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Abstract 
The QSIM algorithm is useful for predicting the 
possible qualitative behaviors of a system, given 
a qualitative differential equation (&DE) describ- 
ing its structure and an initial state. Although 
QSIM is guaranteed to predict all real possibili- 
ties, it may also predict spurious behaviors which, 
if uncontrolled, can lead to an intractably branch- 
ing tree of behaviors. Prediction of spurious be- 
haviors is due to an interaction between the qual- 
itative level of description and the local state-to- 
state perspective on the behavior taken by the 
algorithm. 
In this paper, we describe the non-intersection 
constraint, which embodies the requirement that 
a trajectory in phase space cannot intersect itself. 
We develop a criterion for applying it to all sec- 
ond order systems. It eliminates a major source of 
spurious predictions. Using it with the curvature 
constraint tightens simulation to the point where 
system-specific constraints can be applied more 
effectively. We demonstrate this on damped oscil- 
latory systems with potentially nonlinear mono- 
tonic restoring force and damping terms. Its in- 
troduction represents significant progress towards 
tightening QSIM simulation. 

1 Introduction 
QSIM [Kuipers, 19861 qualitatively reasons about systems 
of autonomous qualitative differential equations (&DES). 
Although many well known techniques already exist for 
solving systems of ordinary differential equations (ODES), 
they are applicable only to ODES of restricted forms. In 
real applications, however, such forms are rare. On one 
hand, incomplete knowledge often renders &DE models 
more realistic than exact ODE. On the other hand, even 
when we do have exact ODES, they are usually in unsolv- 
able forms. QSIM, always predicting all real solutions to 
a system of &DES (in the form of qualitative descriptions 
of the temporal behavior of parameters), has the potential 
to deal with these cases. 

Taking a phase space view, mathematicians have been 
able to develop analyses that yield useful global charac- 
teristics (such as stability) of solutions to ODES without 
explicitly solving them. However, in applications such as 
monitoring and control where thresholds are a main con- 
cern, such techniques are insufficient. Simulation type 
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techniques, such as QSIM, would be necessary. In such 
cases, QSIM predictions exhaust all possible manners in 
which various thresholds might be crossed. 

Though a powerful algorithm, a combination of the local 
state-to-state perspective and the qualitative level of de- 
scription taken makes it possible for QSIM to predict spu- 
rious solutions. In an analysis of the &DE for the damped 
spring, Lee et al. [1987] identified various new types of con- 
straints (higher derivative, energy and system property) for 
tightening QSIM simulation. Using early versions of these 
constraints, they were able to arrive at all and only the 
correct predictions for the linear damped spring. However, 
success of these early versions with potentially nonlinear 
damped springs was not as complete. 

Kuipers and Chiu [1987] introduced a generalized higher 
derivative constraint in the form of curvature constraints. 
They were able to eliminate a major source of spurious 
predictions in QSIM, namely, the lack of derivative infor- 
mation, sucessfully. Though a powerful and necessary con- 
straint for simulating systems of second order and higher, 
there are many cases where curvature constraints alone do 
not suffice to make predictions tractable. 

In this paper, we describe 
the non-intersection constraint (short for non-intersection- 
of-phase-space-trajectory constraint). It is not system- 
specific in the sense that its derivation does not depend on 
the specific system QSIM works on. It is derived from a 
mathematical theorem that governs all systems the current 
QSIM deals with and applies equally to them. It specifies 
that phase space trajectories do not cross themselves and 
eliminates a major source of spurious predictions. We have 
developed a criterion for applying it to all second order 
systems. Using it with the curvature constraint tightens 
simulation to the point where system-specific constraints 
(such as energy and system property constraints) can be 
more effectively applied. This is demonstrated on damped 
oscillatory systems. 

In the rest of this paper, we first introduce the phase 
space framework and how QSIM predictions fit into the 
picture. Next the non-intersection constraint is described. 
Then we describe our current implementation and results 
of applying it to damped oscillatory systems. Its relation- 
ship to previously introduced constraints and other issues 
are discussed. Finally, related work by Sacks [1987] and 
Struss [1987] are described. 

2 The Phase Space View 
The non-intersection constraint is based on the stan- 

dard phase space representation for systems of first-order 
differential equations. An nth order equation can always 
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Figure 1: Some phase portrait of oscillatory systems. 

Part of a QSIM Prediction 
----------------========= 
Time X V 

TO (0 X190) (0 INF) 
Tl x190 0 
T2 (0 X190) V87 
T3 0 (V87 0) 
T4 x191 0 
T5 (X191 0) V88 
T6 0 (0 V88) 
T7 x194 0 
T8 (0 X194) v91 

Figure 2: A QSIM prediction and its qualitative phase 
portrait. 

be reduced to a system of n first order equations. For ex- 
ample, the linear-damped spring, described by the second 
order equation ma = -Lx - ~21, is also described by the 
following system of two first order equations: 

Li = v 
Jc rl 6 = --x--v 
m m 

(1) 

(2) 

A phase space for a system is the Cartesian product of 
a set of independent variables (state variables) that fully 
describes the system. For second order systems, this cor- 
responds to a -phuse plane. A point in the phase space 
(phase point) represents a state of the system. Changes of 
the system over time define a trajectory through the phase 
space which tracks the state changes. Thus a trajectory is 
ageometrical representation of asolution to a systemI A 
phase portrait (or phase diagram) for a system depicts its 
phase space and trajectories and is a geometrical represen- 
tation of the qualitative behavior of the system. Figure 1 
shows some phase portraits of oscillatory systems. -From 
left to right, they represent solutions of steady oscillations 
and diminishing oscillations, respectively. For a more thor- 
ough treatment of the phase space representation, please 
refer to an elementary differential equations book such as 
[Boyce and diPrima, 19771. 

A QSIM prediction is a qualitative description of the be- 
havior of a solution to a given system (Figure 2). Thus it 
also describes the class of trajectories in the phase space 
which has the corresponding qualitative description. Us- 
ing the Cartesian product of the quantity spaces of the 

Figure 3: 
constraint. 

a b C 

(4 (b) 

Intersection criterion for the non-intersection 

state variables as the qualitative phase space, the trajec- 
tory of a QSIM prediction may be obtained by plotting the 
qualitative states predicted in this qualitative phase space. 

e Non-Intersection 
Constraint 

The mathematical foundation for the non-intersection con- 
straint is a theorem about trajectories of autonomous sys- 
tems which states that: 

A trajectory which passes through at least one 
point that is not a critical point cannot cross itself 
unless it is a closed curve. In this case the tra- 
jectory corresponds to a periodic solution of the 
system [Boyce and diPrima, 1977, p.379-3801. 

Its proof follows from the existence and uniqueness theo- 
rems for systems of first order differential equations and 
will not be given here. 

Autonomous systems are systems whose phase space 
representations do not explicitly involve the independent 
variable (time, in QSIM). Since QSIM deals with sys- 
tems that do not involve explicit time functions, this theo- 
rem applies to the QSIM domain. The idea of the non- 
intersection constraint, then, is to implement the con- 
straint imposed by this theorem onto trajectories of QSIM 
predictions. 

The difficulty with applying this constraint within QSIM 
is that the qualitative description of behaviors only speci- 
fies values in terms of a discrete set of symbols, i.e. land- 
mark values and the intervals between them. Therefore, we 
only know where the phase space trajectory is in a loose, 
qualitative sense. For example, in Figure 2, the precise 
trajectory from (X190,0) to (X191,0) is unknown. We 
only know that it reaches V87 before crossing the negative 
v axis. 

If a trajectory consists of a single critical point, it will 
be a quiescent initial state and we need not worry about 
constraining its simulation. If on the other hand the tra- 
jectory is a closed curve, it corresponds to cyclic behavior 
and an appropriate filter in QSIM takes care of the behav- 
ior. Thus, we need only concern ourselves with multi-state, 
non-cyclic behaviors. 
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Given this, the problem then is to detect intersections 
between segments of a trajectory. The simplest case occurs 
when a trajectory reaches a point (coordinates specified by 
a pair of landmark values) it passed through before. In the 
general case, however, the intersection point lies between 
landmark values. We prove its existence for second or- 
der systems by establishing a criterion for intersection as 
described below. 

Pick a trajectory segment with end points defining a 
rectangle which encloses all points of the segment. Con- 
sider segment UC enclosed in rectangle abed (Figure 3a). 
The segment partitions the edges of the rectangle into two 
sets, {ab, bc} and {ad, dc). If the trajectory later enters 
this rectangle through one edges set, say {ab, bc) at b, and 
exits through the other, in this case {ad, dc) say at d, an 
intersection must occur, even if we don’t know precisely 
where’. Establishing this condition for a trajectory is thus 
a criterion to conclude that the trajectory intersects itself. 
It is general and applies to all second order systems QSIM 
deals with. 

4 Pmplementation 

The non-intersection constraint has been implemented us- 
ing the criterion for intersection just described. An inter- 
esting source of complication is that phase ‘points’ can be 
points, intervals or areas depending on whether the state 
variables are at landmarks or in intervals. Consider the 
case of Figure 3b. The state variable x is in an interval 
at one end of a trajectory segment and at a landmark at 
the other end, and vice versa for the variable V. In this 
case, the edge sets satisfying the intersection criterion are 
{af,fe} and {bc, cd}, rather than {af,fe) and {ac,ce). 
Other sources of complication are discussed in [Lee and 
Kuipers, 19881. 

The non-intersection constraint is applied to all legiti- 
mate phase spaces of a system. This means that for the 
damped spring, the constraint is applied to each of the z- 
V, v-u and U-X phase spaces 2. This is necessary because of 
the local point of view of limit-analysis-based qualitative 
simulation methods. Simply applying the constraint to, 
say, the x-w space would not ensure that the parameter a 
behaves properly. 

5 An Example 

We have chosen the damped spring as an example to il- 
lustrate the power of this constraint. The reason is that 
the damped spring is a representative second order system 
with versions of varying complexity (from linear to nonlin- 
ear): 

‘This is a direct consequence of the Jordan Curve Theorem 
which says that a closed curve in a plane divides the plane into 
exactly two regions. Refer to [Christenson and Voxman, 19771 
for details. 

2Normally, the t-2r space is considered the phase space for 
a damped spring. In fact, though, any collection of variables 
that is a linearly independent set and that fully describes the 
system can be the phase space. 

value of Icm 

I I 
v2/4 v2 

0 0 

a lags x o----4 

t 
a leads x 

180° out of phase 

Figure 4: Correspondence between relative values 
and q2 and behavior of linear damped spring. 

overdamned 0 ---+ 

? 
critically damped 

underdamped 

linear damped spring mu = -kx - qw 
monotonic spring force mu = -f(x) - qv 
monotonic damping 
general damped spring 

of km 

These same equations also describe damped oscillatory 
terns in other domains (e.g. circuits and control). 

sys- 

Damped spring systems have two types of behaviors, 
purely oscillatory and reaching quiescence. The division 
between these two types is, in the linear case, governed 
by the relationship between 4km and q2 (Figure 4). Its 
behavior is purely oscillatory (underdamped) if 4km > q2 
and reaches quiescence otherwise (overdamped and criti- 
cally damped). For purely oscillatory behaviors, different 
phase relationships between x and a are possible and are, 
in the linear case, governed by the relationship between 
km and q2. 

Using the non-intersection constraint together with a 
curvature constraint [Kuipers and Chiu, 19871 on the 
damped spring systems has made predictions tractable. 
Three sets of behaviors are predicted. One set consists of 
strictly expanding oscillations with varying phase relation- 
ship between a and x. Another consists of strictly dimin- 
ishing oscillations with varying phase relationship between 
a and x. The third consists of behaviors reaching quies- 
cence after arbitrary number of diminishing oscillations. 

Among these three sets, the expanding set is elimi- 
nated when energy constraints are included [Lee et al., 
19871. The system property constraints impose consis- 
tent x-u phase relationships on the remaining two sets. 
Since behaviors with overdamped and critically damped 
approaches to quiescence correspond to 4km 5 q2, filter- 
ing the behaviors in the third set requires imposing con- 
straints of a numerical nature. The quantitative reasoning 
methods of Kuipers and Berleant [1988] should make it 
possible to apply partial quantitative knowledge to filter 
these behaviors. 

The behaviors of the damped spring system that sur- 
vive the combined curvature, non-intersection, energy and 
system-property constraints can be classified as follows: 
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Intersection in R-X portrait. 

Rectangle formed by the phase 
‘points’: 

CR256 01 
C(B R256) X1911 

Edge sets: 
1. (CC% 0) (17 (0 A256))I 

C(A 0) (X (X191 0))13 
2. ([(A R256) (X (X191 O))II 

Reenters rectangle through 
edge set 1 at CCL3 13256) 61. 

Exits through edge 
CR256 (X191 8)l. 

set 2 at 

Figure 5: The non-intersection constraint at work. 

Overdamped or critically damped approach to quies- 
cence. 
Diminishing oscillations, with one of three constant 
x-u phase relations. 
Diminishing oscillations, with varying x-u phase rela- 
tions. 
Diminishing oscillations, reaching quiescence after an 
arbitrary finite number of oscillations. 

All behaviors can be accounted for for each version of 
the damped spring. For the general damped spring and the 
monotonic damping cases, behaviors from all four classes 
are possible. For the monotonic spring force and linear 
cases, behaviors from classes 1,2 and 4 are predicted. How- 
ever, only classes 1 and 2 represent possible behaviors in 
the linear case. Spurious predictions are due to limitations 
on the current form of the system property constraint. In- 
corporating Kuipers and Berleant’s [1988] quantitative rea- 
soning methods should allow us to eliminate them. Output 
showing the non-intersection constraint at work is included 
in Figure 5. 

iscussion 
Although the M+ functional relationship is defined to be 
time invariant in QSIM, insufficient mechanisms are incor- 
porated to ensure that QSIM treats each M+ function con- 
sistently. This is the reason why Lee et al. [1987] had lim- 
ited success with nonlinear versions of the damped spring. 
For nonlinear versions of the damped spring, the envelopes 
derived for a from the corresponding energy equations are 
too weak to constrain a appropriately. Thus QSIM pre- 
dicts that a can behave more or less arbitrarily. This, 
however, gives rise to behaviors with inconsistent M+ func- 
tions which violate the non-intersection constraint. Apply- 
ing the non-intersection constraint eliminates these spuri- 
ous predictions. 

In comparison with previously introduced constraints - 
curvature, energy (Lyapunov) and system property, the 
non-intersection constraint is not system-specific in that 
its derivation does not depend on the particular system 
QSIM works on. Its form remains the same and it applies 
equally regardless of the system. The curvature constraint 
is fundamental in the sense that it addresses QSIM’s lack 
of higher derivative information for performing local state- 

to-state predictions central to the algorithm. It is local in 
the sense that it does not address particular global sys- 
tem characteristics. In this sense, the non-intersection, 
energy and system property constraints are all global. 
The non-intersection and curvature constraints together 
tighten simulation to the point where constraints address- 
ing particular global system characteristics, such as energy 
and system property, can be applied more effectively. This 
represent significant progess towards tightening QSIM sim- 
ulation. 

The non-intersection constraint can impose, for exam- 
ple, the requirement that a trajectory must spiral inwards, 
but it does not guarantee that the spiral converges to the 
origin. It remains possible that the spiral converges to a 
limit cycle. This ambiguity can be resolved using an ap- 
propriately chosen Lyapunov (energy) function. 

Another possible approach for resolving this ambiguity is 
to apply aggregation methods [Weld, 19861 to abstract the 
decreasing oscillation to an amplitude decreasing towards 
zero. This abstraction transforms the ambiguity between 
asymptotically stable behavior and limit cycle to a much 
simpler limit-analysis type ambiguity. We need only ask 
whether a changing value (the amplitude) moving towards 
a limit (zero) reaches it or stops before reaching it. 

In the current paper, we have discussed only the non- 
intersection constraint applied between two segments of 
the same trajectory. In fact, the non-intersection con- 
straint applies more generally, prohibiting intersections be- 
tween any two trajectories in the same phase portrait. This 
last condition raises an important subtlety. Two trajec- 
tories within the same phase portrait represent different 
possible initial conditions of the same system. However, 
since a set of QSIM predictions may have different presup- 
positions about the system properties of the system being 
simulated, it is not guaranteed that two arbitrarily cho- 
sen QSIM behaviors may be legitimately placed into the 
same phase portrait. Thus, in order to apply the non- 
intersection constraint between two trajectories, we must 
be able to determine whether their presuppositions about 
system properties are compatible. We plan to address this 
problem in future work. 

elate 
Struss [1987] h as made a significant contribution to the 
mathematical foundations of qualitative reasoning through 
a careful analysis of qualitative algebras in terms of in- 
terval algebras. Kuipers [1988] elaborates on some of 
Struss’ points, and clarifies a misconception about QSIM. 
In his appendix, Struss makes an interesting analysis of 
the spring without friction (the simple spring) based on 
the phase space approach. Using purely qualitative argu- 
ments (symmetry) about trajectories of the simple spring, 
he arrives at the conclusion that the simple spring oscil- 
lates with constant amplitude. He then adds that this 
would make adding further equations like conservation of 
energy unnecessary. 

A point to note, however, is that the conservation of 
energy equation is not a further equation that needs to be 
added. It is derivable from the original description of the 
system. The process of deriving it would be liken to the 
process of his analysis. The difference is that knowledge 
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of algebraic manipulation is needed rather than of phase 
space trajectory analysis. 

Sacks’ work [1987] is impressive in automating the math- 
ematician’s analysis of precisely specified ODES. Using a 
combination of numerical and analytical methods (notably 
piecewise linear approximations), his PLR program pro- 
duce qualitative descriptions of solutions, in the form of 
phase diagrams, for nonlinear differential equations. His 
approach is to first make a simple piecewise linear approx- 
imation of the given equations and construct phase dia- 
grams for them. Then he refines his approximation, con- 
structs another set of diagrams and compares them with 
the previous ones to look for new qualitative properties. 
This process of refine-and-compare continues until no new 
properties are found. His program perfT,rms well on a va- 
riety of equations. 

Our work addresses the problem of obtaining qualita- 
tive behaviors from an incompletely specified &DE. When 
key functional relations are known only to lie in the class 
of monotonic functions, piecewise linear approximation is 
impossible, and Sacks’ powerful methods do not apply. 

8 Conclusions 
QSIM is a powerful inference mechanism for predicting 
qualitative solutions of &DES. However, if unconstrained, 
it is possible for QSIM to predict intractable spurious so- 
lutions. 

Kuipers and Chiu [1987] and Lee et al. [1987] have intro- 
duced various constraints to tighten the simulation process. 
They are useful, but are in general unable to tighten sim- 
ulation to the point where predictions become tractable. 

We have introduced a global, non-system-specific con- 
straint to eliminate a major source of spurious predictions. 
This is the non-intersection constraint for phase space tra- 
jectories which specifies that a trajectory cannot intersect 
itself. Using it and the curvature constraint together tight- 
ens simulation to the point where other global and system- 
specific constraints can be applied more effectively. This 
is demonstrated on damped oscillatory systems. 

Introduction of the non-intersection constraint repre- 
sents significant progress towards tightening QSIM simu- 
lation. Current implementation applies the constraint be- 
tween two segment of the same trajectory. Future work 
includes generalizing the constraint to apply between tra- 
jectroies and automating interpretation of behavior classes, 
for example, by aggregation of repeated cycles [Weld, 
19861, or by merging behaviors into families [Chiu, 19881. 
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