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Abstract 

Belief maintenance represents a unified 
approach to assumption-based and 
numerical uncertainty management. A 
formal equivalence is demonstrated 
between Shafer-Dempster belief theory 
and assumption-based truth maintenance 
extended to incorporate a probability 
calculus on assumptions. Belief 
propagation through truth maintenance 
automatically and correctly accounts 
for non-independencies among 
propositions due to shared antecedents. 
Belief maintenance also incorporates an 
ability to represent and reason with 
defaults. The result is a framework 
for non-monotonic reasoning about the 
application of a quantitative 
uncertainty calculus. 

1.0 INTRODUCTION 

Automated reasoning systems must operate with 
incomplete knowledge of the state of the world. 
Much of the work of problem solving or inference 
lies in structuring exploration of the system's 
world to reduce this uncertainty. Two general 
approaches to uncertainty management have become 
popular. These approaches--symbolic truth 
maintenance and numeric belief propagation--have 
been portrayed as rivals in a sometimes 
acrimonious debate. Yet each has an important 
role to play in a comprehensive inference 
strategy. 

Symbolic truth maintenance [Doyle, 1979; 
deKleer, 19861 is based on the idea of extending 
ordinary truth-functional logic to allow the 
incorporation of defaults or assumptions. A 
system based on such a logic can set default 
values for uncertain propositions and reason as 
if these values were known, but revise its 
defaults when they give rise to a contradiction. 
This capability mimics the non-monotonic 
character of intelligent human reasoning. Truth 
maintenance increases search efficiency by 
permitting a control strategy that minimizes 
regeneration of previously considered search 
paths. Uncertainty is represented entirely 
qualitatively: what is known about propositions 
is whether they are proven true, assumed true, 
unknown, assumed false, or proven false in a 
given context. 
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In the quantitative approach, uncertainty 
about a proposition's truth value is expressed 
by a number or numbers, typically in the range 
between 0 and 1. Inference rules also have 
numbers associated with them, indicating how 
strongly belief in the premises warrants belief 
in the conclusions. Various calculi have been 
proposed for propagating beliefs in chains of 
inference. 

We argue that a significant advantage may 
be had by combining symbolic and numeric 
uncertainty management. Specific advantages 
include the following. 

Computational aspects of numeric reasoning. The 
numeric approach has been criticized on 
efficiency grounds. The number of possible 
combinations of truth values grows exponentially 
with the number of propositions in a system. A 
numeric calculus maintains propositions, no 
matter how improbable, unless they are 
explicitly proven false. Of course, 
sophisticated computational architectures and 
control strategies can reduce inefficiency 
(e.g. 9 by not exploring consequents of 
improbable propositions). But additional 
control strategies open up with the possibility 
of applying non-monotonic qualitative reasoning 
to the application of an uncertainty calculus. 
For example, the control strategy might make an 
assumption, which could be later retracted, 
assigning a truth value of false to an 
improbable proposition. Or the structure of an 
inference network could be subjected to 
qualitative reasoning by making retractable 
conditional independence assumptions. 

Control of reasoning. An important role of 
truth maintenance is to control reasoning--to 
decide what to do next. Additional 
possibilities for control are opened up by 
including a numeric uncertainty calculus. An 
example cited above is to avoid using inference 
rules with improbable antecedents. Another 
strategy involves searching for information that 
will likely distinguish between two uncertain 
but competing hypotheses. 

Conflict resolution. The two uncertainty 
management traditions have very different 
approaches to dealing with conflict [Cohen, 
Laskey and Ulvila, 19871. In the symbolic 
tradition, conflicting conclusions indicate that 
one of the lines of reasoning is faulty. 
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Defaults must be changed to restore consistency. 
By contrast, probabilistic and other numerical 
systems regard conflict as an inevitable 
consequence of an imperfect correlation or 
causal link between evidence and conclusion. 
Probabilistic reasoning regards inference as 
weighing a balance of positive and negative 
evidence; symbolic reasoning adjusts the set of 
accepted defaults so that no simultaneous 
arguments exist for both a proposition and its 
complement. Intelligent reasoning, we feel, 
combines aspects of both these viewpoints. 
must be able to entertain conflicting lines of 
argument, adjudicating between them based on the 
strength of each. On the other hand, when the 
conflict becomes too great, we begin to suspect 
a problem with one or the other argument, and 
examine our implicit beliefs for possible 
revision. 

This paper represents a preliminary effort 
toward unifying symbolic and numeric reasoning. 
It has been implemented, but only on small-scale 
problems. Much work remains in developing 
control strategies and algorithms to circumvent 
the computational complexity associated with 
large belief networks. But the structure 
described here represents an important step 
toward understanding the relationship between 
probabilistic and belief function models, truth 
maintenance, and non-monotonic logics. 

2.0 THEATMS AND SHAFER-D STER BELIEFS 

This section introduces an approach to 
uncertainty management that unifies the symbolic 
and numeric approaches. In particular, it is 
demonstrated that extending assumption-based 
truth maintenance [deKleer, 19861 to allow a 
probability calculus on assumptions leads to a 
belief calculus that is formally equivalent to 
Shafer-Dempster theory. By appropriate 
construction of inference rules, probabilistic 
models emerge as a special case. An advantage 
of the framework presented here is that 
nonindependencies are automatically and 
correctly accounted for in the belief 
computations. 

Eet us introduce the theory with an example 
used by Shafer [1987] to illustrate belief 
function theory. Suppose we receive a report r 
that a proposition q is the case. There is some 
probability, that the source is say .6, 
reporting reliably; otherwise, with probability 
.4, the report bears no relation to the truth of 
4. In the first case, the report implies q; in 
the second case, both q and its negation are 
consistent with the report. For Shafer, belief 
in a proposition is defined as the probability 
that the evidence implies its truth. Thus, the 
above evidence justifies a .6 degree of belief 
in the proposition q. 

Another way of looking at this example is 
in terms of an inference rule (r + q) that may 
or may not be valid. A symbolic default 

reasoning system might incorporate a default 
assumption that the rule is operating correctly 
(i.e., the source is reliable). Receipt of 
evidence against q would necessitate dropping 
either this default or one of the assumptions 
underlying the conclusion of wq. The belief 
calculus, on the other hand, simultaneously 
maintains belief that the rule is and is not 
valid, using a number between zero and 1 to 
encode the strength of belief in rule validity. 

Simultaneously maintaining belief in 
inconsistent propositions is impossible in most 
default reasoning systems. When beliefs become 
inconsistent, these systems must explicitly 
change some of their defaults to regain 
consistency. Combining beliefs and defaults is 
therefore difficult with traditional truth 
maintenance. But the ATMS [deKleer, 19861 is 
explicitly designed to reason with multiple 
contexts. Each proposition is tagged with a 
label that represents the contexts in which it 
can be proven. Contexts are represented by 
special symbols which deKleer calls assumptions. 
We depart from deKleer's terminology and use the 
term tokens to refer to these special symbols, 
because we prefer the word assumption to retain 
the connotation of a proposition that, although 
unproven, has been declared to be in the set of 
believed propositions. The job of the ATMS is 
to maintain a parsimonious representation of 
each proposition's dependence, either directly 
or through chains of inference, on tokens. Like 
deKleer, we define &q environment to be a set of 
tokens and a conteXt to be the entire set of 
propositions derivable in a particular 
environment. A proposition's label contains a 
list of environments in which it can be derived. 
There may be proofs for a proposition -under 
several mutually inconsistent environments; 
similarly, proofs for a proposition and its 
negation in different environments may be 
entertained simultaneously. 

Consider again the inference from report r 
to the truth of the reported proposition q. In 
the ATMS, the "noisy" inference rule may be 
encoded as follows. The token V is introduced 
to represent rule validity, i.e., the 
proposition that the source is reporting 
reliably. (Following deKleer, we use uppercase 
letters to represent tokens and lowercase 
letters to represent other propositions). The 
original noisy rule is replaced by the rule 
rAV -, q. When this rule fires, the token V is 
added to the label of the ATMS node associated 
with q, indicating that q is valid in any 
context in which V is true. 

If this token is treated as a default 
assumption, then the proposition q is‘believed 
until this default becomes inconsistent with the 
set of known propositions. Alternatively, V may 
be assigned a probability, interpreted as the 
probability that q can be proven--that is, its 
Shafer-Dempster belief. 
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Thus ) belief maintenance is based on a 
simple principle: if probabilities are assigned 
to tokens, these imply probabilities on the 
labels for propositions. The probability of a 
label can be interpreted as the probability that 
the associated proposition can be proven, and is 
equivalent to its Shafer-Dempster belief. 

3.0 A BELIEF MAINTENANCE SYSTEM 

Our belief maintenance system combines an ATMS 
with a module for computing the probabilities of 
ATMS labels, or, equivalently, the 
Shafer-Dempster beliefs of the associated 
propositions. Belief maintenance is capable of 
representing the full generality of the 
Shafer-Dempster calculus. The ATMS 
automatically keeps account, in symbolic form, 
of the propagation of beliefs through chains of 
inference, nonindependencies created through 
shared premises, and inconsistent combinations 
of tokens. The belief computation module 
incorporates all this information to compute 
correct Shafer-Dempster beliefs when requested. 
Adding to this framework the capability to 
represent and compute beliefs with defaults 
results in a fully integrated symbolic and 
numeric uncertainty management framework. 

Readers familiar with the basics of belief 
function theory and assumption-based truth 
maintenance will more easily follow the 
following presentation. Laskey and Lehner 
[1987] include a concise introduction to both 
theories [see also deKleer, 1986; Shafer, 19761. 

3.1 Combining Beliefs 
Inference Rules 

and Chaining 

We have shown how a single uncertain inference 
rule could give rise to a Shafer-Dempster 
belief. But interesting inference problems 
involve many propositions, linked together by 
complex chains of inference, involving 
converging and conflicting arguments. In this 
section, we show how the ATMS can be used to 
manage these inferences, keeping track of the 
tokens on which propositions ultimately depend. 

The basic unit of belief in a belief 
maintenance system is the belief token, a 
special token which carries an attached 
probability. Belief tokens come in sets. Every 
extension (maximally specific environment) must 
contain exactly one token from each set of 
belief tokens. In the above example, the token 
V would be paired with another token 
representing the negation of V. This second 
token (call it il) would be assigned belief .4, 
so that its belief and that of V sum to 1. 
Belief tokens are processed by the ATMS exactly 
as are other tokens. 

We note here that encoding negations in the 
ATMS involves defining a choose structure and 
extending the label updating algorithm to 
include hyperresolution rules. Actually, 

hyperresolution need not be applied to belief 
tokens, because the belief computations are 
performed only on contexts that are maximal with 
respect to the token sets impacting a 
proposition's truth value. But de#leer's [1986] 
disjunction encoding is needed for other 
exhaustive sets of propositions (e.g., q and its 
negation -9). 

The belief maintenance system can represent 
two additional specialized types of token: 
default and hidden tokens. Default tokens 
'represent propositions that the system chooses 
to treat as if they were known to be true (i.e., 
probability 1). Hidden tokens correspond to 
deKleer's ignored assumptions. They are 
manipulated by the ATMS, but environments 
containing them are ignored in the belief 
computations and are invisible to the problem 
solver using the belief maintenance system. 

Beliefs are computed conditional on the 
current set of defaults (see below). A belief 
token may be defaulted (as when a strongly 
supported hypothesis is provisionally accepted). 
This causes the token to be treated as if it had 
probability 1. The other belief tokens in its 
token set become hidden. The default may 
subsequently be removed, in which case 
probabilities on tokens in the set revert to 
their former values. 

Let us return to the inference rule 
rAV + q. If r is observed (i.e., declared as a 
premise), this rule fires and adds the 
environment (V) to the label of q. Absent other 
rules affecting q, the belief in q is equal to 
the probability of V, or .6. If V is declared 
as a default, this belief becomes 1. 

Now suppose a report from another source 
indicates the negation of q, and that this 
source is judged to have reliability .8. As 
before, this can be encoded as an inference rule 
SAW -, -q, where s stands for the source's report 
and W is a belief token with probability .8. 
The label of q remains unchanged, but the 
environment (W) is added to the label of -q. 
The tokens V and W imply inconsistent 
propositions and cannot both be true. The ATMS 
represents this inconsistency by a nogood 
environment (V,W). 

Belief in q and in --q remain unchanged at 1 
and 0, respectively. This is so because the 
label of q, the environment (V), is a default 
and so has probability 1. The label of -q 
contains the environment (WI. Belief in this 
label is conditioned on the current defaults, 
and because W is inconsistent with V its 
conditional probability given V is zero. 

What happened to our belief of .8 in W? 
Given the default token V, we would have 
assigned the environment (V,W) probability .8 if 
it weren ’ t inconsistent . But because beliefs 
are conditioned on the consistent environments, 
this environment, despite its high prior 
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probability, is discarded as impossible. The 
probabilities of the consistent environments are 
divided by .2 so they will sum to 1 after 
discarding the inconsistent environment. 

We see that the belief assigned to 
inconsistent environments under the current 
defaults can be thought of as measuring conflict 
associated with the defaults. In this case, we 
might decide that .8 is too high a degree of 
conflict, and respond by dropping the default V. 
Returning to our former belief assignment, the 
prior probability of the nogood environment 
(V,W) is reduced to .48. Below we list the 
propositions of interest, the contexts in which 
they can be proven to hold, and their beliefs. 

Proposition Context Belief 

Q pm .12/.52 - .23 
-Q (V,W .32/.52 - .62 

These beliefs are the same as obtained by 
using each inference rule to define a belief 
function and combining them by Dempster's Rule. 

Rules may have as antecedents the 
consequents of other rules. For example, 
consider a third rule qU + t. Firing this rule 
adds the environment (V,X) to the label of t, 
indicating that t is true in any context 
containing both V and X. The probability of 
this environment, conditional on the defaults 
(if any) and the consistent environments, 
defines the degree of belief in t. The ATHS 
automatically keeps track of nonindependencies. 
For example, there might be another path of 
reasoning from q to t. When these rules fire, a 
second environment containing V will be added to 
the label of t. The probability calculus 
described below automatically avoids "double 
counting" the impact of V. 

3.2 Computing Beliefs 

The probability handler computes beliefs on 
nodes from the probabilities assigned to belief 
tokens, given the current set of default tokens. 
The following conditions are assumed: 

1. Each belief token is part of a mutually 
exclusive and exhaustive set of belief 
tokens whose probabilities sum to 1. A set 
of such tokens corresponds to Shafer's 
background frame, and carries the basic 
probability for a belief function. 

2. Each belief token is probabilistically 
independent of all other belief tokens 
except other tokens in the same exhaustive 
set. This condition may seem restrictive, 
but in fact it is not. It merely requires 
that all nonindependencies be represented 
explicitly as shared information (i.e., the 
labels of two dependent propositions 
contain belief tokens in the same 
hypothesis set). 

The belief in a node is defined as the 
probability of its label. But this probability 
must be conditioned on the current defaults, and 
on the consistency of the label. For example, 
if x had label (A,B) where Pr(A)-.8 and 
Pr(B)-.7, then (absent other information) x has 
belief .56, the product of these probabilities. 
But suppose nogood(B,C). This means that the 
conjunction of B and C is Jmpossible, so no 
belief can be assigned to it. Belief in x must 
thus be revised to reflect this. In other 
words, belief in x is the conditional 
probability of AAB, given -(BG): 

Bel(x) - Pr[AABI-(BAC)] - lPr((A*B,F)) * 
- Pr((B,C)) 

If Pr(C) - .8, this expression evaluates to 
.25. If C is a default, this evaluates to 0 
(because the numerator is the probability of an 
envtronment that cannot hold under the default). 

In general, the belief in a proposition is 
given by 

Be1 (node) - Pr(labelldefaults,-nogood) 

I Pr(labeln-nogoodldefaults) . (*I 
Pr(-nogoodldefaults) 

A simple algorithm for calculating the belief in 
a proposition (i.e., the probability that it can 
be proven) follows. 

1. 

2. 

3. 

4. 

5. 

6. 

Select all environments in the label that 
are consistent with current defaults and 
that contain no hidden tokens. 

_ 

Remove default tokens from the environments 
containing them (this amounts to treating 
them as if they had probability 1). The 
set of tokens thus defined will be referred 
to as the selected tokens. 

Select all nogood environments that are 
consistent with current defaults, that 
contain a selected token, and that contain 
no hidden tokens. Remove all default 
tokens and add the remaining tokens to the 
selected tokens. 

Repeat Step 3 until no more 
added to the selected tokens. 

tokens are 

The selected token sets are those to which 
the selected tokens belong (e.g., if V is a 
selected token, 
is (V,V',). 

the corresponding token set 
Form a list of maximally 

specific environments from the selected 
token sets. That is, form all possible 
combinations of tokens, taking one from 
each selected token set. 

Remove all nogood maximally specific 
environments (i.e., those containing a 
nogood environment, or an environment that 
is nogood when coupled with one or more 
default tokens). Of the remaining 
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environments in the maximally specific 
list, the ones containing a label 
environment (or which do when combined with 
one or more default tokens) are those 
contributing to belief in the node. Add up 
the probabilities of these (where the 
probability of the environment is the 
product of the probabilities of its 
constituent assumptions) to get the 
numerator of (*). Add up the probabilities 
of the whole list (except the removed 
nogoods) to get the denominator of (*). 
(An alternate way to compute the 
denominator is 1 minus the probability of 
the removed nogoods.) 

This algorithm may be modified to simplify 
processing of labels in which environments have 
little overlap [Laskey and Lehner, 19871. Other 
efficiency modifications are possible, such as 
caching intermediate products so that belief 
computation after label changes can be done 
incrementally. Although the basic algorithm 
above works regardless of the pattern of 
inferential links, 'the improvement gained by 
these efficiency modifications will be greatest 
when nonindependencies are few. 

D'Ambrosio [to appear] has suggested an 
approach very similar to the one described here. 
His algorithm differs from ours in that his 
encoding of belief functions is less general, 
his treatment of nogoods that indirectly impact 
a proposition differs from the network 
Shafer-Dempster model, and there is no provision 
for defaults. In the most general networks, 
both algorithms are exponential in the number of 
hypothesis sets in the system. D'Ambrosio puts 
forward some suggestions (not yet implemented) 
for decreasing complexity; we are currently 
exploring others. 

4.0 DISCUSSION 

Belief maintenance represents a way of 
implementing a unified approach to uncertainty 
management. Any Shafer-Dempster or 
probabilistic inference network can be 
represented using this formalism. Indeed, 
Shafer-Dempster belief theory and belief 
maintenance without defaults are formally 
equivalent [Laskey and Lehner, 19871. The 
addition of defaults extends Shafer-Dempster 
theory to include symbolic non-monotonic 
reasoning. Defaults may be used to represent 
working assumptions about how to apply the 
calculus (such as assuming the truth of 
propositions with a high degree of belief). A 
by-product of the belief computation is the 
prior degree of belief assigned to inconsistent 
hypotheses, which measures the degree of 
conflict associated with the current defaults. 
A high degree of conflict can indicate the need 
to examine the defaults for possible revision. 
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