example, 
most counterfactual logics contain (A A (A *B ))zB as a 
theorem - that is, if the antecedent of the (supposed) counter- 
factual is true, then so is the consequent. For a logic for 
defaults however [Delgrande 871, one is typically interested in 
the situation where the antecedent of the conditional is true 
but the consequent may not be. Thus one may want to assert 
that “ravens are normally black”, while allowing for non-black 
ravens in the present state of affairs. 

However, all the logics we will deal with, the normal 
conditional logics, contain the following rules of inference: 

RCK If(Br A -.a A B,) 1 B then 
((A *B 1) A - - - A (A +B,)) I> (A =+B ) 

RCEA If A =A’ then (A *B ) = (A’ *B ). 
These relations can be compared with the rule of inference 
characterising the normal modal logics of necessity [Chellas 
801, where the formula EB is read as “B is necessarily true”: 

RK If(B1 A .*. A B,)IB then (LB1 A - - - A LB,)xLB. 

The minimal normal logic of necessity is the system K . 

3. Semantic Tableaux 
The approach to theorem proving for conditional logics 

presented in this paper is a tableau-based method. The roots 
of such systems can be traced back to [Gentzen 691. [Smul- 
lyan 681 applied these ideas to classical logic, simplifying the 
methods and making them more elegant. Tableau systems 
have also evolved for modal logics [Kripke 63; Hughes and 
Cresswell 68; Fitting 831 and temporal logics [Rescher and 
Urquhart 711. 

The tableau method involves attempting to construct a 
model for lo in order to prove a formula o. If a model is 
found for 10 then o cannot be valid; otherwise +I is 
unsatisfiable and o is valid. For classical propositional logic 
the method is straightforward. Consider for example the for- 
mula (A A B ) r> (A v B ). The goal is to construct a falsifying 
interpretation for the formula. Because the main connective is 
a material conditional, for the formula to be false, the 
antecedent must be true and the consequent false; for the 
antecedent to be true, both A and B must be true. However, 
this requires that the consequent be true. Hence a falsifying 
interpretation cannot be found, and the original formula is 
valid. 

This approach is usually illustrated by initially placing a 
“0” (for falsity) under the main connective, and then succes- 
sively placing the values “0” or “1” under the other connec- 
tives. There are two types of rules for specifying how values 
are to be assigned, called a-rules and p-rules. For a-rules, 
there is no choice as to how values may be assigned to a 
subexpression, given a value for the main connective. Thus, if 
the formula A v B has a 0 under the main connective, then the 
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only way the formula can be falsified is if A and B are false. 
For the other case, p-rules, alternatives may be generated. 
Thus, to falsify A A B , one need falsify either A or B . In the 
case of ~-rules, the formula is replicated to allow for the vari- 
ous alternatives, and a successful assignment of values to any 
of the alternatives succeeds in satisfying the original formula. 
Since p-rules spawn a number of ahematives, clearly it is 
preferable to apply a-rules first wherever possible. 

The approach generalises elegantly to modal logics. 
Again we attempt to construct a falsifying model for a sen- 
tence. However the modal operators L for necessity (or, truth 
in all accessible worlds) and M for possibihy (or truth in 
some possible world) require further machinery. Thus, the 
formula MA requires that there be a world in which A is true; 
in this case we create a new world in which A is true, and 
indicate that that world is accessible from the first. If however 
we were attempting to falsify MA, we would require that A be 
false in al11 worlds accessible from the first. Hence again we 
have a-rules and p-rules (which generate a single alternative 
or multiple alternatives, respectively) for the modal operators. 
See [Hughes and Cresswell 681 for details. 

Consider then the case of a general conditional logic. 
The language of the logic is that of propositional logic aug- 
mented with a binary conditional operator 3. Truth of a sen- 
tence in the logic is determined with respect to a model struc- 
ture M = <W,E ,P > where informally W is a set of possible 
worlds, E is a binary accessibility relation between possible 
worlds, and B is a mapping of primitive propositions onto 
possible worlds. (Thus P determines which primitive propo- 
sitions are true at which worlds.) The truth of the standard 
connectives at a possible world is determined by the usual 
recursive definition; for example A VB is true at a world 
w E W just when either A or B is true at w s Hence the method 
of semantic tableaux can be applied to formulae composed 
from the classical connectives, except that now sentences are 
indexed by worlds. 

For truth of the variable conditional at a world, there are 
two possibilities. First, A *B is true at world w just when the 
“closest” worlds to w in which A is true dso have B true. In 
other words, A =z43 is true just when there is a world w 1 in 
which both A and B are true, and for any w 2 accessible from 
w 1 it must be the case that A r> 1% is true. The second possibil- 
ity takes care of the situation in which there are no accessible 
worlds where A is true. In this case A =DB is taken as being 
vacuously true. For the falsity of the variable conditional, we 
have that there is some world w 1 in which A is true and B 
false, and if w 2 is a world accessible from w 1 with both A and 
B true, then w 1 is also accessible from w 2. 

What this means is that these considerations impose a 
set of constraints on the structure of worlds in a model, 
regardless of the conditional logic involved. So the first step 
is to generate a structure, called the semi-complete structure, 
which specifies initial constraints that are required for any 
model. The semi-complete structure then implicitly constrains 
the class of models for the sentence in question. From this 
structure, individual templates of models are generated; these 
templates consist of a set of worlds, together with a minimal 
set of accessibility relations between worlds. Thirdly, for each 

such template, conditions on the accessibility relation (for 
example, -knsitivity, reflexivity, etc.) are imposed; these cbn- 
ditions will vary from logic to logic. If for any of the aug- 
mented templates a model of the original sentence 7 0 is 
obtained, then the sentence 1 o has been satisfied md hence, 
a specific falsifying interpretation for o has been found. If no 
such model is found then o cannot be falsified and is valid. 
The use of semi-complete structures and templates extends the 
procedure given in [Hughes and C&swell 681. The approach 
grovably provides a de&ion procedure for the class of normal _ - 
conditional logics. In addition, the algorithmic nature of the 
approach leads to a straightforward and intuitive implementa- 
tion. The next section describes this approach in more detail. 

4. A Theorem over for Normal ConditionaIi Lo&s 
The steps taken in attempting to construct a falsifying 

interpretation -will be discussed in~turn. However, first we 
describe the graphical notation used for forming semi- 
complete structures. Truth conditions for the * operator are 
given in terms of the diagrams of Figure 1. 

A*B 
wi 1 

W. J 

Wlc wk 

09 
Figuu=e I. 

For Figure I(a), we wish to construct a structure for 
which A PB is true at world Wi; this is represented by the 
topmost box. This conditional is true when one of two condi- 
tions occurs, and is indicated by the diverging arrows labelled 
jointly with an “OR”. The left arrow @&&es that there is 
some accessible world wj, in which A and B are individually 
true, and there is no world wa accessible from wj (given by 
the arrow with the slash) in which A is true and B false. The 
right arrow from Wi specifies that for no accessible world is A 
true, thus A is necessarily false in this alternative. For Figure 
I(b), A *B is false at a world if there is some accessible 
world wj wherein A is true and B false, and from this world 
one of two alternatives obtain: either there is no accessible 
world in which A and B are both true, or else if such a world 
exists, then wj is accessible from it. 

ofa 
We use 

model: 
the following notation then for the construction 

1. 
2. 

rectangles, possibly labelled, represent worlds, 
sets of formulae with “forced” truth values within a rec- 
tangle wi indicate what must be true or false at wi , 
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3. 

4. 

arrows represent accessibility between worlds, 

not-arrows, ++, which emanate from labelled rectan- 
gles, Wi, and enter other rectangles. These arrows 
denote constraints on worlds accessible fi-om Wi , 

to as a configuration. In Step 3.2 each configuration is tested 
to determine whether or not it is indeed a model for the origi- 
nal formula. Note that it is a trivial modification to extend the 
system to a first-order theorem prover. One need only replace 

5. OR’s denote alternative states of affairs. 
Three types of rules are used for the assignment of truth 

values: a-rules, /3-rules, and y-rules. a-rules and p-rules are 
applied as in the propositional case to the classical connec- 

tives. The y-rules capture the truth conditions for the variable 
conditional: 

the application of a-rules and l!kules at a world with a-first- 
order component [Smullyan 683. 

1. pM A aB iff (a) there exists a w 1 such that Eww 1 and 
pxI A and pM B and there exists no w2 such that 

E:l~2 and PA and $4, or (b) for all w1 such 
that Eww 1, j=$b . 

2. l=t T(A +B ) iff there is a w 1 where Eww 1 and $ A 
and I=~~ M 4 and either (a) there is no w 2 such dl at 
Ew 1w2 and l=wz MA and +“B,or(b)ifthereissuchaw2 

w2 

then Ewzwl. 

In this and the next section we will use the formula 
o=((A aC) A (B =>C))D(A a(B AC)) and the system of 
[Delgrande 871 to illustrate the method. This system, which is 
intended for representing default properties, is a normal condi- 
tional logic in which the accessibility relation is reflexive, 
transitive and forward connected (that is, if Ew 1w 2 and 
Ew IW 3 then either Ew 2w 3 or Ew 3w 2). We begin by writing 
o in a rectangle labelled w 1 and placing a 0 under the main 
operator. Then a-rules, p-rules, and y-rules are applied as 
often as possible to obtain the semi-complete structure of Fig- 
ure 2. Those formulae which are substitution instances of tau- 
tologies in standard propositional logic are determined to be 
valid at this point. 

The diagrams of Figure 1 graphically express these rules. 
Thus: 

1. If A aB is assigned 1 at wi, create a new rectangle yj 
in which the antecedent is true and the consequent IS 
true (Figure l(a)). Place an arrow from Wi to new rec- 
tangle wi. Create another rectangle wj ’ in which the 
antecedent is true. Place a not-arrow from wi to wj ‘. 
Place an OR between the arrow from wi to Wj and the 
not-arrow from Wi to Wj ‘. Create another rectangle wk 
in which the antecedent is true and the consequent false. 
Place a not-arrow from Wj to wk. 

2. If A aB is assigned 0 at wi, create a new rectangle Wj 
in which the antecedent is true and the consequent false 
(Figure l(b)). Place an arrow from Wi to Wj . Create 
another rectangle wk in which the antecedent and the 
consequent are both true. Place a not-arrow from Wj to 

Wk. Place an alTOW from Wj t.0 Wk and from Wk t0 Wj. 

Place an OR between the not-arrow and the arrow con- 
necting Wj and wk. 
There are three steps in attempting to provide a falsify- 

ing interpretation for a sentence 6.X 
1. Build the semi-complete structure(s) 
2. Generate templates 
3. Repeat until all configurations are tested or a model is 

found: 
3.1. Determine a set of accessibility constraints 
3.2. Test obtained configuration 

Note that Step 1 does not yield a model (because it contains 
“OR’s” and arrows with slashes through them) but rather 
yields a “proto-model” from which models may be generated. 
Step 2 is concerned with generating a model in the basic con- 
ditional logic - that is, the logic in which there are no con- 
straints placed on the accessibility relation. Step 3.1 is logic- 
specific, and is concerned with enforcing the constraints 
imposed by a particular accessibility relation. The structure 
obtained after accessibility constraints are enforced is referred 

Templates are generated from the semi-complete struc- 
ture in Step 2. This template-generation step yields each of 
the possibilities afforded by the combination of OR’s. Refer- 
ring to Figure 2, note that templates in which A is necessarily 
false cannot yield a model because A must be true at ~4. So 
in this case we continue with just one template, that of Figure 
3. The validity of formulae valid in all normal conditional 
logics is determined at this point - for example, 
A *(A v ,A). 

((A~B)I\(A~C))~(A~(BI\C)) 
1 1 1 0 0 I 

w3 

Figure 2. Example semi-complete structure. 

In Step 3.1 accessibility constraints are enforced. 
Recall that the accessibility relation of our example is 
reflexive, transitive, and forward connected. This means that 
sets of accessibility arrows must be added to the template 
which connect the worlds in the template in such a way that 
the properties comprising the accessibility relation hold. In 
the example there are 13 distinct ways in which to enforce 
accessibility constraints. Since no new worlds are added, the 
process is guaranteed to terminate. 

For the remainder of the paper we will use the notation 
Awiwj to indicate that there is a “candidate” accessibility 
between worlds wi and wj . Step 3.2 then involves testing 
each candidate set of possible accessibility relation instances 
to determine whether or not it is a model. For example, the 
configuration obtained when the set Aw 2w 3, Aw 2w 4, Aw gw 4 
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((AfB)~(A~C))~(A~~hC)) 
1 0 0 

Figure 3. Example structural template. 
is added to the template does not form a model. The reason 
for this is that because of “forced” values at worlds, Aw 2~4 

and Aw sw 4 cannot coexist. The constraints on accessibility 
from w 2 require that B be true at w 4, whereas the constraints 
on accessibility from w 3 require that C be true at w 4. But 
B A C is false at w 4. None of the 13 configurations provides a 
model for 1 o, and o is therefore valid. Note that the same 
formula is invalid in a logic in which the accessibility relation 
is only reflexive. The template of Figure 3 (minus the accessi- 
bility constraints) serves as a counterexample. 

5. ~m~~ementati~n Considerations 
A semi-complete structure is represented as a table with 

three columns: (1) world labels, (2) formulae true at a world, 
and (3) CQUditiQnS on accessible worlds. Table 1 represents 
the semi-complete structure of Figure 2. Thus for example, 
consider the accessibility constraints column for world w4. 
The (not particularly elegant) notation indicates that for any 
world wi accessible from w 4, it must be the case that 
1 A V 1 (B A C) is true at Wi, or else w4 is accessible from 
wi. It is from this table that templates are generated. 

Table 1. Semi-complete structure for o 
worlds conditions at world accessibility constraints 

Wl 10 (Aw rw2VTA) h 
(Awlw3V~A) I\Aw1w4 

w2 AAB -,AVB 
w3 AAC ,AVC 
w4 AL(BK) (--,AV,(B K))VAwiw4 

A number of heuristics and other techniques are 
employed to improve efficiency. A simple, but inefficient, 
approach to arrow-set generation is to generate all possible 
arrow sets which connect the template, then test each for <he 
properties imposed by the accessibility relation. Altemativcly, 
we can use logic-specific heuristics to constrain this genera- 
tion. Thus for example the fact that equivalence classes of 
worlds form an integral part of the semantics in the logic 
described in [Delgrande 871 is exploited in [Groeneboer 871 to 
provide a more efficient generation component for a theorem 
prover for that system. 

Another technique is used to improve efficiency of the 
testing phase. Each potential accessibility Awiwj is examined 

once to determine what subformulae must be true at Wj so that 
constraints on accessibility from wi are not violated. The 
results are stored in a table called the table of forced values. 
For example, Table 2 gives the forced values for o. Consider 
potential accessibility Aw 2w 3. A and C are both true at w 3, 
thus B must also be true at w 3 so that Aw 2w 3 does not violate 
constraints on accessibility from w 2. 

Table 2. Forced values for o 
Arrows 1 A B C B/\C 

1 I I 
1 1 0 
1 1 1 
1 0 1 
110 0 
101 0 

In building the semi-complete structure, a-rules are 
applied whenever possible before p-rules. For the example, 
we left w 4 as is, avoiding creation of three alternative semi- 
complete structures, each differing only in the assignment of 
truth values to B and C at w 4. The fact that B A C is false at 
w 4 is retained in Table 2. 

A further efficiency-improvement technique involves 
the use of another table which gives the consequences of the 
information in the table of forced values. The table of accessi- 
bility constraints derived from Table 2 is given in Table 3. 
Aw 2~4 requires that B be true at ~4, whereas Aw 3~4 requires 
that B be false at ~4. Therefore any configuration in which 
both accessibilities occur cannot be a model. This is made 
explicit in constraint (1) of Table 3. 

1 
(I) Aw 2w 4 and Aw gw 4 cannot coexist 

1 

(2) 

~ Tab,,. Arrowconstraintsforo 

If Aw 3~ 2 exists then Aw 2~ 4 and Aw 3w 4 must coexist 
(3) If Aw 2w 3 exists then Aw gw 4 and Aw 2~ 4 must coexist 

It might at first appear that Aw 3w 2 and Aw 4w 2 are simi- 
larly incompatible, but recall that the accessibility constraints 
from w 4 contain an OR. So if Aw 3w 2 and Aw 4w 2 occur then 
AW2W4 mUSt also OCCUL: If Aw sw 2 QCCUI-S and AWJW 2 does 
not, then Aw 2w 4 must occur by the forward-connectedness 
property. Thus if Aw 3w 2 occurs then Aw 2~ 4 must co-occur, 
whether or not Aw 4w 2 is present. If Aw 3w 2 and Aw 2w 4 coex- 
ist, then Aw 3w 4 must exist by transitivity. This is made expli- 
cit in constraint (2) of Table 3. Constraint (3) is derived simi- 
larly from Table 2. 

Observe that we can derive from Table 3 the fact that no 
model of 1 o is possible since (a) Aw 3w 2 carmot occur by 
constraints (1) and (2), (b) Aw 2w 3 cannot occur by constraints 
(1) and (3), but (c) one of Aw~w~, AW 3~2 must OCCUT by 
forward-connectedness. But this is a contradiction. In the 
example then no reflexive, transitive, forward connected set of 
accessibilities is possible which would provide a model for 
1 o, and o is therefore valid. 

With regard to complexity considerations, the procedure 
is clearly exponential in the worst case. It has however been 
tested in a number of differing logics and on a set of about 25 
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test formulae of varying complexity. In nearly all cases the 
procedure appeared roughly linear in the size of a formula. 

The complexity of each of the three steps in attempting 
to find a falsifying interpretation are easily determined. Build- 
ing the semi-complete structure is clearly linear in the number 
of occurrences of the connective 3 in a formula. Since the 
semi-complete structure can have n OR’s, where n is the 
number of occurrences of 3, template generation is poten- 
tially exponential. Similarly, for each template, generating a 
configuration is potentially exponential, since one is effec- 
tively testing various possible orderings of worlds. 

6. Conclusion 
This paper has presented an extension of the semantic 

tableaux approach to theorem proving for a wide class of con- 
ditional logics; such logics contain a “variable conditional” 
3, where A *B is true if the “closest” (“simplest”, or what- 
ever) worlds in which A is true have B true also. Different 
logics are obtained as the notion of accessibility between 
worlds is altered. These logics are appropriate for represent- 
ing a wide and useful set of types of commonsense assertions, 
and have been used not only for representing default and pro- 
totypical properties, but also counterfactuals and hypotheti- 
cals, notions of obligation, etc. 

The approach consists in attempting to find a truth 
assignment which will falsify a sentence, or set of sentences. 
If successful, then a specific falsifying assignment is obtained; 
if not, then the sentence is valid. Since the method is based on 
the model theory of the systems involved, it provides an argu- 
ably more natural and intuitive approach than others based on 
the proof-theories of the systems. The approach has been pro- 
ven to exactly capture validity for this class of logics. 

The approach has been implemented (in Franz Lisp) and 
tested on a number of different logics. Various heuristics have 
been incorporated in the implementation and, while the algo- 
rithm is exponential in the worst case, it is reasonably efficient 
for a large set of test cases. The implementation breaks the 
problem into a natural sequence of steps in the attempt to find 
a falsifying assignment. Hence heuristics specific to a particu- 
lar part of the problem may be easily incorporated. Since 
accessibility relation restrictions are the last to be enforced, 
the program is easily modified to deal with different logics. 

However, only the propositional case has been imple- 
mented. The reason for this is that we are concerned only 
with that aspect of theorem proving dealing with the condi- 
tional operator. Since the Barcan formula and its inverse 
would be valid in the first-order analogue of the logics that we 
consider, first-order reasoning could be “localised” at worlds, 
and would not interact with the conditional operator; hence the 
first-order case could be trivially incorporated in the prover. 
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