
uallitative Reasoning at Multi esolutions 

Seshashayee S. Murthy 

M T. J. W&son Research Center 

P.Q. Box 704 

Yorktown Heights, NY 10598 

Ah§tI%Nt 
In this paper we describe an approach to unify the various 
quantity spaces that have been proposed in qualitative 
reasoning with numbers. We work in the domain of 
physical devices, such as electrical circuits using lumped 
parameter models. We show how changing the quantity 
space can be achieved in the course of analysis and how 
this is similar to dynamically changing the resolution in 
analysis. We demonstrate the utility of this approach with 
two examples in the domain of circuit analysis. 

1. Introduction 
One of the chief aims of Qualitative Reasoning is to pro- 
vide a broad picture of the functioning of the world by 
taking a step back from the details. In this paper we show 
that in reasoning with numbers the aim is to break the real 
number line into broad, qualitatively distinct classes and 
describe the working of a device in terms of these classes. 

[JohaGa] defines the qualitative values a variable can 
have A0 . . . A, as representing disjoint abutting intervals 
that cover the entire number line. I define the set of val- 
ues {A, . . . A,) as the Q-space.’ 

The aim of Qualitative Reasoning is to reduce the 
cardinal&y of the Q-space while still retaining the infor- 
mation available from doing the analysis using quantita- 
tive values. This has two benefits. 
0 Complete quantitative information is not always 

available about the variables being analyzed. For 
example in design, one may not know the exact val- 
ues of all parameters in the design. Vet one has to 
make decisions using this partial information. In this 
case the partial information can be used by repres- 
enting the variables in a qualitative form. By using 
the smallest possible Q-space in which to perform the 
analysis we are able to deal better with incomplete 
information. 

a By using a qualitative description of the variables we 
can form a description of the working of a device that 
has a smaller number of states. Thus one can get a 

I would 
names. 

have liked to use the term Quantity Space but that has a 

better understanding of the workings of the device, 
at the desired level of detail. In essence using a small 
Q-space gives a broader picture of the workings of a 
device. 

It is therefore intuitively clear that the best approach is to 
use the smallest Q-space possible that will describe the 
working of the device. Unfortunately however, the ex- 
pressive power of a Q-space depends on the number of 
elements it contains. This paper describes a scheme to 
carry out analysis in the smallest possible Q-space. 

We show that depending on the problem at hand it is 
advantageous to perform the analysis in different Q- 
spaces. We propose a set of 4 Q-spaces which represent 
different resolutions on the number line. We show that 
with this judicious choice of Q-spaces we can switch 
dynamically between Q-spaces while performing the 
analysis. In the process we perform each operation in the 
analysis at the smallest resolution. We show how to 
switch to a Q-space with a higher resolution when the 
results of an operation are ambiguous. Different parts of 
the analysis can be carried out at different resolutions and 
the final result is a description of the device that is close 
to optimal. This is illustrated with the help of two ex- 
amples in linear circuit design. 

2. -spaces 
The following set of Q-spaces are proposed: 

I. (&) (0, non-zero) 

This Q-space is identical to the one described in 
[JohagSaJ The following relationships between var- 
iablcs can bc cxpresscd in this Q-space. 

a > b if [a - h] = + 

a=b ifa-bis0 

The converse of these relationships can also be ex- 
pressed. 

In addition we can express relationships between 
quantities based on the relations =, > and < 

meaning[ PorbM J. I am willing to accept suggestions for better 
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a is increasing if 

a(t2) > a(t1) and 12 > tl 

The rules for arithmetic are described in [.Toha85a] 
It is to be noted that if [a] f [b] then [a + b] is 
indeterminate. Magnitude information is also absent, 
This ambiguity can be resolved by moving to the 
next Q-space. 

2. (5) (0, infinitesimal, large) 

This Q-space is identical to the one described in 
[Raim86] All relations that can be expressed in Q- 
space 1 can be expressed in this Q-space. In addition, 
the following relationships can be 
expressedCRaim86-J. 

a $- b if a is large and b is infinitesimal. 

Q g bifa= b(1 +E). 

a - b if a and b are both infinitesimal or large. 

[Mavr87] shows how to tie this Q-space to the real 
number line. This is done by choosing a value e that 
is the minim urn ratio between a large and a small 
number. 

Q-space 2 splits the positive half of the real number 
line into two halves that are separated by a threshold. 
The threshold is different for different types of vari- 
ables e.g. impedance and frequency. Even for the 
same type of variable the threshold depends on the 
particular comparison being made. For example 
when we say two places are far apart it depends on 
whether the journey is being made by car or on foot. 

In the following a, and b, are the thresholds for a and 
b. The rules for addition are2 described in 
[Raim86]. l[t is to be noted that these rules holds 
only if a, = b,. 

Multiplication in this Q-space retains the sign infor- 
mation. 

a x b is large if a is large and b is large 
a x b is small is a is small and b is small 
Here the threshold is a, x b, 
The product is ambiguous is all other cases. 

2 We run into Zeno’s paradox here. This can be resolved by going 
to the next finer resolution if necessary. 

3. 

4. 

3. 

It is significant that the threshold changes during 
multiplication. We show in the examples how this 
can result in ambiguity. These ambiguities can be 
resolved by using Q-space 3. 

(+)(O, y2) where y is the base, (e.g. 2 or lo), and z 
is an integer. Ikre 1 is y”. 

If 1 a 1 = y’, then log(a) -= z. 

In this Q-space it is possible to express all the re- 
lations that can be expressed in Q-spaces, 1 and 2. 
In addition it is possible to describe the logarithmic 
distance , LD, between two numbers 

LD(a,b) = log(a) - log(b) 

For multiplication. 

CalCbl = WI 

log(a*b) = log(a) + log(b) 

For addition the rules are. 

If log(a) > log(b) or ([a] = [b] and log(a) = log(b)) 
then2 

log(a + b) = log(a) 

and 

[a + b] = [a] 

If log(a) = log(b) and [a] # [b] then 

log(a + b) IS log(a) 

and [a + b] is indeterminate. To resolve the ambi- 
guity we need to go to a finer level of resolution, i.e. 
the next Q-space. 

(+)(x * UT), y and z as before and x is a number with 
n significant digits. As n increases the veracity of the 
description increases till at n= infinity this Q-space 
approaches the real number line. The rules for ad- 
dition and subtraction are similar to that in machine 
arithmetic with fixed precision. 

e~ations~li~ to previous work. 
In this section we illustrate the use of the 4 Q-spaces, 
two examples from the domain of circuit analysis. 

with 
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The (&) (0, non-zero) Q-space [Joha85a, Forb85] has 
the lowest resolution. It is excellent for describing the 
working of the circuit in Figure 1 if we merely wish to 
discover whether the current I flowing in the circuit in- 
creases with V. 

I = Vo/R, 

I1 = Vi/R 

I2= V2/R 

I2 - I1 = (V2 - Vl)/R 

If V2 > Vl then [V2 - Vl] = + 

Therefore l-12 - 111= + and I increases with V. 

Figure 1. Figure a is a simplified model of a 
voltage source in series with a load 
resistance R,. In figure b the voltage 
source is represented as an ideal voltage 
source in series with an output 
resistance R,. In figure c the load is 
represented by a resistor R, in parallel 
with a capacitance C. The whole unit 
is in series with an inductance L. 

Other examples of reasoning in the (+)(O, non-zero) 
space can be found in [Joha85b, WillSS] 3 The main 
problem with reasoning in this space is that addition of 
two numbers of different signs results in ambiguity. Also 
it is not possible to neglect small influences w.r.t. big ones. 
This is a very important part of Qualitative Reasoning in 
humans. To achieve this capability we need to move to 
Q-space 2. 

3 Using the signs of partials as the elements 
is a common technique in economics. 

of an implicit Q-space 

If we started out with a more complicated model of a 
voltage source that includes an output resistance R, as in 
Figure lb WC can use the (j-)(0, infinitesimal, large) Q- 
space [Raim86] to reason about the quantities. To deter- 
mine the current flowing in the circuit we use Ohm’s law 
to find 

I = V/(R, + Ri) 

If R, < R, then R, can be neglected w.r.t R,. i.e. 

R,+R,=R, 

Therefore 

I= V/R, 

Reasoning in the (+)(O, infinitesimal, large) Q-space can 
bring about ambiguity if two quantities are multiplied. 
Consider the example of Figure lc. Here we represent 
the load by a capacitor C in parallel with the load resist- 
ance R,. The combination is in series with an inductance 
L. 

Admittance( R, 11 C’) = WC + ljR,[Purc65] 

Each type of variable in this equation has its own 
threshold. That is because different types of variables 
have different units. For example, it does not make sense 
to compare frequency and resistance. If we know that 
frequency has a threshold o,, resistance has a threshold 
R,, and capacitance has a threshold C, it is not necessary 
that 

C-p1 = l/R, 

even though they have the same units. It is therefore not 
possible to compare o C and l/R in this Q-space. It is 
also not possible to compare R and CDL, the impedance 
of the inductance I,. Hence it is not possible to know if 
any of the quantities in the admittance can be neglected. 

A threshold must be chosen for each comparison that is 
made. In order to do this we need to move to Q-space 
5. 

If we know that LO- 105, and C- IO-l2 , then oC- IO-‘. 
Similarly if 

R,- lo”, then l/R,- 10B3 

. If WC set the threshold at 1O4, we find that 

l/R, g WC 

298 Common Sense Reasoning 



l/R, + wc= l/R,* 

The impedance of RL 11 C is R,, and th e capacitance 
C can be deleted from the model. Hence the current I 
flowing through the circuit is 

V/(R, + wL + RL) 

Here again it is not possible to compare R, and R,. If 
we move back to Q-space 3 we fmd that L- lo-lo and its 
impedance wL - 1O-5 . If R,- 1O-3 then we can set the 
threshold at 104. 

and 

R,%& 

Hence these two quantities can be neglected w.r.t. R and 

I = V/RL. 

Let us now consider an example that has more compo- 
nents. Figure 2 shows the circuit for a positive voltage 
follower. 
The model for the operational amplifier has the following 
parameters: 
Bias current 4 - 10-10 A 
Input resistance R,- 10*2n 
Input capacitance C.- lo--l2 F 
Cutoff frequency 0: - 1 07Hertz 
Output voltage v, - 10’ Volts 
Gain K - 102 
Output resistance R,- 10-2n 
Biasing resistors R, and R, - lo5 12 
Load resistor R,- 103f2. 
The voltage source has a 
Voltage v/ 100 Volts, 
Output resistance Ri, - 105&J 
Frequency w - 104 Hertz 

On analyzing this circuit we fmd that Q-space 2 is not 
suflicient to remove ambiguities. We need to go to Q- 
space 3 like in the previous example. We fmd that 

Therefore Ri can be dropped from the model. 

vjwcj g Ib 

therefore Zb can be dropped from the model. 

Rir<l/wCi 

With these simplifications to the model, the voltage at the 
input to the operational amplifier is the same as Vi Similar 

reasoning 
Figure 3 

reduces the circuit to the one shown in 

L 

t 

Figure 2. A positive voltage follower. The top 
figure shows the circuit using an 
operational amplifier and the bottom is 
the model of the operational amplifier. 

Figure 3. The circuit after simplifications reached 
by analysis at Q-spaces 2 and 3. 

The equations for this circuit are 

V- = V,(Rl/(Rl + R2)) 

v+ = vi 

V,=k(V+- v-) 

f Ience 

v+ - I/-- (I/,//t)- 10-l 

and 

v v- N +- 

If V+ and VP are represented in Q-space 3, or lower, then 
the difference is indeterminate. 
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Therefore to simulate the circuit we need to represent all 
the variables in Figure 3 in Q-space 4 with at least 3 sig- 
nificant digits. 

The qualitative values a variable can have A, . . . A, as 
representing disjoint abutting intervals that cover the en- 
tire number line[Joha85a]. I defme the set of values 
(A, . . . A,) as the Q-space. In this paper we have pro- 
posed a set of 4 Q-spaces that are useful in engineering 
problem solving. They allow us to represent the sort of 
relations that are useful in making engineering approxi- 
mations. 

The Q-spaces that we describe are chosen because re- 
lationships that hold between quantities in Q-space with 
lower resolution hold in a Q-space with a higher resol- 
ution. If the results are indeterminate going to a Q-space 
with a higher resolution may resolve the conflict. Thus 
>, < and equal can be represented in all 4 spaces. 9, m 
and E can be expressed in Q-spaces 2, 3 and 4. In Q- 
space 3 and 4 the logarithmic distance between two 
number can be expressed. In Q space 4 with n significant 
digits we can express the difference of two numbers q, and 
q2 where q1 - q2 w lo-” 

Q-space 4 has the advantage that it is similar to the way 
numbers are represented on machines. There is a calculus 
for obtaining error bounds with such arithmetic. As the 
number of significant digits increases this Q-space ap- 
proximates the real line. 

It is possible to have a different break up of the number 
line. For example the temperature, We also advocate 
choosing the threshold in Q-space 2 dynamically. Each 
comparison involves different quantities and by moving 
from Q-space 3 to 2 we are able to set our threshold dy- 
namically. 

There is a many-one mapping from Q-space 4 to 3. One 
just ignores the significant digits. To go from Q-space 3 
to 2 one needs to compare the variable to the appropriate 
threshold If 

log(q) > log(ZhreshoZ~ implies q is large. 

log(q) < log(ihre.s+zoZd) implies q is infinitesimal. 

Moving from Q-space 2 to 1 is trivial. Only the sign is 
retained. 

A device is analyzed at the lowest possible resolution. If 
ambiguities result, we move to a higher resolution Q- 
space till the ambiguity is resolved. Using this technique 
we get as general a description of the device as possible. 

5. Conclusions 
We describe a scheme to analyze devices at multiple levels 
of resolution. We propose that 4 Q-spaces be used in 
qualitative analysis. These smoothly span the range form 
(&) (0, non-zero) to the real-number line. Analysis is 
performed at the lowest possible resolution until ambigu- 
ities occur. To resolve ambiguities in a Q-space with a 
lower resolution, we move to a Q-space with a higher re- 
solution This paradigm allows us to obtain the most 
general description of the working of a device. 
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