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Abstract 
De Kleer’s Assumption-based Truth Maintenance System 
(ATMS) is a propositional inference engine designed to 
simplify the construction of problem solvers that search 
complex search spaces efficiently. The ATMS has become 
a key component of many problem solvers, and often the 
primary consumer of computational resources. Although 
considerable effort has gone into designing and optimizing 
the LISP implementation, it now appears to be approaching 
the performance limitations of serial architectures. In this 
paper we show how the combination of a conventional serial 
machine and a massively parallel processor can dramatically 
speed up the ATMS algorithms, providing a very power&l 
general purpose architecture for problem solving. 

Introduction 

Efficiently searching complex search spaces is a common 
need in AI problem solvers. This efficiency has often been 
achieved by introducing into the problem solver complex 
control structures that implicitly represent knowledge about 
the domain, but such designs are inherently error-prone 
and inflexible. Instead, the Assumption-based Truth Main- 
tenance System (ATMS) [3] provides a general mechanism 
for controlling problem solvers by explicitly representing 
the structure of the search space and the dependencies 
of the reasoning steps. Since its initial development many 
problem solvers have been built using the ATMS, for prob- 
lem domains including qualitative physics, diagnosis, vision, 
and natural language parsing [2,5,7]. However, the ATMS 
achieves problem solver efficiency by propositional reason- 
ing about problem solver steps, and for large problems these 
operations comprise a significant amount of computation 
themselves. In many cases the ATMS can seriously tax the 
performance of the Lisp Machines on which the original 
implementation runs. 

Massively parallel computers provide orders of magni- 
tude more computational power than serial machines by 
connecting thousands or millions of processors with some 
form of communication network. To make such a machine 
possible the processors must be kept very simple; typically 
they operate from a shared instruction stream and provide 
a very limited instruction set. This leads to the major 
difficulty with massive parallelism: making good use of such 
a machine requires structuring the task to be distributed 
among these processors in such a way that the limited 
computational power and communication available at each 
processor are well matched to the operations that need to 
be performed. Where such structure can be found, it often 
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involves very different representations and algorithms from 
those used on conventional machines. 

In this paper we show how the propositional reasoning 
performed by the ATMS is well suited to massively parallel 
hardware. By implementing the ATMS on one such ma- 
chine, the Connection Machine built by Thinking Machines 
Corporation, we can perform ATMS operations orders of 
magnitude faster than on the Lisp Machine. Moreover, since 
this implementation provides a superset of the functionality 
of the original implementation, existing problem solvers 
built using the earlier ATMS receive these benefits with no 
further changes. 

We begin by laying out the functions the ATMS performs 
and their role in problem solving.* We then give a brief 
description of the Connection Machine, and sketch a series 
of algorithms for implementing the ATMS on it. We present 
some analysis of the behavior of these algorithms, and close 
with a few experimental results and some ideas for further 
exploration . 

We will use the following simple search problem to illustrate 
definitions and algorithms throughout the paper. This is 
not a very difficult problem and could be solved by much 
simpler techniques than the ATMS, but will suffice to show 
how it is used and how it works. At the end of the paper 
we will say a bit about how the ATMS performs on much 
harder problems. 

Mr. X must meet with Art, Betty, and Chris this 
afternoon. There are three opportunities for meetings: 
at l:OO, 2:00, and 3:O0. He must meet with everyone 
at least once. Art can’t come at 2:O0. Mr. X would like 
to 

1. Meet with Art alone. 
2. Meet with Art before any meeting with Chris. 
3. Meet with Betty before any meeting with Chris. 

Which of these are possible? Can he arrange that all 
of them happen? Can he arrange them all without any 
meetings at 3:00? 

Assumption-based Tru aintenance 
The ATMS is a general search-control mechanism that can 
be coupled with domain-specific problem solvers to solve 
a wide range of problems. Problem solving becomes a 

*Although the ATMS has been described in earlier papers by de 
Kleer [ 3,4], our development of the parallel ATMS led us recog- 
nize that some aspects ofthat specification reflected the particular 
representations used by the serial implementation and were thus 
inadequate to describe a different implementation. We will note 
the major differences in footnotes. 
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cooperative process: first, the problem solver determines 
the choices to be made and their immediate consequences, 
and transmits these to the ATMS. Then the ATMS determines 
which combinations of choices are consistent and which 
conclusions they lead to. On the basis of these results the 
problem solver explores additional consequences of those 
conclusions, possibly introducing new choices. This cycle 
repeats until a set of choices is found to satisfy the goal or 
all combinations are proven contradictory. 

The ATMS represents problem states with assumptionsand 
nodes. Assumptions represent the primitive binary choices; 
in our example there are nine assumptions, corresponding 
to the propositions “Mr. X meets with name at time”, where 
name is one of Art, Betty, or Chris, and time is one of 1:00, 
2:00, or 3:O0. We will refer to the assumptions as al, aa, 
u3 (for meeting with Art at l:OO, 2:00, and 3:00), bl, ba, 
b3, cl, ca, and ca. Nodes, on the other hand, correspond to 
propositions whose truth is dependent on the truth of the 
assumptions; in our example “Mr. X meets with Art alone”, 
“Mr. X meets with Art before any meeting with Chris”, and 
“Mr. X meets with Betty before any meeting with Chris” 
are all represented by nodes, which we will refer to as 121, 
n2, and ng respectively. 

Dependency relationships among assumptions and nodes 
are determined by the problem solver and presented to 
the ATMS as just@cations. Justifications represent these 
dependencies as propositional implications in one of two 
forms: 

I1 A 12 A . . . A 6, t n 
I1 A I2 A . . . A I, --tl 

where n is a node, I represents a contradiction, and the 
Zi are nodes, assumptions, or negated assumptions.* The 
first form indicates a sufficient condition for the truth of a 
node, the second indicates an inconsistency. 

Thus, for example, we record that Mr. X must meet with 
Chris at least once as 

-cl A 7c2 A -c3 +I CJll 
(1~1 denotes the negation of cl). We record that if Mr. X 
meets with Betty at 2:00, without meeting Chris at 1:OO or 
2:00, he will have met with Betty before any meeting with 
Chris as 

b2 A ~1 A -q + n3 LJ21 
We also would like to know if nl, n2, and n3 can be satisfied 
together; to do this we introduce another node n4, and the 
justification 

n1 A n2 A n3 -+ n4 [J31 
In order to appreciate both the strengths and the weak- 

nesses of this approach it is important to understand the 
difference in perspective between the problem solver and the 
ATMS. To the problem solver, nodes and assumptions rep- 
resent propositions in the problem domain; their structure 
is used by domain-specific inference rules and the results of 

*The sequential ATMS does not implement all instances ofnegated 
assumptions; our current implementation handles the general 
case. Furthermore, this implementation is complete without the 
hyper-resolution rule used by the previous implementation. 

inference are recorded as justifications. To the ATMS, how- 
ever, assumptions and nodes are atomic; the only relations 
among them are the justifications the problem solver has 
reported so far. This makes the ATMS applicable to a wide 
range of domains, but requires that all the relevant domain 
structure be represented with justifications. 

To specify the behavior of the ATMS, we need some 
definitions: 

B, The assumption space is the boolean n-space defined by 
the set of all assumptions. Each point in the assumption 
space corresponds to some total assignment of truth 
values to assumptions. We also look at subspaces of 
the assumption space, which correspond to partial 
assignments. 

e A point in the assumption space supports a node if the 
truth values of assumptions at that point together with 
the justifications logically entail the node’s truth. 

Q A point in the assumption space is consistent if the truth 
values of assumptions at that point are consistent with 
the justifications; if they entail a contradiction, that 
point is inconsistent. 

m The extension of a node is the subset of the assumption 
space that supports that node, excluding inconsistent 
points (which support all nodes).* 

B A node is in if it is supported by at least one consistent 
point in the assumption space - i.e., its extension is 
non-empty. Otherwise, of course, the node is out. 

In our example the assumption space has 29 or 512 
points; given just the above justifications Jl and J2, n;s 
extension consists of the 32 points at which ba and ca are 
True, and cl and c2 are False. 

The ATMS performs four basic operations for the problem 
solver: 

e create a new assumption 
8 create a new node 
o record a justification 
e return a node’s extension 
In addition to recording the assumptions, nodes, and 

justifications, the ATMS maintains an efficient representation 
of each node’s current extension, and of the set of points 
discovered to be inconsistent. Quickly updating these 
representations after each operation is the key to any ATMS 
implementation. Creating a node and returning an extension 
require no changes. Creating an assumption doubles the 
assumption space (by adding another dimension), and hence 
doubles the extensions of each node correspondingly. 

Adding a justification can change the extensions in very 
complex ways. Each justification can be thought of as a 
constraint on the extensions of the antecedent and conse- 
quent nodes: the extension of the consequent must include 
the intersection of the extensions of its antecedents (for 
the purposes of this discussion we take the extension of an 
assumption to be all consistent points at which it is assigned 
True, the extension of its negation to be the consistent 

*The sequential implementation was formulated in terms of Labels 
and environments, a particular representation of extensions. 
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points at which it is assigned False, and the extension of I 
to be the set of all currently inconsistent points). If there 
is no circularity in the justifications (i.e. the nodes can be 
ordered so that no justification of a node includes nodes 
that come after it), the extension of each node is just the 
union over all its justifications of these constraints; if the 
justifications are circular the ATMS must find the set of 
minimal extensions that satisfy the constraints. 

To compute the new extensions the ATMS uses a form 
of constraint relaxation. When a justification is added, a 
check is made to see if the extension of the consequent 
already includes the intersection of the extensions of its 
antecedents. If it does not, the consequent’s extension is 
updated, and each justification in which it is an antecedent 
must now be recursively checked. These changes may 
propagate arbitrarily far, but it is easy to show that they 
must terminate. This algorithm is sketched in Figure 1 
below. 

record-justification(&) : 

;+:?I - 
the set of all justifications 

t - 
while i # 0 do 

-justifications to be processed 

choose j E q 
4+ 8--b? 
update-extensionb] 
if node-extension-chanded then 

q +- q U G’ E Jlconseq(j) E ante(f)} 

update-extensionb) : 
node-extension-charged + False 
e+ n extension(a) 

aE ante(i) 

if conseqb) =I theln 
record-inconsistency(e) 

elseif e g extension( conseq(j) then 
node-extension-chan&ed + True 
extension( conseq(y’)) +-- extension(conseq(j)) U e 

Figure 1. Computing extensions by constraint relaxation. 

Suppose in our example Jl and J3 have been recorded 
so far. The extensions of all nodes are currently empty 
(since n4 is the only one with a justification, and all of its 
antecedents have empty extensions). The extension of I 
is the 64 points with cl, ca, and ca False. If J2 is then 
recorded, the intersection of its antecedents will be the 64 
points at which b2 is True and cl and ca are False, less the 
32 of those which are inconsistent. These points are added 
to nis extension. We next reexamine J3, to see if more 
points now belong in nds extension (none do). 

The operations on extensions are thus: 
o compute the intersection of the antecedents’ extensions 
o determine whether the result is subsumed by the current 

extension of the consequent 
B) if it is not, compute the new extension ofthe consequent 

from the union of the old extension with the intersection 
of the antecedents’ extensions 

B remove a set of points that has been discovered to be 
inconsistent from the extension of each node 

b double the extension of every node when a new 
assumption is added 

Choosing a representation for extensions that allows these 
large set operations to be performed as quickly as possible is 
the key to building a fast ATMS. The representation used by 
the serial implementation was too complex and irregular to 
be efficiently manipulated by Connection Machine; in the 
next section we will briefly describe the capabilities of this 
hardware that must be taken into account in designing a 
new representation, and in the following section we describe 
the representation we developed. 

The Connection e 
The Connection Machine (CM) is a massively parallel pro- 
cessor designed and manufactured by Thinking Machines 
Corporation [6]. It consists of from 16K to 64K processors, 
each with 4K to 64K bits of memory. In addition, each 
processor can emulate several processors, allowing for ex- 
ample 256K virtual processors on a 64K machine, each with 
one quarter the memory of a real processor. The processors 
execute from a single instruction stream produced by a host 
computer (a Symbol& Lisp Machine or a DEC Vax). The 
basic operations are 

a general bit-field combine operation 
a very low overhead bit move operation between 
adjacent processors (for the purposes of this operation 
the processors are on a two dimensional grid, each 
adjacent to four others) 
a higher-overhead general bit move operation from 
each processor to any other processor (destination 
determined by a memory field), implemented by special 
purpose routing hardware 
an operation that ORs together one bit from each 
processor 

tPlthough all processors share the instruction stream, not 
all need execute every instruction. Based on the results 
of previous computations processors may be individually 
deactivated and later reactivated, effectively skipping the 
intervening instructions. 

To use the CM a program is run on the host machine that 
generates a sequence of machine-language type instructions 
(the instruction set is called PARIS). Some parallel exten- 
sions of conventional languages (LISP, C, and FORTRAN) that 
compile to PARIS-emitting code have been implemented; 
alternatively programs can be written in conventional lan- 
guages with explicit calls to emit PARIS instructions as they 
run (this is how the ATMS is implemented). The CM 
is treated as a large active memory, where each memory 
location can store a value and perform simple operations 
on it. 

The CM design is intended to be scalable, so that larger 
machines can be readily built to handle larger problems. Cost 
is, however, non-linear due to communications complexity 
(both router size and wire lengths grow nonlinearly). 
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Representing Extensions on the CM update-extension( antes -+ conseq) : 

We present two representations for extensions on the CM 
and sketch the necessary algorithms. In the first (which we 
refer to as algorithm A-l) we associate one processor with 
each consistent point in assumption space. Each of these 
processors records its assignment of truth values with one bit 
per assumption; the remaining processors are temporarily 
deactivated. Node extensions are represented as a subset 
of the consistent points, by assigning an additional bit 
per processor for each node to record whether this point 
supports the node. Computing intersections and unions 
and testing subsumption are now single bit operations done 
in parallel by each active processor, and are thus extremely 
fast. The extension of a node can be returned to the host 
machine by retrieving the truth value assignments from each 
active processor that has the appropriate bit set. 

Note that the extension of I is only implicitly represented 
as the complement of the active processors; when points 
are added to it their processors are deactivated. Creating a 
new assumption requires a forking operation that doubles 
the number of active processors: each active processor is 
matched with an inactive processor, which is then activated. 
The new processors are initialized from the old ones, 
and the new assumption is assigned True in each new 
processor and False in each old one. Each of these steps 
can be done in parallel by all the processors involved. (The 
processor allocation step is a standard CM operation; several 
algorithms are known [ 63. Our current implementation uses 
a very simple rendezvous algorithm with minimal memory 
requirements, relying heavily on the router.) 

The algorithms for updating extensions and creating a 
new assumption in this representation scheme are sketched 
in Figure 2 below. Underlined variables are stored per 
processor, and operations on them are performed in parallel 
in each active processor. Other operations are just performed 
in the host machine. n is an array in each processor of 
truth values indexed by assumptions and nodes; other per- 
processor variables are temporaries. The fimctionfind$+ee() 
returns for each processor the address of a differenae 
processor, and the notation k]~ + exp is used to indicate 
that the value of exp is transmitted= ~BI in processor 
l (using the routeT The function new-position allocates 
a currently unused position in the E array. Finally, the 
function any(exp) returns True if exp is True in any active 
processor (using the global-OR op=tion), the procedure 
actipate(& makes p active, and the procedure deactipate() 
deactivates every p?ocessor on which it runs. 

If we apply this algorithm to our example and begin by 
creating all nine assumptions, we will have 512 processors. 
Processing Jl at that point will kill off 64 of them. Processing 
J2 will then mark 32 of the remaining processors as 
supporting 123. 

As problem solving proceeds, the size of the active proces- 
sor set continually changes, doubling with the introduction 
of new assumptions and decreasing as contradictions are dis- 
covered. Since the peak processor requirements determine 

node-extension-charged +- False 
_e - True 
for a E antes do 

,e+UUYM 
if conseq =I then 

if _e then deactivate0 
elseif an& A ~TLJconseq]) then 

node-extension-chan.ed t Trtie 
mconseq] - TJJconseq] V ,e 

new-aflumption() : 
a + new-position() 

activate( child) -- 

Figure 2. Parts of Algorithm A- 1. 

whether or not a problem will run on a particular machine, 
success may be very sensitive to the order in which these 
operations are performed. (Creating all the assumptions 
first is the worst possible order.) 

Our second representation scheme (algorithm A-2) re- 
duces processor requirements by delaying forking as long 
as possible, on a per-processor basis. This increases the 
chances both that contradictions discovered elsewhere will 
make more processors available, and that a contradiction 
will be discovered in other choices this processor has already 
made, thereby eliminating the need to fork at all. 

To do this we allow each active processor to represent 
a subspace of the assumption space, by an assignment to 
each assumption of True, False, or Both (using two bits 
per assumption rather than one). The processor subspaces 
are disjoint, and together include all consistent points (in 
the worst case this representation scheme degenerates to 
that of A-l). Node extensions are represented as a union of 
these subspaces, again with one bit per processor. Creating 
a new assumption now requires no immediate forking; each 
active processor merely assigns the new assumption Both. 
Node extensions are retrieved as before; the subspaces are 
easily expanded to individual points if desired. 

Computing intersections, however, becomes more com- 
plex: processors in which the result depends on one or 
more assumptions currently assigned Both must fork be- 
fore the result can be represented. Consider our example 
again. After creating nine assumptions we still have only 
one processor allocated, with every assumption assigned 
Both (thus representing all 512 points in the assumption 
space). After processing Jl this processor would fork into 
three processors, with assignments 

cl: True c2: Both c3: Both (256 points) 
cl: False ca: True ca: Both , (128 points) 
cl: False ca: False ca: True (64 points) 
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(note how these three subspaces partition the set of consis- 
tent points). After processing J2 the last of these would again 
fork, one half assigning ba False and the other assigning b3 
True and supporting n3. 

To process all 14 justifications in our example algorithm 
A-2 requires only 35 processors, resulting in six points in 
nh’s extension (each corresponding to a schedule meeting 
all three conditions). Adding the justification 

n4 A -a3 A Tbg A ~23 ---f n5 

gives n5 an empty extension, indicating that there is no way 
to avoid a meeting at 3:O0. 

ow rocessors Do We Need? 
Two obvious questions at this point are “how many pro- 
cessors will these algorithms require?” and “could we use 
fewer?” Although the CM has a large number of processors, 
it is easy to see that these algorithms could need exponen- 
tially many processors in the worst case (indeed, such an 
explosion is almost certainly unavoidable: propositional sat- 
isfiability, an NP-complete problem [ 11, is trivially encoded 
with one assumption for each variable and one justification 
for each clause). 

We can understand the behavior of these algorithms by 
noting their correspondence with a very familiar class of 
algorithms: chronological backtracking. Consider first the 
following algorithm (B-l) for finding all good points in 
assumption space, and for each point the nodes it supports. 
This algorithm processes a sequence of ATMS operations, 
occasionally recording its state at backtrack points and later 
reverting to them to reprocess the succeeding operations. 
The operations are processed as follows: 
create assumption: Assign the assumption the truth value 

True, and record this as a backtrack point. On back- 
tracking, assign False and try again. 

create node: Mark this node unsupported. 
record justikation: If the antecedent f%ls because of an 

assumption’s truth value, discard the justification. If 
it fails because of a currently unsupported node, save 
it with the node for future reconsideration. If the 
antecedent of a I justification holds, backtrack. If the 
antecedent of a node justification holds, mark that node 
supported. If it was previously unsupported, reexamine 
any justifications saved with it. 

When all operations have been processed, a good point in 
assumption space has been found and the nodes it supports 
determined. This solution is recorded and the algorithm 
backtracks to find more. When backtracking is exhausted, 
all solutions have been found. 

The correspondence between B - 1 and A- 1 is very straight- 
forward. The parallel algorithm processes each operation 
once, using multiple processors, while the backtracking 
algorithm may process each operation many times. Fur- 
thermore, the number of processors alive when the parallel 
algorithm begins each operation is exactly the number of 
times the backtracking algorithm processes that operation, 
as can be proven through a simple induction argument. A 

simple corollary of this is that the processor complexity 
A-l is the same as the time complexity of B -1. 

of 

Algorithm B-2, the corresponding backtracker for A- 
2, is like B-l except that choice points are delayed 
until a justification depending on them is encountered. 
The same execution-frequency-to-processor-count corre- 
spondence holds between these algorithms as between B-l 
and A-l. 

Although chronological backtracking is used to solve 
many problems, more powerful techniques are known. The 
correspondences between chronological backtracking and 
our parallel algorithms suggest reexamining these tech- 
niques in the context of the parallel ATMS. First, note 
that there are some important differences between parallel 
and backtracking algorithms in the consequences of such 
optimizations. Backtracking programs always benefit when 
a branch of the search tree is eliminated, but the time 
required by the additional reasoning needed to determine 
that it can eliminated must be weighed against the time 
saved by not searching it. The parallel algorithms, on the 
other hand, receive no benefit if there are already enough 
processors available, but when the reduction is needed the 
time spent is clearly worthwhile. (Note that these tradeoffs 
are further complicated when we introduce sequentializa- 
tion techniques that process the search space in pieces 
determined by the number of processors available, but we 
will not consider such techniques in this paper. Ultimately 
any parallel algorithm will have to fall back on such a strategy 
to deal with arbitrarily large problems, but the complexities 
and trade-offs need much more investigation). 

One class of improvements (dependency-directed back- 
tracking) uses information about the contradiction discov- 
ered on one branch to cut off other branches. These are not 
applicable, since the parallel ATMS is exploring all branches 
in parallel; when it discovers a contradiction in one branch 
it will simultaneously discover it in all other branches to 
which it applies. 

More applicable, however, are techniques for changing 
the order in which justifications are considered. Based 
on the ideas of boolean constraint propagation [9] we 
can construct algorithm B-3. Rather than processing the 
justifications in the order presented, B-3 searches first for 
justifications that will lead to a contradiction or force 
the value of an assumption (to avoid a contradiction). 
Justifications that require forking are delayed as long as 
possible. On the parallel ATMS we have a corresponding 
algorithm, A-3, that can broadcast justifications with forking 
inhibited, so that those processors that would deactivate or 
force an assumption’s truth value do so, while those that 
would fork do nothing. There is no need to keep track 
of which processors were blocked from forking; all that is 
necessary is to note that some were and to record that that 
justification will have to be rebroadcast at some later time. 
There are limitations, however: all justifications must be 
completely processed before we can correctly compute a 
node’s extension. 
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Kesults and Prospects 

We have implemented a version of A-3 that only resorts 
to delaying justifications when it runs out of processors, 
and have run several tests on the Connection Machine, 
including some large qualitative reasoning programs in 
which performance limitations of the serial ATMS had 
been a severe bottleneck. The results are encouraging: as 
expected, the parallel ATMS runs very quickly. The effective 
speedup for a given problem depends on how much of the 
problem solver’s time the ATMS consumes. Placing thirteen 
non-attacking queens on a thirteen by thirteen chess board, 
a problem requiring minimal problem-solver computation 
and a lot of ATMS computation, ran seventy times faster on 
a 16I< CM than the fastest sequential implementation on 
a Symbolics Lisp Machine (60 seconds vs. 4235 seconds, 
to find 73,712 solutions) [8]. We quickly discovered, 
however, that even hundreds of thousands of processors 
are insufficient for many problems, requiring that some 
combination of parallel and sequential search be used. We 
have had some success in our initial efforts in this direction, 
but there is much work still to be done here. 

While the CM is a near-ideal machine for developing this 
sort of algorithm, it is natural to ask how much of the 
machine is needed; if it could be simplified, more processors 
could be built for the same cost. As mentioned earlier, the 
major expense in the current CM design is the complex 
router system. Although the router makes implementing 
the parallel processor allocation very straightforward, silicon 
may be better spent on more processors. One possibility 
would be to simply connect the processors in an m- 
dimensional grid (like the CM NEWS grid, but possibly with 
more dimensions) and then use some form of expanding- 
wave allocation [6] to match up processors. The memory 
per processor ratio should also be examined; the current 
CM arrangement gives each processor considerably more 
memory than it is likely to need for these algorithms. 

Also note that high performance communication through- 
out the processor pool is not required; although all pro- 
cessors must be able to find another free processor quickly, 
they never need to communicate with other active pro- 
cessors. In fact, a single host could use several CMs with 
the assumption space divided among them, each allocating 
from their own pool of processors. Only when one machine 
became saturated would it be necessary to shift information 
to another; load-balancing heuristics would help minimize 
the frequency with which this needed to be done. 

Conclusions 
Making explicit the propositional reasoning behind problem 
solvers can make them simpler, more flexible, and more 
efficient. By exploiting recent developments in hardware 
design we can minimize or eliminate the performance 
penalties that have sometimes offset these benefits in the 
past. The ATMS appears to match the architecture of 
the Connection Machine particularly well: the serial host 
machine performs the more complex but local domain 

inference steps, while the Connection Machine performs 
the simpler but global operations necessary to determine 
consistency and support. 

The development of the parallel ATMS has also dramati- 
cally demonstrated the degree to which working around the 
performance limitations of serial machines has complicated 
otherwise simple algorithms. In order to obtain adequate 
performance the Lisp Machine implementation uses com- 
plex representations and elaborately crafted algorithms. Its 
development and tuning has taken over a year, and the 
resulting code is about sixty pages long. The Connection 
Machine algorithms are much simpler, require three pages 
of code, and took about a week to develop. In doing so we 
were also led to a clearer analysis of the ATMS, unencum- 
bered by the complexities of the serial implementation’s 
representation. 

Acknowledgements 
We thank Thinking Machines for providing us with the fa- 
cilities to develop and test the algorithms we have described, 
and in particular Craig Stanfill both for his invaluable assis- 
tance in using the Connection Machine and for discussions 
of the implementation. John Lamping pointed out the 
correspondence with backtracking, and Jim des Rivieres 
and Susan Newman provided very helpful comments on an 
early draft. 

References 

[l] Cook, S., The Complexity of Theorem Proving Proce- 
dures. Proceediqgs of the Third Annual ACMSymposium 
on Theory of Computing, 1971. 

[2] D’Ambrosio, B., A Hybrid Approach to Uncertainty. 
International Journal of Approximate Reasonin., to 
appear. 

[3] de Kleer, J., An Assumption-based TMS. Artijcial 
Intel&ence 28 127-162, 1986. 

[4] de Kleer, J., Extending the ATMS. Artificial InteZZiJence 
28 163-196,1986.- 

[51 Forbus, K. D., The Qualitative Process Engine. Uni- 
versity of Illinois Technical Report UIUCDCS-R-86- 
1288, 1986. 

WI 

[71 

1 

P31 
[91 

Hillis, W. Daniel, The Connection Machine. MIT Press, 
Cambridge, Massachusetts, 1985 
Morris, P. H., and Nado, R. A., Representing Actions 
with an Assumption-based Truth Maintenance System. 
Proceedings of the National Conference on Artificial 
Intellz&ence, Seattle, July 1987. 

Stanfill, C., Personal communication. 
Zabih, R., and McAllester, D., A Rearrangement Search 
Strategy for Determining Propositional Satisfiability. 
Proceedings of the National Conference on Artijcial 
Inte&ence, St. Paul, August 1988. 

204 Automated Reasoning 


