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Abstract 

This paper answers a question posed by Nils Nilsson in 
his paper [9] on Probabilistic Logic: When is the max- 
imum entropy solution to the entailment problem equal 
to the solution obtained by the projection method? Con- 
ditions are given for the relevant matrices and vectors 
which can be tested without actually computing the two 
solutions and comparing them. Examples are discussed 
and some comments made concerning the use and com- 
putational problems of probabilistic logic. 

1 Introduction 

Reasoning with uncertain information has received much 
attention lately. The central problem becomes that of 
combining several pieces of inexact information. A 
number of different schemes have been proposed ranging 
from systems using Bayes’ rule [8], quasi-probabilistic 
schemes [l], the Fuzzy approach [12] and the use of 
Belief functions developed first by A. Dempster [3] and 
later by G. Shafer [II]. 

A recent model proposed by N. Nilsson [9] is an 
extension of first-order logic in which the truth values of 
sentences can range between 0 and 1. This author has 
done some earlier work investigating nonmonotonicity in 
this setting. [c.f. 5-71. N’l 1 sson develops a combination or 
entailment scheme for his probabilistic logic. Usually the 
equations that need to be solved to obtain an answer to 
a particular entailment problem are underconstrained. 
Nilsson proposes two methods of obtaining an exact solu- 
tion: one involving a maximum entropy approach dis- 
cussed in [2] and the other an approximation using the 
projection of the final entailment vector on the row 
space of the others. Nilsson gives an exa.mple where the 
two values obtained by applying these methods are equal 
and one where they differ. He suggests one reason which 
will make them differ and puts forward the question of 
general conditions for equality. 

The next section discusses the answer to this ques- 
tion and Section 3 provides a detailed explanation of the 
examples used originally by Nilsson. It’ also examines 
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another example, related to Nilsson’s examples both for 
its properties concerning the two solutions and for its 
relevance in handling a common entailment problem. 
The solution is compared with earlier results in [9]. In 
the course of these examples, an alternate method of 
finding the maximum entropy solution is also proposed. 
In the remainder of this introduction, some necessary 
terms from [9] are explained. 

Definitions: 

The definitions follow those given in [9] and are reviewed 
quickly here. 

S represents a finite sequence L of sentences 
arranged in arbitrary order, e.g. S = {S,,SQ * . * S,}. 

T/c = {Vl,VQ,. . . 2rL} is a valuation vector for S, 
where ’ denotes transpose and u1 = 1 if Sk has value 
true, = 0 otherwise. 

V is consistent if it corresponds to a consistent 
valuation of the sentences of S. v is the set of all con- 
sistent valuation vectors for S and let K = IV 1 (car- 
dinality). (Note K<ZL). Each consistent V 
corresponds to an equivalence class of “possible worlds” 
in which the sentences in S are true or false according 
to the components of V. Let A4 (sentence matrix) be 
the LX M matrix whose columns are the vectors in V. 
Its rows will be denoted by S. If P is the i’th unit 
column vector, MPi = q, where Vi is the ith vector 
of 21. 

I 1 

Example 1.1: Let S = (A,A>B,B) v = 1 

1 

1 11 0 

0 

0 
1 

1 

0 0 1 

0 

However, if each of the sentences’ truth values are 
uncertain in some sense, a probability distribution over 

possible worlds * introduced. 
. . Pk} with O<Pi<l ai: c Pi = 1. 
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Here the i’th component of P represents the probabil- 
ity that ‘our’ world is a member of the i ‘th class of 
worlds. Now a consistent probabilistic valuation vector 
V over the sentences in S is computed from the equa- 

tion V = MP. The components of V are the probabil- 
ities of the Si being true (or the probability that ‘our’ 
world is a member of one of those classes of possible 
worlds in which sentence Si is true). 

Returning to example 1, we find that even if con- 
sistent valuations are known for the sentences A and 
AIB, the probability of B is not necessarily uniquely 

defined. One can determine the bounds 
p(A3B) + p(A)-l<p(B)<p(A1)I3), which provide 

some restrictions. However, often a more precise value 
for p(B) needs to be predicted. One method for doing 
this is explained below. 

Probabilistic Entailment: A method using a max- 
imum entropy approach (borrowed from P. Cheeseman 
[5]) is used to obtain an exact solution for p(B). 

The entropy function becomes H = -P.log P + I, 
(vI-S,.P) + Z2(v,-S2.P) + . * * ZL(vL-SL.P), where the 
Zi are Lagrange multipliers. Following Cheeseman, the 

solution for maximum entropy becomes 
pi = e-‘*e-wd ...... e-wLil 

If one employs this method, at least for example 1, the 
solution for 9 = {P+P--l, l-q, (bw4 (N4/2) 
when v’ = (1, p, q} and thus p(B) = p/2 + q-l/“. 

, 

Projection Method: Another method uses an approxi- 
mation of B by S”, the projection of B onto the row 
space of Ivr’ = M, with the last row deleted and a row 
of l’s inserted at the top. Then S* = cc;S; and 
S* . P = CCi~. Applied to the example given, 

S* = (l,O,?h , %) and P(S”) = f + q - $ = p(B) 

using the max entropy solution. 

However, the entailment example of A,B,Ar) B is 
given in [9] and here the two methods give different solu- 
tions. The following section addresses the problem of 
why this happens. 

2 Conditions for Equality of the Two Solutions 

From the example used in PI of the entailment of A,B 
and An B, it is seen that P (47B ) from max entropy 
= pq (where p(A) = p , p(B) =‘qj and from the projec- 

tion method the result is 1 ;+;-7. Nilsson rightly 

states that these two quantities cannot be equal when 
the max entropy solution contains a product because the 
solution obtained from the projection method will always 
be a linear combination of the 6 (here, l,p,q). Thus, 

knowledge of the maximum entropy solution is sufficient 
to answer the equality question. Let us state this for- 
mally as a first condition. Let P stand for the solution 
vector for M’X = V obtained using maximum entropy. 

Theorem 2.1: Only if the maximum entropy solution P 
can be written as a linear combination of the vectors Vi 
can S*P = cc;Vi, where S” = ~c;S~ is the projection 
of S on the row space of d. 

To explain the reasons for this more fully and find condi- 
tions not requiring the computation of P, let us look at 
some matrix algebra theory. 

If the row vectors of A/ are not linearly indepen- 
dent, they can be reduced to an independent set by 
dropping any unessential ones. Consider then 
M(tiM)-‘. This matrix has the pro erties of a general- 
ized inverse of hl’ (referred to as (h B )-. [c.f. lo]. Now if 
P = M(dM)-‘V, it will solve A/X = V. (This mea.ns 

P is a linear combination of the v). As S**Q = CC;~ 
for any solution Q to &X = V, then S**M(hiAd)-‘V 
must be the solution from the projection method to the 
entailment problem. Now S.P = SM(M%)-‘V 
= S*M(~M)-‘&IP = S*P (S and S* are now row vec- 
tors). This shows that if P is a particular linear combi- 
nation of the vi, the solutions are the same. Some other 
obvious results hold and will be stated before more gen- 
eral results are given. 

Lemma 2.2: If P = (ha)-V, the 2 solutions are identi- 
cal. 

Lemma 2.3: If S”*P = S-P the 2 solutions are identi- 
cal. 
This follows from a remark above with P = (2. 

Lemma 2.4: If S = S” the 2 solutions are identical. 

Lemma 2.5: If P = P* (the projection of the max 
entropy vector on the row space of A/), the two solu- 
tions are equal. 
This f .50110ws from S*P = S*M(lfM)-‘&iP 

= s*p. 

What is the general solution to A/X = V? From 
[4,10], it can be seen to be a particular solution plus any 
linear combination of solutions to the homogeneous equa- 
tion. One way to express this is as (h/l)- +(H-I)Z, 
where 2 is arbitrary and H = (d)-&. Solutions may 
also be obtained to the homogeneous equation by first 
row reducing M’ to a form in which the first T column 
vectors are independent. 
Then W, = (the P + l’st column, -l,O, * * . ,O) 

W, = (the T + 2nd column, 0,-l, * * . ,0) 
etc. 

W n7 = (the 12th column, O,O, * . * ,-1). 

Here di~n(&) = x m n and M’ is assumed to ha.ve rank 
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r. 

Thus P and P1 = M(i’bfM)-‘V must be related 
according to P = PI + (wi , 20~ , * * * , zu,,).Z. Thus 
s P = S-P, + qw, , 202, . * * ) w,,).Z. But 
S-P1 = S”*P1 (as the projection of P, on the row space 
of M, equals itself). Therefore the 2 solutions are equal 
if and only if S(wi , w2, * * * , w,,) = 0 or S is 
orthogonal to the space of homogeneous solutions - 
unless of course P = P,, when the 2 solutions are clearly 
equal (2 is then identically 0). From matrix theory this 
implies S lies in the row space of fit. The above actually 
proves the following result: 

Theorem 2.6: The max entropy and projection solu- 
tions are equal if and only if either P = (&)-If or 
s* = s. 

Clearly the second condition is easy to check, how- 
ever the first requires the full computation of P. How- 
ever, if we consider how the maximum entropy solution 
is formed we can find an easier condition to check. Sup- 
pose & can be transformed by simple row operations 
(not the full Gram-Schmidt process which involves vec- 
tor products of the ro)vs) to the form (I C), where I is 
an rxr unit matrix and C contains at most one 1 in any 
column. The row vectors are the orthogonal. M’ may 
always be row reduced to Mi = (I C) (if its rank is Y), 
but C may not have this special form. 

In this situation then, the max entropy solution 
may be written as M, [a, * * * a,]’ , where the ai are the 
special exponential variables used in the max entropy 
solution [2]. Now M, [ai * . * a,]’ may be made equal to 
M,(MiM,)-‘V, by letting (a, * * * a,) = V, (V, is V 
transformed appropriately when A/ was converted to 
(I C).) The solution for the ui is unique and this solution 
gives AdP = V. Thus P = (Mi)-V, = (h/o-V. 

If A/ cannot be row reduced to the form just 
described, one obtains pi = al , i = i , . * . T and then 
Pj = products of the ai and hence the pi, for j > T and 
i 5 T. If P = M(dM)-‘V, this is not possible as all the 
members of P are linear combinations of the Vi. Thus 
we have result 2.7: 

Theorem 2.7: P = (1M)-)V if and only if ILI’ is row 
reducible to the form (I C), where each column in C 
contains at most one 1. (So C’ = C transpose is in 
echelon form). 

The next section discusses some examples in the 
light of these results. The final results 2.G and 2.7 make 
the discovery of the equality of the 2 solutions easy to 
verify. The property required of hl’ could be stated in 
terms of the existence of a transformation matrix which 
will turn A/ into this form, but the conditions as given 
are just as easy to verify. There are standard methods 
of row-reducing Ad to (I C) and then it is just a 

question of checking whether or not C has the desired 
properties. 

3 Examples 

3.1 Consider the example of Ml = 

used in [9]. It can be shown that 

the max entropy solution 

14) 
[P+q-17 h?, (l-P)/% Cl-P)/21’. 
Indeed, this could also be discovered by the fact that M’ 

11 0 0 01 
can be row reduced to the echelon form 10 1 0 01 

lo 0 1 l] 
where the column vectors never contain more than one 
non-zero entry (row vectors are orthonormal). Actually 
B # S* and B*(O 0 1 -I), where (0 0 1 -1) = w1 is not 
zero. However, the row reduction immediately gives the 
max entropy variables (ai , a2 , aa) 

as (h/(M)-1 

/ \ ‘q+p-1 
I 

q+p---l 

l-q 1-q = - 

\ 1-P 
2 

1-P 
2 

Then Mb1 a24 = (PI P2P3PJ 
entropy solution shown above. 

produces the max 

3.2. Consider the example 
S, = A , S2 = B , S, = AnB given in [9]. Let S = S:f 

1 1 1 1 
A,/ = 1 1 0 0 , which has a row-echelon form I 1 

column of & : /5’ = (-1 , 1 , 1 , -1) (See page 6, [lo]). 
The dimension of the solution space should be n-r 
where h/( is an mxn matrix of rank r. So all homo- 
geneous solutions are of the form kp for some constant 
B. 

Thus the max entropy solution and the solution 
using the generalized inverse l-d- introduced earlier 
differ by k(-1 , 1 , 1 ,-1). The vector S is (1 0 0 0), 
which is not orthogonal to kp. Thus the solutions for 
p(S) will not be the same. One could also check that S 
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is not in the subspace generated by the row vectors of 
ti as N, th e matrix obtained by adding the row vector 
S to the matrix M’ has non-zero determinant. 

It is interesting to see how the different solutions 
are related. 

The particular solution found by using the general- 
ized inverse (A!@ is: / \ 

I l-q 

3 

I, =$ : 

1 1 
q--l+p 

M(tiM)-’ 

3 -1 cl--l-l-P 

-1 3 

1-P -1 1 1 ,I 1-q l---p 1 

/ \ 
2q + 2p - 1 

1 -2q + 2p + 1 
=;i- 2q-2p-F1 =P1 . 

,-2q -2p-G 

Now P= ICI-1 1 1 -11’ + PI for some k. Indeed if 

k = 4pq - i?, - 2p + ‘1 ’ * 
4 

, a solution is found. 

This computation suggests that a max entropy 
solution can always be found for k from the particular 
and homogeneous solutions: (i.e.) using the reduced form 
of &, the max entropy solution for the pi in terms of ai 
(notation as in [9]), becomes 

/ \ 
a1 -1 
a2 1 

= 
a3 

k1 +p1 

u2a3 
-1 

L I a1 

Let the rows of # be b, , b2 , b3 , b,. Then 
al= -k + b, , a2 = k + b, , u3 = k + b3 and then 
(k + bJ(k + b3) = (-k + b,)(-k + bl), from which k 
can be easily found and thus al , u2 and u3. 

For this M’ matrix then, the only way in which 
S”*P1 = S*P is for S*(-1 1 1 -1)’ to be zero. This also 
means that S should lie in the row space of M’ and equal 
its own projection on this row space. If N is a square 
matrix, then finding det(N) quickly produces an answer. 
Otherwise, it is probably easier to compute the reduced 
form of & and check if S*Wi = 0 for each of the Wi 
computed from the last n-r column vectors of the 
reduced form of hl’ by adding . i-1 00 *** 0) 

(0, -1 , 0 * * + 0). . . (0, 0, * * * -1) to thex’ ’ 

3.3 As another example, consider the following scheme 
where Ax : x is a bird, Bx : x flies, and consider the 
entailment: 

A (Tweety) 
V x [Ax --) Bx] 

B (Tweety) 

Note that this is not the same as the sequence: 
3yA(y) , Vx[A(x) + B(x)] , (3z)(Bz) represented by 
the M matrix in [9]. Nor is it the same as 

S1 : A (Tweety) 
S, : A (Tweety) --* B (Tweety) 

S3 : B (Tweety) , 

which was also investigated in [9] this. Let p , q and T 
be the probabilities of S, , S2 and S3 respectively. So p 
represents the probability Tweety is a bird (we are 
assuming a universe of animals for example), q 
represents the probability that all birds fly and T 
represents the probability that Tweety flies. 

Now M, the matrix of consistent vectors becomes, 

I 1100100 
1011000 1 

110 10 1101 

1 1 0 0 1 0 0 , which can be reduced to 

~~~e~~~~~~ i i fi -1 :I. ThereforePi 

will not equal P. 

Consider B*Wi, where w1 = (0 0 1 -1 0 0 0) , 
w2 = (0 10 0 -10 0) , w3 = (-1 ) 1 , 1 ) 0 0 -10) , 
w4 = (-1 1 10 0 0 -1) are the solutions to the homo- 
geneous equations. (B = (1 0 1 0 1 1 0), following 
Nilsson’s terminology here). 
Bw, = 0 , B.w2 = -1 , B*w3 = -1 and B*w, = 0. 
Therefore B-P will not equal B-P. Indeed, the projec- 
tion of B on the row vectors of hr( is (.8 .6 .6 .6 .6 .4 .4), 
(not a very good approximation). 
The solution using the generalized inverse discussed ear- 

lier is r’ = 2-l-p-l-q 
5 . 

The max entropy solution is 

very complicated resulting in 

r= (P+4)+~(P+c1)2+4(l--P)(1--cl) 
4 

When p = q = 1, T = I, unlike the solution T’, which 
equals .8, not a very sensible result. When 

1 
P =q=o,rLf a.nd r = T. These values represent 

the probability tweety flies if yt, is not a bird and not all 
3+P birds fly. When q = l,r’ = - and T = 

5 -$ + PI* 

The fact that T is greater than p is reasonable as this 
mode1 allows for a non-zero chance that non-birds fly. It 
is bounded below by % because if p = 0 (Tweety is not a 
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bird), T = %. 
Note that the maximum entropy solution here does 

have some properties which are more desirable than 
using the system 

S1 : A (Tweety) 
S2 : A (Tweety) --* B (Tweety) 

S3 : B (Tweety) 

and the scheme in [S] giving r = E 
1 2 + (I - y. When 

P =q=o,r is undefined and when 

p=o,r=q--$, which could be negative. Of course, 

which solution is the more acceptable depends on the 
chosen interpretation in probabilistic logic of the prob- 
lem being considered. If you have an animal and know 
the probability of its being a bird, and know the proba- 
bility that all birds fly and wish to discover if that 
animal flies, then the scheme given here in example 3.3 is 
reasonable. 

4 Conclusions 

This note has given the conditions under which the 
maximum entropy and projection methods discussed in 
[9] produce the some entailment results. These condi- 
tions can be applied without actually computing the two 
solutions and comparing them. 

It might be interesting to obtain an idea from the 
general solution to the type of underconstrained equa- 
tions encounted here to study p(S). That is, the possible 
solutions for p(S) are S*(ILI( tiM)-‘V + (H - I)2 for 
any vector 2 and this bracketed value may be computed 
with relative ease. The maximum entropy solution will 
be included amongst these values. 
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