
A General Proof Method for Modal Predicate Logic 
without the Barcan Formula.* 

Peter Jackson 
McDonnell Douglas Research Laboratories 

Dept. 225, P.Q. Box 516, 
St Louis, MO 63166, USA. 

Abstract. 

We present a general proof method for normal systems 
of modal predicate logic with identical inference rules 
for each such logic. Different systems are obtained by 
changing the conditions under which two formulas are 
considered complementary. The paper extends previous 
work in that we are no longer confined. to models in 
which the Barcan formula and its converse hold. This 
allows the domain of individuals to vary from world to 
world. Modifications to the original inference rules are 
given, and a semantic justification is provided. 

1 Introduction 

Modal logics are primarily concerned with the dual notions of 
necessity and possibility, but they can also provide a basis for 
reasoning about knowledge, belief, time and change, e.g. 
[Halpern & Moses, 19851. Automated reasoning in modal 
logics is made difficult, however, by (i) the absence of a 
normal form for expressions containing modal operators, and 
(ii) problems associated with possible individuals when we 
quantify into modal expressions. 

This paper generalizes the proof method for modal 
predicate logic first described in Jackson [1987] and 
axiomatized in Jackson & Reichgelt [1987]. As before, the 
inference rules are identical for each system; different systems 
differ only with respect to the definition of complementarity 
between formulas. The conditions under which we allow 
formulas in sequents to unify depend upon the properties of the 
accessibility relation in the underlying Kripke semantics. 

In the original presentation, the Barcan formula, 
(Vx)La 1 L(Vx)a, and its converse always held, so the 
domain of individuals was invariant between possible worlds. 
This is not suitable for all applications because, as we pass 
from world to world, new individuals may come into 
existence, while extant individuals may cease to exist. The 
present work releases the proof method from such a restriction. 
This is done by indexing terms with the world in which they 
are introduced, and then imposing additional constraints upon 
the unification of formulas containing modal terms. The 
intuition is that if two formulas are complementary then their 
terms denote the same individuals. 
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The outline of the paper is as follows. First, we present 
the original definition of modal unification, which preserves 
both the Bar-can formula and its converse. Then we give the 
inference rules of the original proof theory, and illustrate the 
proof method. Next we generalize to models with varying 
domains via the definition of modal term unification, and 
provide a semantic justification for the modified infcrcnce 
rules. Finally, we discuss some related work. 
2 M-Unification 

Our logical language is defined in the usual way. We use the 
connectives z> and 1, the universal quantifier t/ and the 
necessity operator L. 

In the proof theory, a formula has an index associated with 
it, representing the world in which it is true or false. Indices 
are defined as arbitrary sequences of world symbols separated 
by colons. The set of world symbols is defined as the union 
of the set of numerals (0, 1,2, . ..) called world c0~2sfa~lts, the 
set of world variables (u, v, w) , possibly with subscripts, and 
the set of skolemized world symbols which arc formed from 
new n-ary function symbols and n-tuples of variables. 

A world symbol that is not a world variable is called 
ground, as is an index whose world symbols are all ground. If 
s1:...: sn is an index, then we call sl the end symbol and sn the 
start symbol, written end(s1 :...:sn) and start(sl:...:sn) 
respectively. If sl:s2:...: sn is an index, then s2 is the parent 
symbol of sl written parent(s1). Thus indices are read from 
right to left. 

The original proof theory begins by defining a special 
form of unification that corresponds to a particular definition 
of complementarity. 

Definition 1. Two formulas are complementary iff there exists 
a world in which they have opposite truth values. 

A standard model for a system of modal propositional 
logic is a structure (W, R, V), where W is a set of worlds, R 
is a relation on W2 and V is a valuation function from atomic 
sentences to 2W. A system of modal logic can bc specified 
semantically in terms of the properties of the accessibility 
relation R that hold in all standard models of the system 
[Chellas, 19801. We make use of this fact in the definition of 
modal unification, by making the conditions under which 
formulas are complemetary relative to R. 

Definition 2. Two indexed formulas are R-complementary iff 
they are complementary under R. 
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To discover whether two indexed formulas are 
complementary prior to resolution, in addition to unifying the 
formulas we need to unify their indices, in such a way that two 
indices sl:...:sm and tl:...: tn unify iff sl and tl denote the 
same world. 

Definition 3. If s is a world symbol then the denotation of s, 
[s], is defined as follows: (i) ifs is ground, then [s] E {{w) I w 
E W), else [s] E 2w; (ii) if s, t are ground and s f t, then [s] 
f [t]; (iii) if s is not ground, then [s] = (w I <parent(s), w> E 
RI. 

Making the denotation of a ground symbol a singleton set 
instead of a possible world simplifies the presentation. 

Theorem 1. Two world symbols, s and t, denote the same 
world for some w E W iff [s] n [t] f (). 

Proofs of theorems, suppressed for reasons of space, can 
be found in Jackson & Reichgelt [1988]. World unification 
can now be defined as follows. 

Definition 4. Two world-indices i and j w-unify with 
unification (r iff: 
(i) start(i) = start(i), and 
(iia) if end(i) and end(j) are ground and end(i) = end(i), then CT = 
O,el= 
(iib) if end(i) is ground and end(j) is a world variable and 
cparent(end(j)), end(i)> E R, then cr = { end(i)/end(j)) , else 
(iic) if end(i) and end(j) are world variables and either 
<parent(end(j)), end(i)> E R or cparent(end(i)), end(i)> E R or 
parent(end(i)) w-unifies with parent(end(j)), then B = 
[ end(i)/end(i)) . 

By convention, the numeral 0 denotes the real world, and 
this will be the start symbol for all indices considered below. 

The only difficult case is (iic), where neither end symbol 
is ground, so we are dealing with two arbitrary worlds 
accessible from their respective parent worlds. If one of the 
worlds is accessible from the parent of the other, or the parents 
can be shown to be identical (by a recursive application of w- 
unification), then the two worlds can be deemed identical. 
However, the argument applies only if we can assume that 
world variables always have a non-empty denotation. Thus we 
insist that R be serial in any application of case (iic). This 
also applies when a variable occurs in the ground symbol of 
(iib), e.g. as an argument to a skolem function. 

It can now be shown that w-unification is both sound and 
complete with respect to standard models. 

Theorem 2. Two world indices sl:...:sm and tl:...:tn w-unify 
iff sl and tl denote the same world. 

Proof is by case analysis on the definition of w- 
unification. 

In the propositional case, we allow the modal unification 
(m-unification) of two formulas iff the formulas are identical 
and their indices w-unify. In the first order case, the valuation 
function V assigns to the symbols of the language and we 
induce an assignment to the complex expressions. 

Complementarity now requires that there be a unification that 
renders two formulas of opposite truth value identical in the 
same world. 

The only interesting departure from the treatment given 
above is where two indexed formulas are not allowed to m- 
unify because the substitutions derived from the formulas and 
the indices are not consistent. 

Definition 5. Two first order formulas with associated indices 
pi and qj m-unify iff (i) formulas p and cl unify with 
unification 8; (ii) indices i and j w-unify with unification O; 
(iii) 8 and CY are consistent. 
Theorem 3. Two indexed formulas m-unify under accessibility 
relation R iff they are R-complementary. 

Proof follows straightforwardly from Theorems l-2 and 
Definitions l-5. 

3 Proof Theory with Barcan Formula 

The proof theory that we define is sequent based. We define a 
sequent as S t T, where S, T are possibly empty sets of 
formulas with world indices associated with them. If S and T 
are both empty, then we call the sequent empty. The reading 
of S t T is that if all the formulas in T are true then at least 
one of the formulas in S is true. 

Let S, T, S 1, S2, Tl , T2 be sets of indexed formulas and 
So be the result of applying substitution CT to S. Let i and i’ 
be arbitrary indices, and p and q be any propositions. Let l-l(x) 
be any propositional function of x, and lI(a/x) be the result of 
uniformly substituting a for x in II. Vertical bars will delimit 
the scope of indices with respect to compound formulas, e.g. 
Ip I) qli. Then we have the following inference rules. 

Rl. If Sl, pi t- Tl and S2, pj t T2, 
and pi, pj m-unify with unification o, 
then Slo, S20 +- Tlo, T2o. 

R2. If S, Ip 2 qli t T then S, qi t pi, T. 
R3. IfStIp~qli,TthenStqi,T. 
R4. If S t Ip 2 qli, T then S, pi t T. 
RS. If S, Tpi t T then S t pi, T. 
R6. IfStTpi,TthenS,pitT. 
~7. If S t Lpi, T then S t pn:i, T where 

(i) n is a new ground world symbol if i is a ground 
index and p does not contain any free variables 
(ii) else n is f(Wj, . . . . wk, xl, . . . Xm) where f is a 
skolem function of world variables Wj, . . . . wk 
and free individual variables xl, . . . xm in p. 

R8. If S, Lpi t T then S, pw:i t- T 
where w is a new world variable. 

R9. If S t I(~X)II(x)li, T then S t III(c/x)li, T where 

RlO. 

(i) if p contains no free variables and i is a ground 
index, then c is a new constant 
(ii) else c is f(Wj, . . . . wk, xl, . . . Xm) where f is a 
skolem function of world variables wj, . . . . wk 
and free individual variables xl, . . . xm in p. 
[f S, I(vx)lI(x)li t T then S, lII(y/x)li t T 
where y is a new individual variable. 
1 
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A proof of a formula a is defined as a finite sequence of 
sequents X0, . . . . Cn where Q is the sequent t lcxl~, Cn is the 
empty sequent, and every sequent but Q has been obtained 
from one or more previous sequents by applying an inference 
rule. 

Thus every proof consists of attempting to construct a 
countermodel for the formula in question by showing that its 
negation has a model. Every successful proof discovers a 
contradiction in the putative countermodel. 

Example 1. Now consider the proof of the Barcan formula 
(BF) in the weakest normal system, K. 

1 t I(Vx)Lrr(x) r> L(Vx>II(x>l0 
2 l(Vx)Ll-I(x)l0 t R4, 1 
3 ILII(y/x)l0 t RlO, 2 
4 Imy/x)l,:o + R8, 3c . 
5 t IL(VX)rI(X)lO R3, 1 
6 + KwJxx)ll: 0 R7,5 
7 + lD@/x)l1:0 R9, 6 
8 t Rl, 4, 7 

The proof succeeds with substitution (l/w, c/y) at line 8. 
But the critical step is line 4, where we allow y to range over 
individuals in w, an arbitrary world accessible from world 0. 

Examnle 2. The proof of the converse of the Barcan formula 
(FB) is also straightforward in K: 

1 t IL(Vx)l-I(x) 3 (Vx)Ln(x)lf) 
2 IL(vx)n(x)lO t R4, 1 

3 l(Vx>rI(x>l,:o + R8, 2 
4 In(y/x)lw:o + RlO, 3 
5 t I(vx)Ln(x)lO R3, 1 
6 t ILrI(C/X)lO R9, 5 
7 + lWC/X)ll :o R7, 6 
8 t Rl, 4, 7 

The crucial step is line 7, where we effectively ‘export’ an 
individual from world 0 to world 1. 

Example 3. Consider the proof of L(Vx)Il(x) 2 
LL(Vx)ll (x) in K4. Lines 2-4 are identical with Example 2. 

5 t lLL(Vx)n(x)lO R3, 1 
6 t IL(vx)Il(x)l1: 0 R7, 5 
7 + lwmWl2: l:o R7, 6 
8 + Il3 w4l2: 1:O R9, 7 

We can only apply Rl and resolve lines 4 and 8 with 
substitution {c/y, 2/w} if R is transitive, since 2 must be 
accessible from 0, the parent of w. 

Example 4. Finally, consider the proof of L(Vx)II(x) 3 
L(Vx)LlI(x) in K4. Lines 2-4 are identical with Example 2. 

5 t IL(vx)LrI(x)lO R3, 1 

6 G I(VX)LrI(X)ll :O R7, 5 

7 t ILlI(C/X)ll:O R9, 6 

8 + lmC/X)l2:1:0 R7, 7 

Note that the sequent at line 8 in Example 4 is identical with 
the sequent at line 8 in Example 3. Yet individual, c, was 
introduced in world 2 in Example 3 and world 1 in Example 4. 
The notation of the original proof method does not permit 
such distinctions. 

4 Proof Theory without Barcan Formula 

A first order modal model is a structure (w, R, U V), 
where R is a relation on W2 as before, U is a universe of 
individuals, and V is a set of valuation functions VW, one for 
each w E W. 

If BF and FB hold, then U is common to all worlds. For 
all constants c in the language, VW(c) E U, while for all k- 
place predicates pk, V,(pk) E Uk. A ground atomic formula 
Pk(c1, . . . . ck) is then true at world w just in case (V,(cl), . . . . 
V,(Q)) E V,(pk), and V,((sJx)pk(... x . ..)) = true iff, for 
each VW that is just like VW except that it assigns some 
member of U to x, V,(pk(... x . ..)) = true. 

If BF and FB do not hold, then U is a collection of 
universes Uw, one for each w E W. Now Vw(pk) E (U+)k, 
where U+ is the union of all the sets in U. V,((\dx)pk(... x 
. ..)) = true iff, for each V’ w that is just like VW except that 
VW(x) E Uw, Vw(pk(... x . ..)) = true. 

The latter follows Kripke [1963] in all essentials. It 
interprets ‘everything has p in w’ as ‘everything in the universe 
of w has p.’ 

To generalize the proof theory, we need to complicate our 
notation. In addition to indices on a formula, we also attach 
term indices to the individual terms in a formula to indicate in 
which world the terms were introduced. This requires a more 
restrictive definition of complementarity between formulas, 
which depends on the notion of an individual in one world 
being the ‘counterpart’ of another individual in another world. 

Definition 6. Two indexed terms, ci and di, are R-counterparts 
iff they denote the same individual under accessibility relation 
R. 

Definition 7. Two indexed formulas are now R T- 
complementary iff they are R-complementary and their 
corresponding indexed terms are R-counterparts. 

Definition 8. If cs:.-.:O is an indexed term, then the denotation 
of c with respect to [s], [cls, is defined as follows. Let Us be 
(ulue U,forsomewE [s]). 
(i) If c is ground, then [cls E { (u} I u E Us]. 
(ii) If c is not ground, then [c]s = Us. 
(iii) If c, d are ground and c f d, then [c]s f [d]s. 

If c is a term, then the relationship between [cls where s is 
some world symbol and V,(c) where w is some world can be 
explicated as follows. [c]s will always be a set of individuals, 
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whereas VW(c) will always be an individual. If c is ground, 
then [c]s E ((V,(c)} I w E [s]}, else [c]s = (V’w(c) I w E [sl 
and VW is just like VW except that it assigns some u E Uw to 
4. 

Theorem 4. Two indexed terms, cs:...:O and dt:...:O, denote 
the same individual iff [clst n [dlst f (}, where [clst is the 

denotation of c with respect to [cJs n [c]t and [dlst is the 
denotation of d with respect to [d]s n [d]t. 

Such an individual will be a member of Ust = (u I u E 
Uw for some w E [s] n [t]}. We can now define term 
unification as follows. 

Definition 9. Two indexed terms, ci and dj, t-unify iff (i) 
terms c and d unify with unification 0; (ii) indices i and j w- 
unify with unification o; (iii) 6 and CF are consistent. 

Theorem 5. Two indexed terms t-unify iff they are 
counterparts. 

We also need to extend m-unification to modal term 
unification, so that two indexed formulas unify only if their 
indexed terms t-unify. 

Definition 10. Two indexed formulas pi and qj mt-unzjj iff (i) 
pi and qj m-unify with unification 0; (ii) corresponding indexed 
terms in p and q t-unify with unification o; (iii) 8 and 0 are 
consistent. 

Theorem 6. Two indexed formulas mt-unify iff they are RT- 
complementary. 

This leads to the following modification to Rl. 

Rl’. If Sl, pi t Tl and S2, pj t T2, 
and pi, pj mt-unify with unification (T, 
then Slo, S20 t Tlo, T2o. 

are 
Now we need to modify 

appropriately introduced. 
R9 and RlO, so that term 

R9’. If S t I(Vx)D(x>li, T then S t In(C/X)ili, T where 
(i) if p contains no free variables and i is a ground 
index, then c is a new constant 
(ii) else c is f(Wj, . . . . wk, xl, . . . . Xm) where f is a 
skolem function of world variables wj, . . . . wk and free 
individual variables xl, . . . . xm in p. 

RlO’. If S, l(Vx)n(x)li t T then S, ln(y/x)ili t T 
where y is a new individual variable. 

These modifications are sufficient to frustrate the critica 
step in Example 1; lines 4 and 7 are now 

4 IwY/x)“lw:o + R8, 3 

7 t IlI(c/x)~f4~ :o R9’, 6 
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The term indices fail to unify, so the proof fails. If 
domains are allowed to vary between worlds, then there is no 
reason why c shuld be in the range of y. 

The last line of Example 2 requires that we resolve 
I~(y/~)~~~l~:~ and II~(c/x)~l~:o. Here the term indices 
unify, but the substitution so derived is not consistent with 
the substitution derived from the unification of the world 
indices. Given variable domains, there is no reason to suppose 
that c will exist in an arbitrary world accessible to world 0. 

In Example 3, we can happily resolve IIII (y/~)~:~l,,o 

with llI(c/~)~:~:~ 12:1:0 under transitivity. This is as it 
should be, since y can range over individuals in any world 
accessible from 0, and 2 is accessible from 0. In Example 4, 
however, we cannot resolve II (y/~)~:~l~:o and lI~(c/x) 

1:ol2:1.o under any accessibility relation. c was introduced in 
world 1, and may not exist in world 2. The new proof method 
thus enables distinctions that were beyond the scope of the 
original method. 

Lest this seem unduly restrictive, there are still conditions 
under which we can let variables in one world range over 
individuals in another, even under the weaker semantics. 

Theorem 7. BF is true at world w if Uv is a subset of Uw for 
all v such that WRV, and FB is true at world w if Uw is a 
subset of Uv for all v such that wRv. 

The reader is invited to consult Hughes & Cresswell 
[1968, Ch.101 for the background. The obvious corrolaries are 
that BF and FB are true in a model iff they are true at every 
world in the model, and valid iff they are true in all models. 
However, we need not require BF and FB to be valid, or even 
true in a model, to apply Theorem 7 to individual worlds when 
attempting to construct a countermodel for some formula. 

Theorem 7 suggests the following amendments to R7-R8. 

R7’. If S t Lpi, T, then S +- Lpn:i, T iff 
Uparent(n) is a subset of Uw for all w such that 
<parent(n), w> E R where 
(i) if i is a ground index and p contains no free 
variables, then n is a new ground world symbol 
(ii) eke n is f(Wj, . . . . wk, xl, . . . . Xm) where f is a 
skolem function of world variables wj, . . . . wk and free 
individual variables xl, . . . . xm in p. 

R8’. If S, Lpi t T, then’ S, pw:i t T iff 
Uw is a subset of Uparent(n) for all w such that 
<parent(n), w> E R where w is a new world variable. 

Alternative modifications to R7-R8, in conjunction with 
Rl’, R2-R6 and R9’-RlO, will enable the derivation of one of 
BF and FB, but not the other. Retaining R8, but replacing R7 
with the following enables FB. 

R7”. If S t Lpi, T, then S t- Lp(n:i/i)n:i, T where 
(i) if i is a ground index and p contains no free 
variables, then n is a new ground world symbol 
(ii) eke n is f(Wj, . . . . wk, xl, . . . . Xm) where f is a 
skolem function of world variables wj, . . . . wk and free 
individual variables xl, . . . . xm in p 



(iii) p(n:i/i) is the result of uniformly substituting n:i 
for i throughout p. 

Retaining R7, but replacing R8 with the following 
enables BF. 

R8”. If S, Lpi t T, then S, p(w:i/i)w:i t T where 
(i) w is a new world variable and 
(ii) p(w:i/i) is the result of uniformly 
substituting w:i for i throughout p. 

Allowing term indices to be updated in step with world 
indices ensures that the corresponding subset relations between 
universes always hold. Thus R7” ensures that no individuals 
disappear as we pass from world to world, while R8” ensures 
that no new individuals come into existence. These rules are 
useful in applications where universes shrink or expand 
monotonically. 

5 Related Work 

Moore [1985] proposes a modal logic of knowledge which is 
essentially a first-order axiomatization of the model theory of 
S4. Variables of quantification in the metalanguage range over 
rigid designators, i.e. terms that have the same denotation in 
each possible world (p.335). Thus his semantics preserves 
both BF and FB. 

Abadi & Manna [1986] present a non-clausal resolution 
proof method for several systems of modal logic. There are 
different inference rules for different systems, so the method is 
more complex than ours. In particular, there are complicated 
rules for extracting quantifiers from within formulas. Inference 
rules can introduce new operators, unlike our rules which only 
eliminate operators. The Barcan formula and its converse 
always hold in their semantics (p.178). 

Konolige [1986, Section 3.31 takes id constants 
supplied by a ‘naming map’ to be rigid designators which 
always denote the extension of an individual’s name in the 
actual world. He then follows Kripke in extending all 
valuation functions to cover every individual in a model, so 
that neither BF nor FB is valid in his semantics. The 
treatment of quantification in his deduction model of belief is 
therefore similar in spirit to our treatment in a possible worlds 
model, if the naming map is partial. 

Unlike Konolige, we do not define the value of the 
denotation function from indexed terms to possible individuals 
as the term’s denotation in the real world. Indeed, the term 
may not have a denotation in the real world, if BF is not valid. 
Another difference is that we allow for the case where BF or 
FB are true in certain worlds without being valid. Here the 
relevant consideration is not the partial nature of the naming 
map, but the relations of set inclusion that hold among the 
universes of worlds that are accessible to each other. Finally, 
our method is more general, because we take the prevailing 
accessibility relation into account when computing 
complementarity. 

Wallen’s matrix proof method [1987] is most closely 
related to ours, in that formulas are given prefixes which stand 
for worlds in which they are true. Such prefixes do not 
contain variables, and therefore do not use skolem functions to 
encode dependencies, as we do. Dependencies are encoded in 
the order of symbols in a prefix, and modal substitutions are 
derived which render prefixes identical. Wallen’s inference 

rules do not appear to be commutative, as ours are; different 
orders of application result in different dependencies, not all of 
which may be resolved. 

Wallen defines two notions of complementarity, one for 
constant and one for varying domains. The latter encodes the 
interaction between modal substitutions and first-order 
substitutions (which render formulas identical). His 
presentation is not couched in terms of the validity of BF and 
FB, although any such encoding must invalidate them both for 
varying domains. 

In summary, this paper presents a proof method for modal 
predicate logics without the Barcan formula or its converse. 
The method is suitable for theorem proving in all fifteen 
normal systems, including applications with varying domains. 
The key technique is that of mt-unification, in which we insist 
that corresponding terms have the same denotation. The proof 
method has been fully implemented, and can be shown to be 
sound and complete [Jackson & Reichgelt, in preparation]. An 
adaptation of the method for nonmonotonic reasoning is 
described in [Jackson, 1988; Jackson & Reichgelt, in press]. 
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