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Abstract 

Cognitive psychology has uncovered two effects that have 
altered traditional views of human classification. Basic 
level effects suggest that humans prefer concepts at a par- 
ticular level of generality, while typicality effects indicate 
that some instances of a class are more readily recognized 
as such than others. This paper describes a model of mem- 
ory that accounts for basic level effects, typicality effects, 
and interactions between them. More generally, computer 
experiments lay the groundwork for a formal unification 
of basic level and typicality phenomena. 

2. Concept Models and Hierarchies 

Many psychological and AI studies have assumed that con- 
cepts are logical summaries of features that are common 
t*o concept members; instances are classified by insuring a 
‘perfect’ match between a concept and the instance. This 
classical view [Smit81] implicitly treats each instance as 
‘equal’, but typicality effects suggest that humans do not 
treat instances equally. In response, a number of represen- 
tations have been proposed that reflect the variable impor- 
tance of concept features [Rosc75]. In particular, probu- 
bilistic representations [Smit81] associate a probability or 
weight with each concept feature. 

1. Introduction 

A significant finding in cognitive psychology is that within 
hierarchical classification schemes there is a basic or pre- 
ferred level of human classification. In a forced naming 
tusk [Rosc~~, Joli84], a subject identifies a pictured item; 
when shown a picture of a particular collie, subjects will 
respond that it is a dog, not a collie, mammal, or animal. 
In a target recognition tusk [Rosc~~], a subject will more 
quickly confirm that a pictured collie is a dog than confir- 
mation will be given for collie, mammal, or animal. These 
two tasks indicate that for a hierarchy containing (collie, 
dog, mammal, animal), dog is the basic level concept. 

A second influential class of phenomena are typicality 
effects. Psychological studies indicate that some members 
of a class are treated preferentially or as more typical of a 
class. For example, in a target recognition task a robin will 
be recognized as a bird more quickly than will a chicken. 
The evidence for a typicality ranking has accrued from 
many sources [Merv81, Smit81, Rosc78]. 

Recognition using a probabilistic concept involves sum- 
ming the weights of concept properties that are present in 
an instance. Independent cue models only record proba- 
bilities of individual properties (e.g., P(COLOR = red)); 
the time required for summation to reach a predefined 
threshold varies with object typicality, thus accounting for 
target recognition data. However, independent cue mod- 
els are limited; summing over primitive property weights 
constrains recognition to linearly separable classes. This 
has motivated relational c’zLe models that record probabil- 
ities for property combinations (e.g., P(COLOR = red A 
SIZE = large)) and exemplar models [Smit81, Kib187] that 
do not represent concepts by abstractions (probabilistic or 
logical), but by selected instances. Exemplar models are 
equivalent to relational cue models since instances can be 
used to compute joint-property distributions as needed. 

This paper describes a cognitive model of hierarchical 
classification and memory that accounts for basic level 
and typicality effects during target recognition and forced 
naming tasks. Apparently this is the first computational 
model of any basic level effect. In addition, typicality ef- 
fects emerge from the same classification procedures. In- 
teractions between basic level and typicality phenomena 
are also demonstrated in computer experiments. These 
findings further confirm the model’s psychological consis- 
tency and suggest unexplored behavioral possibilities. 

Computational considerations motivate two models of 
individual concepts beyond the independent cue type: re- 
lational cue and exemplar models. However, another view 
[Fis87a] is that th e weaknesses of independent cue models 
can be overcome by concept organizations. This view is 
illustrated by a conceptual clustering system, COBWEB 
[Fis87a, Fis87b], which builds probabilistic concept trees. 
Each node of the tree, Nk, contains conditional proba- 
bilities for observed attribute values, Ai = Kj. For ex- 
ample, Figure 1 shows a tree over U.S. senators, where 
each senator is described by a legislative voting record - 
i.e., 14 attribute values (e.g., Contra-aid=yes). Only a 
few probabilities, P(Ai = V&]Nk), are shown, but prob- 
abilities conditioned on node membership are stored for 
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Figure 1: Probabilistic tree of senate voting records 

each attribute value. Values along certain attributes (e.g., 
Budget-cuts) tend to distinguish members of a subclass 
(N2) from a higher-level node (‘conservatives’), although 
there must be agreement on other attributes (e.g., Contra- 
aid) for objects to have been grouped together under ‘con- 
servatives’. Object classification proceeds along a path of 
best matching nodes - i.e., those that maximize a summa- 
tion of individual attribute value probabilities. 

Probabilistic concepts can be organized so as to optimize 
prediction of a single ‘teacher-specified’ (perhaps nonlin- 
ear) class attribute as with ID3 [Quin86] decision trees. 
However, COBWEB does not regard any attribute as spe- 
cial - rather, COBWEB trees facilitate good prediction 
along many attributes. In theory, probabilistic concept 
trees capture the the same information found in relational 
cue or exemplar models. Ideally, the tree should capture 
joint probabilities that occur most frequently or are most 
‘important’, thus improving classification accuracy and/or 
efficiency. Probabilistic concept trees are best viewed as 
efficient implementations of exemplar and relational cue 
models, rather than as alternatives to them. This view 
opens the way for a unified account of ’ basic level and typ- 
icality effects - behaviors traditionally treated as disparate 
because of distinctions drawn between representations of 
individual concepts (i.e., the scope of typicality) and 
cept hierarchies (i.e., the scope of basic level effects). 

3. Hierarchical Classification 

con- 

Basic level effects suggest that there is a preferred level 
in human classification hierarchies. Several measures 
[Rosc~~, Jone83] for predicting the basic level have been 
proposed. Most recently, Gluck and Corter [Ghc85] have 

formulated category utility, which presumes that the ba 
sic level maximizes ‘predictive ability’. For example, very 
few correct predictions can be made about an arbitrary 
animal, but those that can be made (e.g., animate) ap- 
ply to a large number of objects. In contrast, knowing 
something is a robin assures many predictions, but they 
apply to a small number of objects. The basic level con- 
cept (e.g., bird) is where a tradeoff between the expected 
number of correct predictions (e.g., ‘has-feathers, beaks, 
flies) and the proportion of the environment to which the 
predictions apply, 

P(Nk)E(# correct predictions]l\rk), 

is maximized. If P(Ai = V&lNk) is the probability that 
an attribute value will be predicted and this prediction is 
correct with the same probability then this measure can 
be further formalized as: 

fV%) xi cj f’(Aa = &jlNk)2. 
Gluck and Corter verify that category utility correctly pre- 
dicts the basic level (as behaviorally identified by human 
subjects) in two experimental studies [Hoff83, Murp82J.l 

COBWEB uses category utility as a partial match- 
ing function to incrementally guide object incorporation 
at each successive level of a classification tree. Despite 
its psychologically-motivated underpinnings, COBWEB’s 
strict top-down classification procedure does not jibe with 
findings that an intermediate or basic ‘entry point’ is pre- 
ferred by humans. To account for basic level effects the 
classification scheme used by COBWEB is modified along 
two dimensions of classification [Rosc~~]. The horizon- 
tal dimension is concerned with object placement among 
contrasting categories at the same tree level. The verti- 
cal dimension is concerned with object placement among 
categories at various levels of generality. 

3.1. The Horizontal Dimension 

A number of systems [Lebo82, Kolo83] use attribute-value 
indices to constrain classification along the horizontal di- 
mension. Indices filter out nodes that bear little similarity 
to a new object. A similar approach can be developed in 
the COBWEB framework. In particular, the best host for 
a new object is the category that maximizes 

P(Nk) xi P(Aa = Kj lNk)2. 3-2 

This measure favors the class whose attribute-value dis- 
tributions are most reinforced by the new object. This 
function is not guaranteed to identify the same best host 
as 3-1, but empirical analyses indicate that there is very 
close agreement [Fis87a]. Using Bayes rule, 3-2 equals: 

‘Category utility is actually the expected &crease in 
dictions. However, for our purposes, 3-1 is equivalent. 

correct pre- 
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P(MammaljWarm-bloo 

Figure 2: Index placement along the ‘vertical’ dimension 

Intuitively, P( Nk IAa = Vij) is the predictiveness of Vij 
towards class Nk, while P(Ai = VijlNk) is the predictubil- 
ity of Vij among Nk members. P(Ad = Vij) is Vij’S pre- 
dictability at the root of a classification tree. P(A; = V;rj) 
resides at the root, P(Ai = &j ]Nk) at Nk, and P(Nk IAi = 
Vij) weights the index between the root and Nk. 

3.2. The Vertical Dimension 

Classification efficiency can also benefit from indices that 
‘jump’ levels of a hierarchy. In particular, attribute value 
indices are directed at nodes that maximize the collocation 
[Jone83] of Ej: P(Nk IAa = V;rj)P(Aa = V;:j ]Nk). This is 
a tradeoff between the predictiveness and predictability 
of Vaj with respect to Nk. Collocation-maximizing nodes 
tend to be the most specific nodes for which a value is still 
significantly predictive. 

Figure 2 illustrates how indices may skip levels. The 
collocation for Backbone is maximized at Vertebrates: 
P(Vertebrate]Backbone) x P(Backbone/Vertebrate) = 
1.0 x 1.0 = 1.0. However, the index for warm-blooded 
is directed at the subordinate node Mummuds since collo- 
cation is maximized there: 0.67 x 0.98 = 0.66. Moreover, 
each node [e.g., Vertebrates) is the root of its own sub- 
tree; indices &hose probabilities are conditioned on subn- 
ode membership are also defined [Fis87a]. However, in this 
paper there is little need to detail the recursive case. 

After adding variance on the vertical dimension, recog- 
nizing an object 0 = {Al = Vljl, A2 = V2jz, . . ..A. = 
Vmjm} is a matter of finding the node that maximizes 

total-predictiveness = Ci P(NkIAi = Kj). 3-4 

Intuitively, this is the node that is most predicted by the 
object’s attribute values. Because indices are directed at 
collocation maximizing nodes, P(Ai = Qj ]Nk) tends to be 
high (e.g., close to 1.0). In addition, P(Ai = Kj) is con- 
stant across all nodes. For these reasons, P(Aa = I$) and 
P(Ai = Vij ]Nk) have little impact on best host selection; 

Figure 3: Partially-indexed tree to test basic level effects 

in practice 3-4 closely approximates 3-3. Classification of 
an object, 0, is summarized by: 

FUNCTION Classify (0, Root [of tree]) 
total-predictiveness(Nk) +O for each Nk 
FOR each L$j (E 0) 

FOR each L$j index from Root (to Nk> 
increment total-predictiveness(Nk) 

by P( Nk IAi = Kj 3 Root) 
Best + N with max[total-predictiveness(Nk.1 
IF terminate-condition THEN RETURN(Best) 

ELSE Classify (0, Best) 

Recursion may terminate when a leaf is reached or when 
a desirable prediction can be made with certainty. 

4. An Account of Basic Level Effects 

The indexing scheme’s consistency has been demonstrated 
with findings from two psychological studies of basic level 
effects. In one study [Hoff831 subjects learned a classi- 
fication tree over ‘nonsense’ objects like the one shown 
in Figure 3. Each class (node) had a ‘nonsense’ name 
that subjects used to identify class membership in target 
recognition tasks. Objects were defined in terms of three 
attributes: the shape of the inside subcomponent with val- 
ues square, triangle, star, or circle (encoded as 0, 1, 2, and 
3, respectively); the outer shape with (encoded) values of 
0 and 1; and the shape of the bottom with values 0, 1, 2, 
and 3. For the tree of Figure 3 subjects consistently ‘pre- 
ferred’ level 2 (e.g., Nz); the root is level 0. In addition 
to this tree, two separate subject groups were trained and 
tested on trees with different basic levels. 
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The trees were encoded as probabilistic concept trees 
as shown for the leftmost portion Figure 3’s tree. Value 
probabilities are only shown at nodes where the value’s 
collocation is maximized.2 The object {OUTER = 0, 
BOTTOM = 0, INSIDE = 0) is first recognized with re- 
spect N2 since this node maximizes 3-4: P(N2lOUTER= 
0) + P(N211NSIDE= 0) = 0.5 + 1.0 = 1.5. 

For each of the three variants of the Hoffman and 
Ziessler study, the model identified objects with respect to 
the appropriate basic level node. The model is also con- 
sistent with experiments by Murphy and Smith [Murp82]. 

5. An Account of Typicality Effects 

Humans also exhibit preferences along the horizontal di- 
mension as evidenced by typicality studies. In this regard, 
the indexing scheme is consistent with findings by Rosch 
and Mervis [Rosc75]; they demonstrate that typicality in- 
creases with the number of features shared with other ob- 
jects of the same class and varies inversely with the number 
of features shared with members of contrasting classes. 

5.1. Typicality and Intra-Class Similarity 

Rosch and Mervis used the ‘nonsense’ strings of Table la 
to demonstrate the relation between typicality and intra- 
(within-) class similarity. Members of category A vary 
in the extent that they overlap with other members of 
the same class. For example, on average the symbols of 
‘QBLFS’ appear in 2 other strings of class A, while the 
symbols of ‘HMQBL’ are shared by 3.2 other members of 
class A. The inter-class overlap between members of A and 
B is constant (i.e., no overlap). Subjects learned to distin- 
guish categories A and B and then participated in target 
recognition tasks for members of A. Recognition time de- 
creased as within-class overlap increased, supporting the 
hypothesis that typical instances shared more properties 
with other members of the same class. 

To model these effects some presumptions must be made 
about how categories A and B can be hierarchically struc- 
tured. This did not pose a problem in modeling basic level 
effects, since classification trees were explicitly taught. In 
contrast, typicality studies assume that ‘flat’ categories 
are taught, but the model assumes that they are stored as 
a hierarchy of probabilistic concepts. At least two princi- 
ples might dictate the hierarchical organizations used by 
humans to encode A and B. Subjects may segregate in- 
stances based entirely on the external label (A or B) or 
they may base an organization, as COBWEB does, on the 
similarity ‘of objects irrespective of external label. Pre- 
sumably, these represent the extremes of possible organi- 
zational principles. Conveniently, since there is no over- 

2The level 1 nodes do not maximize collocation for any value. In 
COBWEB such a node would not be created during concept forma- 
tion or would be removed once all arcs to it were lost. However, the 
Hoffman and Ziessler study trained subject’s on this classification 
(i.e., a tutored learning task) - the objective here i,s to simply test 
recognition on an existing tree, regardless of how it was learned. 

- 

E 

A 

- 

B 

- 
- 

Letter 
String 

Intra 
Over- 
lap lap 

JXPHM low 4KCTG high 
QBLFS “ 
XPHMQ med. 
MQBLF “ 
PHMQB high 
HMQBL “ 
CTRVG 
TRVGZ 
RVGZK 
VGZKD 
GZKDW 
ZKDWN 

Letter 
String 

Inter 
Over- 

Typi- 
cality 

(14 

GKNTJ “ 
4KC6D med. 
HPNSJ “ 
HPCGB low 
HPNWD “ 
BSJKT 
8SJ3G 
SUJCG 
4uzc9 
4UZRT 
MSZR5 
(3 

zow 
“ 

med. 
“ 

high 
‘< 

Table 1: Letter strings used to test typicality. 

lap between categories A and B, COBWEB’s approach of 
grouping similar objects results in the same classes (at the 
top level) as those based solely on external label. 

The tree of Figure 4 classifies instances with respect to 
the node that maximizes 3-4; this is N1 for each class A 
member. At Nl a prediction can be made that a recog- 
nized instance is in class A since P(Cla.ss=A(N1) = 1.0. 
However, symbols that are relatively unique among class 
A members will cause certain instances to activate arcs to 
subordinate nodes. In turn, this will detract from the 
total evidence with which N1 is predicted. For exam- 
ple, ‘HMQBL’ h as symbols common to most other class 
A members and it predicts Nl with a score of 4, while 
‘QBLFS’ has several relatively unique symbols, which re- 
duces prediction of N1 to 2. A strong assumption of the 
model is that the time required to reach a node is inversely 
proportional to the total predictiveness towards that node. 
Simulated time is computed as 

time = distance/rate = l.O/total-predictiveness, 

The distance between any two nodes that are connected 
by one or more indices is assumed to be 1.0. ‘HMQBL’ is 
recognized in 1.0/4 = 0.25 time units. Figure 5 indicates 
that in both the human and simulated case, instances with 
greater intra-class overlap are recognized more quickly. 

5.2. Typicality and Inter-Class Similarity 

Rosch and Mervis explored the impact of inter- (between- 
) class similarity using the data of Table lb; within-class 
overlap was held constant for class A members, but the 
extent to which class A members overlapped with B var- 
ied from 0 (‘HPNWD’) to 1.3 (‘4KCTG’). Subjects were 
taught to distinguish categories A and B; category A in- 
stances that shared few symbols with strings in category. 
B were recognized more quickly (i.e., were more typical). 
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P(l .O) 
H(l .o) 
M(l .o) 

Figure 4: Partial tree that 
of intra-class similarity 

models typicality as function 

Fisher [Fis87a] used two classification trees to test the 
indexing scheme: one segregated categories A and B 
into different subtrees and the second tree was formed 
by COBWEB, which grouped instances based on simi- 
larity. Recognition using both trees agreed with Rosch 
and Mervis’ findings. Figure 6 shows part of the indexed 
tree produced by COBWEB. Inter-class similarities tend 
to diffuse evidence across lateral subtrees or a value may 
not be predictive of any subnode (i.e., collocation is max- 
imized at the root). For example, HPNWD predicts N14 
with a total predictiveness of 2.67 at which point a pre- 
diction of category A can be made. In contrast, 4KCTG 
predicts Nl with a score of 1.8; K predicts a subordinate 
node, and G and T are not predictive of any node. Even 
when recognition is made with respect to Nl, a predic- 
tion of class membership (A or B) cannot be made with 
certainty, causing the classification process to recurse. 

5.3. Summary 

A strong assumption of the computer model is that the 
time to transit from one node to a descendent is inversely 
proportional to the total predictiveness of attribute value 
indices that are activated during recognition. The model 
predicts that objects with less intra-category similarity 
will be recognized slowly (i.e., be less typical) because rela 
tively unique attribute values will diffuse index activation 
across several levels (i.e., the vertical dimension) of the 
classification tree. Instances with high inter-category sim- 
ilarity will be be less typical because common inter-class 
values will diffuse activation across lateral subtrees or will 
not be predictive at all ( i.e., the horizontal dimension). 

Human Response Time (ms) 

llooj n 
800 

1 

0 0.5 1 

Simulated Time 

1.5 

Figure 5: Simulated and human recognition times of letter 
strings 

nteractions Between ask Level and 
Typicality EfFects 

Studies by Jolicour, Gluck, and Kosslyn [Joli84] qualify 
the human preference for the basic level. In particular, 
an instance (e.g., a particular chicken) may be sufficiently 
atypical of its basic level class (e.g., bird) that it will be 
first recognized as an instance of a subordinate class (e.g., 
chicken). The model explains the impact of atypicality on 
basic level preference. Low intra-category overlap results 
in greater prediction of subordinate nodes. In addition, 
there is a simultaneous decrease in prediction of the basic 
level no‘de for atypical objects due to less intra- and more 
inter- category overlap. These tendencies may coact so 
that classification is initiated at a subordinate level. Un- 
fortunately, experimental results in easily encoded artifi- 
cial domains are lacking. However, Fisher [Fis87a] gives a 
speculative demonstration of the model’s consistency in a 
domain of thyroid patient case histories. Several cases are 
first classified 
atypical cases 

at 
by 

a subordinate 
the intra- and 

node; 
inter- 

these are 
similarity 

the most 
criteria. 

A second interaction between basic level and typicality 
effects is suggested by the model. Traditionally, target 
recognition tasks that test for typicality have focussed on 
typicality with respect to a basic level category [Rosc75]. 
Because classification usually passes through the basic 
level, an expectation is that recognition with respect to 
a subordinate node will be mediated by the the object’s 
typicality to the basic level, as well as the subordinate 
node. For example, in the domain of congressional vot- 
ing records, the tree of Figure 1 shows that N2 is subor- 
dinate to ‘conservatives’. Nz classifies objects that tend 
to be atypical conservatives like ‘Hollings’ (a southern- 
democrat). As expected, ‘Hollings’ is recognized slowly 
as a ‘conservative’ since he is (relatively) atypical of this 
class. However, ‘Hollings’ is also slow to be recognized as 
a member of N2 even though he is typical of this class (by 
intra- and inter- similarity criteria)! The model predicts 
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P( 1.0) 

HPNWD 

4KCTG 
Figure 6: Partial tree that models typicality as function 
of inter-class overlap. 

that atypicality with respect to a basic level concept can 
offset advantages associated with subordinate node typi- 
cality. Apparently, there is no psychological data to sup- 
port this hypothesis, but it may bolster, weaken, or alter 
claims for hierarchical representations of category struc- 
ture should psychological-data be forthcoming: 

7. Concluding Remarks 

This paper presents a memory model that is consistent 
with data on human basic level and typicality effects. The 
model draws significantly from previous investigations of 
the basic level, notably Gluck and Corter [Gluc85] and 
Jones [Jone83]. However, this work demonstrates how 
explicit calculation can be ‘compiled’ into an indexing 
scheme. Apparently, this is the first computational ac- 
count of any basic level effect. In addition, the model ac- 
counts for typicality data and basic level/typicality inter- 
actions. The model also predicts a previously unexplored 
interaction between basic level and typicality effects. Fi- 
nally, the COBWEB framework offers a unique opportu- 
nity for speculating on the evolution of basic level and 
typicality effects during learning. Learning with indices is - 
reported in [Fis87a], but it has been downplayed here so 
that a clear picture of the static memory structure could 
be described and evaluated. Furthermore, there is little 
psychological data on which to base claims for basic level 
and typicality development. Thus, there are several areas 
in which the model can guide experimentation. 
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