
assively ss as

Michael Dixon* Johan de IUeer
Xerox PARC Computer Science Dept. Xerox PARC
3333 Coyote Hill Rd. Stanford University
Palo Alto, CA 94304

3333 Coyote Hill Rd.
Palo Alto, CA 94305 Palo Alto, CA 94304

Abstract
De Kleer’s Assumption-based Truth Maintenance System
(ATMS) is a propositional inference engine designed to
simplify the construction of problem solvers that search
complex search spaces efficiently. The ATMS has become
a key component of many problem solvers, and often the
primary consumer of computational resources. Although
considerable effort has gone into designing and optimizing
the LISP implementation, it now appears to be approaching
the performance limitations of serial architectures. In this
paper we show how the combination of a conventional serial
machine and a massively parallel processor can dramatically
speed up the ATMS algorithms, providing a very power&l
general purpose architecture for problem solving.

Introduction

Efficiently searching complex search spaces is a common
need in AI problem solvers. This efficiency has often been
achieved by introducing into the problem solver complex
control structures that implicitly represent knowledge about
the domain, but such designs are inherently error-prone
and inflexible. Instead, the Assumption-based Truth Main-
tenance System (ATMS) [3] provides a general mechanism
for controlling problem solvers by explicitly representing
the structure of the search space and the dependencies
of the reasoning steps. Since its initial development many
problem solvers have been built using the ATMS, for prob-
lem domains including qualitative physics, diagnosis, vision,
and natural language parsing [2,5,7]. However, the ATMS
achieves problem solver efficiency by propositional reason-
ing about problem solver steps, and for large problems these
operations comprise a significant amount of computation
themselves. In many cases the ATMS can seriously tax the
performance of the Lisp Machines on which the original
implementation runs.

Massively parallel computers provide orders of magni-
tude more computational power than serial machines by
connecting thousands or millions of processors with some
form of communication network. To make such a machine
possible the processors must be kept very simple; typically
they operate from a shared instruction stream and provide
a very limited instruction set. This leads to the major
difficulty with massive parallelism: making good use of such
a machine requires structuring the task to be distributed
among these processors in such a way that the limited
computational power and communication available at each
processor are well matched to the operations that need to
be performed. Where such structure can be found, it often

ISupported in p art by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and by a grant from the
System Development Foundation.

involves very different representations and algorithms from
those used on conventional machines.

In this paper we show how the propositional reasoning
performed by the ATMS is well suited to massively parallel
hardware. By implementing the ATMS on one such ma-
chine, the Connection Machine built by Thinking Machines
Corporation, we can perform ATMS operations orders of
magnitude faster than on the Lisp Machine. Moreover, since
this implementation provides a superset of the functionality
of the original implementation, existing problem solvers
built using the earlier ATMS receive these benefits with no
further changes.

We begin by laying out the functions the ATMS performs
and their role in problem solving.* We then give a brief
description of the Connection Machine, and sketch a series
of algorithms for implementing the ATMS on it. We present
some analysis of the behavior of these algorithms, and close
with a few experimental results and some ideas for further
exploration .

We will use the following simple search problem to illustrate
definitions and algorithms throughout the paper. This is
not a very difficult problem and could be solved by much
simpler techniques than the ATMS, but will suffice to show
how it is used and how it works. At the end of the paper
we will say a bit about how the ATMS performs on much
harder problems.

Mr. X must meet with Art, Betty, and Chris this
afternoon. There are three opportunities for meetings:
at l:OO, 2:00, and 3:O0. He must meet with everyone
at least once. Art can’t come at 2:O0. Mr. X would like
to

1. Meet with Art alone.
2. Meet with Art before any meeting with Chris.
3. Meet with Betty before any meeting with Chris.

Which of these are possible? Can he arrange that all
of them happen? Can he arrange them all without any
meetings at 3:00?

Assumption-based Tru aintenance
The ATMS is a general search-control mechanism that can
be coupled with domain-specific problem solvers to solve
a wide range of problems. Problem solving becomes a

*Although the ATMS has been described in earlier papers by de
Kleer [3,4], our development of the parallel ATMS led us recog-
nize that some aspects ofthat specification reflected the particular
representations used by the serial implementation and were thus
inadequate to describe a different implementation. We will note
the major differences in footnotes.

Dixon and de KIeer 199

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

cooperative process: first, the problem solver determines
the choices to be made and their immediate consequences,
and transmits these to the ATMS. Then the ATMS determines
which combinations of choices are consistent and which
conclusions they lead to. On the basis of these results the
problem solver explores additional consequences of those
conclusions, possibly introducing new choices. This cycle
repeats until a set of choices is found to satisfy the goal or
all combinations are proven contradictory.

The ATMS represents problem states with assumptionsand
nodes. Assumptions represent the primitive binary choices;
in our example there are nine assumptions, corresponding
to the propositions “Mr. X meets with name at time”, where
name is one of Art, Betty, or Chris, and time is one of 1:00,
2:00, or 3:O0. We will refer to the assumptions as al, aa,
u3 (for meeting with Art at l:OO, 2:00, and 3:00), bl, ba,
b3, cl, ca, and ca. Nodes, on the other hand, correspond to
propositions whose truth is dependent on the truth of the
assumptions; in our example “Mr. X meets with Art alone”,
“Mr. X meets with Art before any meeting with Chris”, and
“Mr. X meets with Betty before any meeting with Chris”
are all represented by nodes, which we will refer to as 121,
n2, and ng respectively.

Dependency relationships among assumptions and nodes
are determined by the problem solver and presented to
the ATMS as just@cations. Justifications represent these
dependencies as propositional implications in one of two
forms:

I1 A 12 A . . . A 6, t n
I1 A I2 A . . . A I, --tl

where n is a node, I represents a contradiction, and the
Zi are nodes, assumptions, or negated assumptions.* The
first form indicates a sufficient condition for the truth of a
node, the second indicates an inconsistency.

Thus, for example, we record that Mr. X must meet with
Chris at least once as

-cl A 7c2 A -c3 +I CJll
(1~1 denotes the negation of cl). We record that if Mr. X
meets with Betty at 2:00, without meeting Chris at 1:OO or
2:00, he will have met with Betty before any meeting with
Chris as

b2 A ~1 A -q + n3 LJ21
We also would like to know if nl, n2, and n3 can be satisfied
together; to do this we introduce another node n4, and the
justification

n1 A n2 A n3 -+ n4 [J31
In order to appreciate both the strengths and the weak-

nesses of this approach it is important to understand the
difference in perspective between the problem solver and the
ATMS. To the problem solver, nodes and assumptions rep-
resent propositions in the problem domain; their structure
is used by domain-specific inference rules and the results of

*The sequential ATMS does not implement all instances ofnegated
assumptions; our current implementation handles the general
case. Furthermore, this implementation is complete without the
hyper-resolution rule used by the previous implementation.

inference are recorded as justifications. To the ATMS, how-
ever, assumptions and nodes are atomic; the only relations
among them are the justifications the problem solver has
reported so far. This makes the ATMS applicable to a wide
range of domains, but requires that all the relevant domain
structure be represented with justifications.

To specify the behavior of the ATMS, we need some
definitions:

B, The assumption space is the boolean n-space defined by
the set of all assumptions. Each point in the assumption
space corresponds to some total assignment of truth
values to assumptions. We also look at subspaces of
the assumption space, which correspond to partial
assignments.

e A point in the assumption space supports a node if the
truth values of assumptions at that point together with
the justifications logically entail the node’s truth.

Q A point in the assumption space is consistent if the truth
values of assumptions at that point are consistent with
the justifications; if they entail a contradiction, that
point is inconsistent.

m The extension of a node is the subset of the assumption
space that supports that node, excluding inconsistent
points (which support all nodes).*

B A node is in if it is supported by at least one consistent
point in the assumption space - i.e., its extension is
non-empty. Otherwise, of course, the node is out.

In our example the assumption space has 29 or 512
points; given just the above justifications Jl and J2, n;s
extension consists of the 32 points at which ba and ca are
True, and cl and c2 are False.

The ATMS performs four basic operations for the problem
solver:

e create a new assumption
8 create a new node
o record a justification
e return a node’s extension
In addition to recording the assumptions, nodes, and

justifications, the ATMS maintains an efficient representation
of each node’s current extension, and of the set of points
discovered to be inconsistent. Quickly updating these
representations after each operation is the key to any ATMS
implementation. Creating a node and returning an extension
require no changes. Creating an assumption doubles the
assumption space (by adding another dimension), and hence
doubles the extensions of each node correspondingly.

Adding a justification can change the extensions in very
complex ways. Each justification can be thought of as a
constraint on the extensions of the antecedent and conse-
quent nodes: the extension of the consequent must include
the intersection of the extensions of its antecedents (for
the purposes of this discussion we take the extension of an
assumption to be all consistent points at which it is assigned
True, the extension of its negation to be the consistent

*The sequential implementation was formulated in terms of Labels
and environments, a particular representation of extensions.

200 Automated Reasoning

points at which it is assigned False, and the extension of I
to be the set of all currently inconsistent points). If there
is no circularity in the justifications (i.e. the nodes can be
ordered so that no justification of a node includes nodes
that come after it), the extension of each node is just the
union over all its justifications of these constraints; if the
justifications are circular the ATMS must find the set of
minimal extensions that satisfy the constraints.

To compute the new extensions the ATMS uses a form
of constraint relaxation. When a justification is added, a
check is made to see if the extension of the consequent
already includes the intersection of the extensions of its
antecedents. If it does not, the consequent’s extension is
updated, and each justification in which it is an antecedent
must now be recursively checked. These changes may
propagate arbitrarily far, but it is easy to show that they
must terminate. This algorithm is sketched in Figure 1
below.

record-justification(&) :

;+:?I -
the set of all justifications

t -
while i # 0 do

-justifications to be processed

choose j E q
4+ 8--b?
update-extensionb]
if node-extension-chanded then

q +- q U G’ E Jlconseq(j) E ante(f)}

update-extensionb) :
node-extension-charged + False
e+ n extension(a)

aE ante(i)

if conseqb) =I theln
record-inconsistency(e)

elseif e g extension(conseq(j) then
node-extension-chan&ed + True
extension(conseq(y’)) +-- extension(conseq(j)) U e

Figure 1. Computing extensions by constraint relaxation.

Suppose in our example Jl and J3 have been recorded
so far. The extensions of all nodes are currently empty
(since n4 is the only one with a justification, and all of its
antecedents have empty extensions). The extension of I
is the 64 points with cl, ca, and ca False. If J2 is then
recorded, the intersection of its antecedents will be the 64
points at which b2 is True and cl and ca are False, less the
32 of those which are inconsistent. These points are added
to nis extension. We next reexamine J3, to see if more
points now belong in nds extension (none do).

The operations on extensions are thus:
o compute the intersection of the antecedents’ extensions
o determine whether the result is subsumed by the current

extension of the consequent
B) if it is not, compute the new extension ofthe consequent

from the union of the old extension with the intersection
of the antecedents’ extensions

B remove a set of points that has been discovered to be
inconsistent from the extension of each node

b double the extension of every node when a new
assumption is added

Choosing a representation for extensions that allows these
large set operations to be performed as quickly as possible is
the key to building a fast ATMS. The representation used by
the serial implementation was too complex and irregular to
be efficiently manipulated by Connection Machine; in the
next section we will briefly describe the capabilities of this
hardware that must be taken into account in designing a
new representation, and in the following section we describe
the representation we developed.

The Connection e
The Connection Machine (CM) is a massively parallel pro-
cessor designed and manufactured by Thinking Machines
Corporation [6]. It consists of from 16K to 64K processors,
each with 4K to 64K bits of memory. In addition, each
processor can emulate several processors, allowing for ex-
ample 256K virtual processors on a 64K machine, each with
one quarter the memory of a real processor. The processors
execute from a single instruction stream produced by a host
computer (a Symbol& Lisp Machine or a DEC Vax). The
basic operations are

a general bit-field combine operation
a very low overhead bit move operation between
adjacent processors (for the purposes of this operation
the processors are on a two dimensional grid, each
adjacent to four others)
a higher-overhead general bit move operation from
each processor to any other processor (destination
determined by a memory field), implemented by special
purpose routing hardware
an operation that ORs together one bit from each
processor

tPlthough all processors share the instruction stream, not
all need execute every instruction. Based on the results
of previous computations processors may be individually
deactivated and later reactivated, effectively skipping the
intervening instructions.

To use the CM a program is run on the host machine that
generates a sequence of machine-language type instructions
(the instruction set is called PARIS). Some parallel exten-
sions of conventional languages (LISP, C, and FORTRAN) that
compile to PARIS-emitting code have been implemented;
alternatively programs can be written in conventional lan-
guages with explicit calls to emit PARIS instructions as they
run (this is how the ATMS is implemented). The CM
is treated as a large active memory, where each memory
location can store a value and perform simple operations
on it.

The CM design is intended to be scalable, so that larger
machines can be readily built to handle larger problems. Cost
is, however, non-linear due to communications complexity
(both router size and wire lengths grow nonlinearly).

Dixon and de Kleer 201

Representing Extensions on the CM update-extension(antes -+ conseq) :

We present two representations for extensions on the CM
and sketch the necessary algorithms. In the first (which we
refer to as algorithm A-l) we associate one processor with
each consistent point in assumption space. Each of these
processors records its assignment of truth values with one bit
per assumption; the remaining processors are temporarily
deactivated. Node extensions are represented as a subset
of the consistent points, by assigning an additional bit
per processor for each node to record whether this point
supports the node. Computing intersections and unions
and testing subsumption are now single bit operations done
in parallel by each active processor, and are thus extremely
fast. The extension of a node can be returned to the host
machine by retrieving the truth value assignments from each
active processor that has the appropriate bit set.

Note that the extension of I is only implicitly represented
as the complement of the active processors; when points
are added to it their processors are deactivated. Creating a
new assumption requires a forking operation that doubles
the number of active processors: each active processor is
matched with an inactive processor, which is then activated.
The new processors are initialized from the old ones,
and the new assumption is assigned True in each new
processor and False in each old one. Each of these steps
can be done in parallel by all the processors involved. (The
processor allocation step is a standard CM operation; several
algorithms are known [63. Our current implementation uses
a very simple rendezvous algorithm with minimal memory
requirements, relying heavily on the router.)

The algorithms for updating extensions and creating a
new assumption in this representation scheme are sketched
in Figure 2 below. Underlined variables are stored per
processor, and operations on them are performed in parallel
in each active processor. Other operations are just performed
in the host machine. n is an array in each processor of
truth values indexed by assumptions and nodes; other per-
processor variables are temporaries. The fimctionfind$+ee()
returns for each processor the address of a differenae
processor, and the notation k]~ + exp is used to indicate
that the value of exp is transmitted= ~BI in processor
l (using the routeT The function new-position allocates
a currently unused position in the E array. Finally, the
function any(exp) returns True if exp is True in any active
processor (using the global-OR op=tion), the procedure
actipate(& makes p active, and the procedure deactipate()
deactivates every p?ocessor on which it runs.

If we apply this algorithm to our example and begin by
creating all nine assumptions, we will have 512 processors.
Processing Jl at that point will kill off 64 of them. Processing
J2 will then mark 32 of the remaining processors as
supporting 123.

As problem solving proceeds, the size of the active proces-
sor set continually changes, doubling with the introduction
of new assumptions and decreasing as contradictions are dis-
covered. Since the peak processor requirements determine

node-extension-charged +- False
_e - True
for a E antes do

,e+UUYM
if conseq =I then

if _e then deactivate0
elseif an& A ~TLJconseq]) then

node-extension-chan.ed t Trtie
mconseq] - TJJconseq] V ,e

new-aflumption() :
a + new-position()

activate(child) --

Figure 2. Parts of Algorithm A- 1.

whether or not a problem will run on a particular machine,
success may be very sensitive to the order in which these
operations are performed. (Creating all the assumptions
first is the worst possible order.)

Our second representation scheme (algorithm A-2) re-
duces processor requirements by delaying forking as long
as possible, on a per-processor basis. This increases the
chances both that contradictions discovered elsewhere will
make more processors available, and that a contradiction
will be discovered in other choices this processor has already
made, thereby eliminating the need to fork at all.

To do this we allow each active processor to represent
a subspace of the assumption space, by an assignment to
each assumption of True, False, or Both (using two bits
per assumption rather than one). The processor subspaces
are disjoint, and together include all consistent points (in
the worst case this representation scheme degenerates to
that of A-l). Node extensions are represented as a union of
these subspaces, again with one bit per processor. Creating
a new assumption now requires no immediate forking; each
active processor merely assigns the new assumption Both.
Node extensions are retrieved as before; the subspaces are
easily expanded to individual points if desired.

Computing intersections, however, becomes more com-
plex: processors in which the result depends on one or
more assumptions currently assigned Both must fork be-
fore the result can be represented. Consider our example
again. After creating nine assumptions we still have only
one processor allocated, with every assumption assigned
Both (thus representing all 512 points in the assumption
space). After processing Jl this processor would fork into
three processors, with assignments

cl: True c2: Both c3: Both (256 points)
cl: False ca: True ca: Both , (128 points)
cl: False ca: False ca: True (64 points)

202 Automated Reasoning

(note how these three subspaces partition the set of consis-
tent points). After processing J2 the last of these would again
fork, one half assigning ba False and the other assigning b3
True and supporting n3.

To process all 14 justifications in our example algorithm
A-2 requires only 35 processors, resulting in six points in
nh’s extension (each corresponding to a schedule meeting
all three conditions). Adding the justification

n4 A -a3 A Tbg A ~23 ---f n5

gives n5 an empty extension, indicating that there is no way
to avoid a meeting at 3:O0.

ow rocessors Do We Need?
Two obvious questions at this point are “how many pro-
cessors will these algorithms require?” and “could we use
fewer?” Although the CM has a large number of processors,
it is easy to see that these algorithms could need exponen-
tially many processors in the worst case (indeed, such an
explosion is almost certainly unavoidable: propositional sat-
isfiability, an NP-complete problem [11, is trivially encoded
with one assumption for each variable and one justification
for each clause).

We can understand the behavior of these algorithms by
noting their correspondence with a very familiar class of
algorithms: chronological backtracking. Consider first the
following algorithm (B-l) for finding all good points in
assumption space, and for each point the nodes it supports.
This algorithm processes a sequence of ATMS operations,
occasionally recording its state at backtrack points and later
reverting to them to reprocess the succeeding operations.
The operations are processed as follows:
create assumption: Assign the assumption the truth value

True, and record this as a backtrack point. On back-
tracking, assign False and try again.

create node: Mark this node unsupported.
record justikation: If the antecedent f%ls because of an

assumption’s truth value, discard the justification. If
it fails because of a currently unsupported node, save
it with the node for future reconsideration. If the
antecedent of a I justification holds, backtrack. If the
antecedent of a node justification holds, mark that node
supported. If it was previously unsupported, reexamine
any justifications saved with it.

When all operations have been processed, a good point in
assumption space has been found and the nodes it supports
determined. This solution is recorded and the algorithm
backtracks to find more. When backtracking is exhausted,
all solutions have been found.

The correspondence between B - 1 and A- 1 is very straight-
forward. The parallel algorithm processes each operation
once, using multiple processors, while the backtracking
algorithm may process each operation many times. Fur-
thermore, the number of processors alive when the parallel
algorithm begins each operation is exactly the number of
times the backtracking algorithm processes that operation,
as can be proven through a simple induction argument. A

simple corollary of this is that the processor complexity
A-l is the same as the time complexity of B -1.

of

Algorithm B-2, the corresponding backtracker for A-
2, is like B-l except that choice points are delayed
until a justification depending on them is encountered.
The same execution-frequency-to-processor-count corre-
spondence holds between these algorithms as between B-l
and A-l.

Although chronological backtracking is used to solve
many problems, more powerful techniques are known. The
correspondences between chronological backtracking and
our parallel algorithms suggest reexamining these tech-
niques in the context of the parallel ATMS. First, note
that there are some important differences between parallel
and backtracking algorithms in the consequences of such
optimizations. Backtracking programs always benefit when
a branch of the search tree is eliminated, but the time
required by the additional reasoning needed to determine
that it can eliminated must be weighed against the time
saved by not searching it. The parallel algorithms, on the
other hand, receive no benefit if there are already enough
processors available, but when the reduction is needed the
time spent is clearly worthwhile. (Note that these tradeoffs
are further complicated when we introduce sequentializa-
tion techniques that process the search space in pieces
determined by the number of processors available, but we
will not consider such techniques in this paper. Ultimately
any parallel algorithm will have to fall back on such a strategy
to deal with arbitrarily large problems, but the complexities
and trade-offs need much more investigation).

One class of improvements (dependency-directed back-
tracking) uses information about the contradiction discov-
ered on one branch to cut off other branches. These are not
applicable, since the parallel ATMS is exploring all branches
in parallel; when it discovers a contradiction in one branch
it will simultaneously discover it in all other branches to
which it applies.

More applicable, however, are techniques for changing
the order in which justifications are considered. Based
on the ideas of boolean constraint propagation [9] we
can construct algorithm B-3. Rather than processing the
justifications in the order presented, B-3 searches first for
justifications that will lead to a contradiction or force
the value of an assumption (to avoid a contradiction).
Justifications that require forking are delayed as long as
possible. On the parallel ATMS we have a corresponding
algorithm, A-3, that can broadcast justifications with forking
inhibited, so that those processors that would deactivate or
force an assumption’s truth value do so, while those that
would fork do nothing. There is no need to keep track
of which processors were blocked from forking; all that is
necessary is to note that some were and to record that that
justification will have to be rebroadcast at some later time.
There are limitations, however: all justifications must be
completely processed before we can correctly compute a
node’s extension.

Dixon and de Kleer 203

Kesults and Prospects

We have implemented a version of A-3 that only resorts
to delaying justifications when it runs out of processors,
and have run several tests on the Connection Machine,
including some large qualitative reasoning programs in
which performance limitations of the serial ATMS had
been a severe bottleneck. The results are encouraging: as
expected, the parallel ATMS runs very quickly. The effective
speedup for a given problem depends on how much of the
problem solver’s time the ATMS consumes. Placing thirteen
non-attacking queens on a thirteen by thirteen chess board,
a problem requiring minimal problem-solver computation
and a lot of ATMS computation, ran seventy times faster on
a 16I< CM than the fastest sequential implementation on
a Symbolics Lisp Machine (60 seconds vs. 4235 seconds,
to find 73,712 solutions) [8]. We quickly discovered,
however, that even hundreds of thousands of processors
are insufficient for many problems, requiring that some
combination of parallel and sequential search be used. We
have had some success in our initial efforts in this direction,
but there is much work still to be done here.

While the CM is a near-ideal machine for developing this
sort of algorithm, it is natural to ask how much of the
machine is needed; if it could be simplified, more processors
could be built for the same cost. As mentioned earlier, the
major expense in the current CM design is the complex
router system. Although the router makes implementing
the parallel processor allocation very straightforward, silicon
may be better spent on more processors. One possibility
would be to simply connect the processors in an m-
dimensional grid (like the CM NEWS grid, but possibly with
more dimensions) and then use some form of expanding-
wave allocation [6] to match up processors. The memory
per processor ratio should also be examined; the current
CM arrangement gives each processor considerably more
memory than it is likely to need for these algorithms.

Also note that high performance communication through-
out the processor pool is not required; although all pro-
cessors must be able to find another free processor quickly,
they never need to communicate with other active pro-
cessors. In fact, a single host could use several CMs with
the assumption space divided among them, each allocating
from their own pool of processors. Only when one machine
became saturated would it be necessary to shift information
to another; load-balancing heuristics would help minimize
the frequency with which this needed to be done.

Conclusions
Making explicit the propositional reasoning behind problem
solvers can make them simpler, more flexible, and more
efficient. By exploiting recent developments in hardware
design we can minimize or eliminate the performance
penalties that have sometimes offset these benefits in the
past. The ATMS appears to match the architecture of
the Connection Machine particularly well: the serial host
machine performs the more complex but local domain

inference steps, while the Connection Machine performs
the simpler but global operations necessary to determine
consistency and support.

The development of the parallel ATMS has also dramati-
cally demonstrated the degree to which working around the
performance limitations of serial machines has complicated
otherwise simple algorithms. In order to obtain adequate
performance the Lisp Machine implementation uses com-
plex representations and elaborately crafted algorithms. Its
development and tuning has taken over a year, and the
resulting code is about sixty pages long. The Connection
Machine algorithms are much simpler, require three pages
of code, and took about a week to develop. In doing so we
were also led to a clearer analysis of the ATMS, unencum-
bered by the complexities of the serial implementation’s
representation.

Acknowledgements
We thank Thinking Machines for providing us with the fa-
cilities to develop and test the algorithms we have described,
and in particular Craig Stanfill both for his invaluable assis-
tance in using the Connection Machine and for discussions
of the implementation. John Lamping pointed out the
correspondence with backtracking, and Jim des Rivieres
and Susan Newman provided very helpful comments on an
early draft.

References

[l] Cook, S., The Complexity of Theorem Proving Proce-
dures. Proceediqgs of the Third Annual ACMSymposium
on Theory of Computing, 1971.

[2] D’Ambrosio, B., A Hybrid Approach to Uncertainty.
International Journal of Approximate Reasonin., to
appear.

[3] de Kleer, J., An Assumption-based TMS. Artijcial
Intel&ence 28 127-162, 1986.

[4] de Kleer, J., Extending the ATMS. Artificial InteZZiJence
28 163-196,1986.-

[51 Forbus, K. D., The Qualitative Process Engine. Uni-
versity of Illinois Technical Report UIUCDCS-R-86-
1288, 1986.

WI

[71

1

P31
[91

Hillis, W. Daniel, The Connection Machine. MIT Press,
Cambridge, Massachusetts, 1985
Morris, P. H., and Nado, R. A., Representing Actions
with an Assumption-based Truth Maintenance System.
Proceedings of the National Conference on Artificial
Intellz&ence, Seattle, July 1987.

Stanfill, C., Personal communication.
Zabih, R., and McAllester, D., A Rearrangement Search
Strategy for Determining Propositional Satisfiability.
Proceedings of the National Conference on Artijcial
Inte&ence, St. Paul, August 1988.

204 Automated Reasoning

