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Abstract 

Abstraction is an essential technique in reasoning about 
complex systems involving a large number of variables and 
interconnections. Aggregation of dynamic systems is an 
abstraction technique whose application is easily observable 
in everyday life. The basic intuition behind aggregation of 
variables may be summarized as follows: if variables in a 
large dynamic system can be partitioned into subsets such that 
variables in each subset are more strongly connected to each 
other than to variables in other subsets, one can describe the 
short-run behavior of each subsystem independently of other 
subsystems. Furthermore, one can describe the long-run 
behavior of the entire system in terms of these subsets instead 
of individual variables, treating each subset as a black box. 
This paper provides a formal justification for commonsense 
abstraction based on aggregation of a dynamic system and 
presents a procedure for doing so. 

1. Introduction 
Abstracting a detailed description to produce a simpler 

description is essential in reasoning about a complex system. 
Aggregation is one such abstraction mechanism whose 
application is easily observable in everyday life. The general 
problem is to compute the values of some variables of a 
complex, dynamic system. People confront such situations on 
a daily basis and am successful in quickly approximating the 
desired values with sufficient precision for their tasks. One 
such technique is to deal with aggregated variables rather than 
the original variables. An aggregated variable is one whose 
value depends on the values of some collection of variables. 
For example, it could be the sum of some variables. If the 
number of aggregated variables is less than the original 
number of variables, then it is clearly a computational 
advantage to recast the problem in terms of the aggregated 
variables. Let us take some concrete examples. 

1. A well-known example by Simon of aggregation 
of variables is about heat flow within a building 
[Simon 811. Consider a building divided into a 

large number of rooms, which are in term 
divided into a number of offices by partitions. 
The buiMi.ng walls provide perfect thermal 
insulation from the environment. The wall 
between rooms am good but not perfect 
insulators while the partitions are poor 
insulators. In this situation, the temperature 

‘This research was sponsored by the Defense Advanced Research 
Pro&s Agency ox)% ARPA Order No. 4976 under contract F33615-87- 
c-1499. 

Electrical and Computer Engineering 
Carnegie Mellon University 

Pittsburgh, ermsylvania 15213 

The building walls provide perfect thermal 
insulation from the environment. The wall 
between rooms are good but not perfect 
insulators while the partitions are poor 
insulators. In this situation, the temperature 
equilibrium among offices within one room will 
be reached very rapidly while equilibrium 
among rooms will be reached only slowly. 
Therefore, as long as one is not interested in 
modeling rapid temperature fluctuations within 
one room, a useful aggregation will be to have 
one temperature variable for each room and to 
assume equilibrium within a room is reached 
instantaneously. 

2. ‘Common sense’ aggregation is also useful to 
experts in making quick but reasonably accurate 
computations. Consider the domain of electrical 
circuits. Aggregation of variables is used in the 
simplest of circuit calculations. An example 
would be to determine the behavior of charge 
flow between two banks of capacitors connected 
in parallel. If the banks are connected via a large 
resistor while the capacitors within a bank are 
connected in parallel using low resistance lines, 
a useful approximation would be to determine 
the expressions of the aggregated charge for a 
bank and assume instantaneous sharing of this 
charge within a bank. Hence having calculated 
the aggregated charge for a bank the 
approximate expressions for individual charges 
is easily obtained. Aggregation of variables can 
also be used in really complex systems. For 
example, an engineer in charge of a sub-station 
that supplies electrical power to a city block is 
more likely to be using an aggregated load in his 
calculations rather than the average individual 
loads of the houses in the block. 

Aggregation has been discussed by many researchers in 
Artificial Intelligence. Weld proposes an aggregation 
procedure by discovering a cycle in the simulated behavior of 
a model weld 861. Fishwick also detects cyclic behavior for 
the purpose of aggregation, but he does so not by simulation 
but by static analysis of data-flow graph of a process 
[Fishwick 871. 
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the behavior description of components into a behavior 
description of the whole pylander 871. Their approach is to 
combine behavior descriptions of more components to 
generate a description of the behavior of the device as a whole 
by recognizing certain patterns, called causal patterns, in 
combinations of causal steps in component behavior 
descriptions and aggregating the steps into one abstract step. 

All these techniques am concerned with aggregating 
behavior consisting of a sequence of discrete steps. In this 
paper, we discuss a rather different aggregation technique for 
aggregating a behavior model represented, not in terms of 
explicit causal steps, but in terms of functional relations 
among variables. 

Simon and Ando provided a formal basis for aggregation, 
namely aggregation of variables [Simon and Ando 611 They 
proved that the above intuition was indeed true for the case of 
a nearly decomposable dynamic matrix with one significant 
characteristic root for each subsystem. courtois[CoLutois 
771 specifies an aggregation procedure along with an error-of- 
approximation analysis for the special case of stochastic 
matrices that satisfy the Simon-Ando requirements. In this 
paper we extend the work by Simon, Ando, and Courtois by 
presenting an aggregation procedure for more general, non- 
stochastic dynamic systems that satisfy the Simon-Ando 
requirements. Though the procedure and example presented 
in this paper are numerical, the concepts of aggregation 
applies to qualitative models, also. The aggregation technique 
presented here provides justifications and suggests procedures 
for qualitative abstractions. 

This paper is organized as follows. Section 2 presents the 
concept of near decomposability of dynamic systems and its 
implication for their behaviors. Substantial background is 
presented to make this paper self-contained. Section 3, then, 
discusses construction of an aggregate system from a nearly 
decomposable system such that the behavior of the aggregate 
system is a reasonable approximation to the long-term 
behavior of the original system. Finally we discuss the 
implications of this work for common sense aggregation in 
Ax5fcia.l Intelligence. 

2. Decomposable and nearly decomposable 
sys terns 
This section formally introduces the concept of a nearly 

decomposable system and describes the theorems proven by 
Simon and Ando about the behavior of such a system [Simon 
and Ando 611. 

Let M* be a self-contained dynamic system of n equations 
and P* be the matrix of coefficients in M*. Thus, M* consists 
of equations of the form; 

I 
*i = CYZ;lXl + a;& + * m * + sign, 

and P* is a matrix of the form; 
Iall, a12, . . . aln I 
I . . . I 

p* = I . . . I 
I . . . I 
la, Iv an2, . - . a,, 1 

where a0 is the coefficient of Xj in the ith equation of M. 

P* is called completely decomposable if, by simple 
rearrangement of rows and columns, P* can be put in a block 
diagonal form as 

IP,* I 
I P,* I 

p* = I I 
I I 
I P#l 

where PI*s are square submatrices, N is the number of such 
submatrices in P*, and all the elements of P* not in any of the 
submatrices are zero. 

If the matrix of coefficients is completely decomposable, 
the dynamic system consists of independent components 
which do not interact at all and which behave independently 
of each other. The submatrices represent the components. 

Now, consider a slightly different, self-contained dynamic 
system M and its matrix P of the same size as M* and P*, 
such that P has the same diagonal submatrices as P* but the 
elements outside of the submatrices are either zero or very 
small, the magnitudes being less than E for some given E. P 
looks like, 

IP,* I 
I P,* I 

P = I I 
I I 
I PN*l 

where the elements of P outside of the submatrices are 
either E or zero. Then P can be expressed as 

P = P* + EC, 

where C is an arbitrary nxn matrix. A matrix such as P that 
can be put in this form is called a nearly completely 
decomposable matrix or a nearly decomposable matrix. 

The system M whose matrix P is nearly completely 
decomposable consists of components such that variables 
within each component interact strongly, but variables from 
different component interact relatively weakly. The 
submatrices represent such components and the E elements 
outside the submatrices represent weak links among 
components. 

ehavior of a Nearly Decomposable System 
For a dynamic system to be dynamically stable all its 

eigenvalues must be negative. We will assume that this is in 
fact the case for all systems we will discuss in this chapter. 
Furthermore, we assume that all the roots of the system are 
distinct. When all the roots are distinct, the time paths of the 
variables can be expressed as 

where - , h, are the characteristic roots, and 
is the eigenvector corresponding to the jth root. 
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Ifalltherootshl, . . . . h, are arranged in ascending order 
of the absolute values of their real parts, the contribution of 
the roots toward the end of the list to the dynamic behavior of 
the system will be damped rapidly, and will be of importance 
only to the short-term behavior of the system. For the long- 
term behavior,‘we can ignore these roots and treat the system 
as having a smaller number of degrees of freedom, 
corresponding to the number of roots we retain 

Let M be a dynamic structure with the corresponding 
matrix P that is nearly decomposable with N square 
submatrices. Let ml be the size of the Ith submatrix, and 
x1; - - - 7 “M, be the variables belonging to the Ith 

submatrix. Let h,; . . . , AmI be the characteristic roots 

belonging to the Ith submatrix. Without loss of generality, we 
will assume that the roots in each subsystem are arranged in 
ascending ordering of the absolute values of their real parts. 
Therefore, 

The time path of 
expressed as follows: 

each variable in the system can be 

(2) 

Alternatively, the time path of the entire system can be 
expressed as 

X(0 = z x A(t), 
where x(t) is the the column vector of the variables, 

and Z is the matrix whose 
corresponding to the eigenvalues 

columns are 
h 
’ mN 

column vector of the exponential terms as .. 

eigenvectors 
and A is the 

A(t)* = 1 exp(~llO, eqG-$, - . - , exp(Amlt), 
expOQ, - . - , exp(h,2t), 
. . . , exp($NO, . - - , expGmNt)] 

Since P is nearly decomposable, the eigenvector “j, 

corresponding to the eigenvalue ~j, (I = 1toNandj = lto 

mI) is such that its elements z 
kLl.1 

are very small for L f I. 

In the above expression for x(t)hK, these small zjfiK’s represent 

the effects of the variables outside the Kth subsystem on 
m, * 

K 

Simon and Ando show that the behavior of such a system 
may be approximately described in the following four stages 
[Simon and Ando 611: 

1. short-run dynamics 
Variables in each subsystem are moving towards 
their relative equilibrium independently of other 

subsystems. 

2. short-run equilibrium 
The most significant root of each subsystem 
dominates the behavior of the subsystem. 

3. long-run dynamics 
The variables in each subsystem move together 
towards over-all equilibrium while maintainmg 
relative equilibrium in each subsystem. 

4. long-run equilibrium 
Finally, the most significant root of the entire 
system dominates. 

When the behavior of a large system is approximately 
described in four stages as above, the goodness of the 
approximation naturally depends on how small the E’S are and 
also how dominan t the most significant root of each 
subsystem is compared to the rest of the roots. 

3. Aggregation of Variables 
We describe the procedure for producing an aggregated 

matrix from a nearly decomposable matrix. In the description 
below we often drop the argument (t) of variables that are 
functions of time to improve readability. 

3.1. Procedure for aggregation 
M is the nearly decomposable system defined in 2.1 with N 

submatrices and M* is the corresponding completely 
decomposable system. M and M* consist of n variables and 
equations. Each subsystem Mi and M*i (i = 1 to N) consists 
of mi variables xl,, . . . , x,,. Mi &SO consists of equations 

of the following f&n; 
I 

xji’ = fj;‘“y X2,’ * * - , xm,, X1,’ * * - 3 

x , . . . , 

forj = ml,tO mi, 

x1 , . . . , 
N 

x, , 
N ) 

(3) 

and M*i of the following form; 

x- ’ = f*.(* 

f&j 
Ii $42; -**7 , xm.> 

= 1 to mi, 

wherefi,‘s andfij.,‘s are linear functions of their arguments. 
I I 

(4) 

Let hi be the most significant eigenvalue of Mi and let hi* 
be the corresponding eigenvalue of M*i. Let 
z’i = {‘* 1~ ‘*2.’ . . . ) z*,,) be the eigenvector 

correspond&g to i*i. Simon ad Ando show that 

XJX 
Ji ki 

= z*j/z*ki for j = 1 t0 mi. (5) 

We define the aggregate variable yi and another useful 
variable Zi for each subsystem Mi a~ fdlows: 

Yi = ZJ21xj i 

Zi = ~~I Z’j 
i 

It follows from equation (5) that 

(6) 
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xj!Yj = Z*ji / Z*j forj = 1 t0 ?TZi. (8) 

To prove this, it is sufficient to cross multiply and then 
approximately equate terms on b.oth sides of the equation 
using the relations in (5). 

To derive the aggregate matrix we need expressions for all 
y> in terms of the aggregate variables. Observe that it follows 
from the definition of the aggregate variables in (6) that 

(9) 

It is therefore possible to compute the aggregate matrix by 
doing the following for every subsystem Mi 

1. Add the mi equations in (3). Note that the left- 
hand-side of the resultant equation is nothing but 
Y’i while the right-hand-side looks like the right- 
hand-side of (3). 

2. Using the relations in (8) replace all xjk in the 

right-hand-side by z*~~/Z*~ for j= 1 to mk and for 

k= 1 toN. 

The aggregate system consists of the variables y 1 to yh7 and 
the N differential equations thus generated. 

3.2. Example of aggregation 
We will give an example of model aggregation. Consider 

an environment where four species, a, b, c, and d, of 
organisms live. Assume that available resources and living 
space are fixed and limited, that’ the environment is isolated, 
and that there is no new resources added to the environment. 
The life of the four species of organisms are coupled in the 
following manner: a mainly preys on b but occasionally preys 
on c; c mainly preys on d but also preys on b occasionally; 
also b preys on d and d preys on a very infrequently. Let M 
be a nearly decomposable dynamic system with four variables 

x1,, x21’ 3,, and x2 representing the populations of the four 

species, a, b, c, ani d respectively. Suppose that the the 
following relations hold among the variables; 

n’1, = --50.00~, + 23.0(%, + 

(1.0000e-$.X1 
1 

(10) 
I xq = -1.0000X, -2 0.10000x~ + 

&’ (2.&o&-&2 

XII2 = (1.~00&‘-3;2 
1 

17.000x2 

= (3.000&-3)x, 

0.9000ox~ 1 
2 

Let P be the following 
structure M. 

-50.000 23.000 
-1 .OOoo -0.10000 
0.0000 1.0000e-03 
3.0000e-03 0.0000 

matrix of coefficients for the 

1 .OOOOe-O3 0.0000 
0.0000 2.OOOOe-03 
-47.000 17.000 
-3 .oooo -0.90000 

P is nearly decomposable and has the following two 2x2 
submatrices, P* 1 and P*,. 

-50.000 23 .OOO 

p*1 = 
-1 .oooo -0.10000 

-47.000 17.000 

P*2 
= 

-3 .oooo -0.90000 

The eigenvalues of P associated with each submatrix are as 
follows: 

subsystem eigenvalues 

PI hl, = -0.56526 

h2 = -49.535 
I 

p2 = -2.6170 

= -47.383 

The eigenvectors of P*, and P*, corresponding to the 
eigenvalues h, and h, are as follows: 

z1 * = (6.46526: 1) 
1 

zl* = (0.38303, 1) 
2 

We will let variables yl(t) and y2(t) to be the aggregate 
variables for submatrices M, and M2 defined as follows: 

Yl = X1, + X2, 

y2 = 3, + X2, 

Differentiating both sides of the above two equations with 
respect to time yields; 

y’1 = X’l + XI2 
1 1 

y12 = X’12 + x’22 

(14) 

(15) 

y1 and y2 have the following approximate, 
to the variables of the submatrices: 

linear relations 

0.46526 
3, = 1+0 46526’l = 0.3 17527~1 

‘1 
X2, = 1+0.46526’l 

= 0.682473~ t 

.0.38303 
Xl, = 1+0.38303y2 

= 0.2769494y2 

x22 = l+. i8303~2 = 0.723051Y2 

Substituting the derivatives on the right-hand-side of (14) 
and (15) by the expressions on the right-hand-side of 
equations (10) through (13), and further substituting the 
occurrences of the original variables by their approximations 
in terms of Yi’S given above yields the following aggregate 
systems; 

Y’l = -0.565278~~ + 1.723047e-3y, (16) 
Y2’ = 1.63505-3~~ - 2.616978e-3y2 

(17) 
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The variables y1 and y2 and equations (16) and (17) 
constitute the aggregate structure M’. The timepaths of the 
two eigenvectors are as follows: 

Yl = clexp(-0.565277t) + 

c20.839814e-03 exp(-2.61698r) (18) 

y2 = c,(-O.79692e-O3) exp(-O.565277t) + 
c,exp(-2.61698f) (19) 

cl and c2 are such constants that the relations (6) are 
satisfied at f = 0. Given the values the aggregate variables, 
the values of the original variables can be estimated by 
equation (8). 

3.3. Conditions for Aggregation 
When the behavior of a nearly decomposable structure is 

approximated by an aggregate structure, the goodness of 
approximation will depend on the smallness of the matrix 
elements outside the submatrices and also on the degree of the 
dominance of the most significant root of each submatrix over 
other roots. This second condition can be stated more 
precisely as follows: For a nearly decomposable dynamic 
matrix to be aggregated as described in this section, the 
matrix must satisfy the following conditions; 

1. There is one root in each submatrix such that the 
absolute value of its real part is smaller than any 
others in the submatrix. 

2. The absolute value of the real part of the primary 
root of any subsystem must be smaller than that 
of any non-primary root of any subsystem. In 
other words, 

IR&ll) I < IRe(hi,> I 
forl = 1 toN,j = 2tom, 
andJ = 1toN. 

The necessity of the condition (1) above is obvious ‘if the 
movement of each subsystem is to be represented by one 
aggregate variable. The second condition is given by 
Courtois [Courtois 771. Courtois showed that the second 
condition is necessary for the case of stochastic matrices, but 
that it is also necessary for more general cases can be easily 
seen as follows: Given a dynamic structure, equation (2) 
expresses the time path of each variable. Without loss of 
generality, assume that all the characteristic roots h,.,‘s (i = 1 

to Mi> associated with each submatrix Pi G = 1 ‘to lV) zux 
arranged in increasing order of the magnitude of their real 
parts. Therefore, for each submatrix Py h, is the most 

significant root. 

Then, equation (2) can be expanded as follows: 

x$) = s, + s, (20) 
where 

iv 
s, = c 2. I=1 ‘I+ exp(h q) 

and 

N mI 
s, = cc 

I=lj=2 
zjp,eV(hilf) 

In aggregating a matrix, one discards S, in (20). Therefore, 
if aggregation is to produce a reasonable approximation, the 
exponential terms in the discarded term, S,, must diminish 
before the exponential terms in S,. In other words, the 
magnitudes of the real parts of the 
must be smaller than those in S, 

eigenvalues involved in s, 

3.4. Subsystems with multiple significant roots 
The two conditions discussed above for aggregation makes 

the applicability of the aggregation procedure somewhat 
limited. However, the concept of nearly decomposable 
systems and the discussion of behavior of such systems in 
Section 2 are more generally applicable, and the aggregation 
procedure can be generalized to cases where the conditions 
are not necessarily satisfied; in particular to cases where a 
submatrix have any number of non-negligible roots. 

Let h,; . . . , h”, be the eigenvalues associated with the 

Zth submatrix. Without loss of generality, we will assume that 
these eigenvalues are arranged in ascending order of the 
absolute values of their real parts. For some given threshold 
value 3Lo > 0, we partition this set of eigenvalues for the Zth 
submatrix into two subsets, one containing those the absolute 
values of whose real parts am less than or equal to I+, and the 
other containing the rest. Let s, be the number of the 
eigenvalues belonging to the first subset. We will refer to the 
eigenvalues in the first subset as significant roots and those in 
the second subset as insignijkant roots. Therefore, the set of 
the significant roots is 

Ih,; $Y - * - h,,J, where I Re(h;l) I 5 ho, 

and the set of insignificant roots is 

Ih 1 +s,’ 3L2;+s,, a * e h,llV 

where IRe(hi,) I > ho. 

After the contributions of the insignificant roots vanish, the 
long-run behavior of each subsystem MI can be described 
with sI (sI < m,) significant roots. 
define 
values 

for each subsystem sI aggregate 
of the original variables x1 , x2, , I 

Therefore, one can 
variables such that the 

. . . . xmI after some 

time can be approximated as &ear combinations of the 
aggregate variables. Then, M can be rewritten in terms of 
these aggregate variables to produce an aggregate system. 
The aggregate system will describe the long-term behavior 
and will have fewer degrees of freedom than the original one. 

4. Discussion 
This paper focuses on devising a formal model, namely 

aggregation of variables, for common sense abstraction. This 
work builds on existing work on nearly decomposable 
dynamic systems. An aggregation procedure aggregates a 
dynamic structure by defining one aggregate variable for each 
subsystem based on its most significant roots and rewriting 
the entire structure in terms of these aggregate variables. For 
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this procedure to be applicable, the most significant root of 
each subsystem must be such that the magnitude of its real 
part is smaller than any insignificant root of any subsystem. 
When a dynamic system is aggregated in this manner, each 
subsystem can be represented by one aggregate variables. We 
generalized this procedure to make it applicable to cases 
where each subsystem has more than one non-negligible 
roots. In such cases, as many aggregate variables as there are 
significant roots (with respect to some threshold value) in 
each subsystem are defined for a subsystem. courtois 
performed in-depth analysis of approximation error in 
aggregation for stochastic systems [Courtois 771. Similar 
analysis or approximation error for the general aggregation 
procedure presented in this paper will be useful and represents 
immediate future work for this project, 

Note that the aggregate variables are defined as sums of the 
variables in a subsystem. As the formal model treated here 
covers quite a large class of systems we think that sums or 
simple linear functions of strongly connected variables will 
comprise a significant percentage of common sense 
aggregation examples. The examples in Section 1 seem to 
support this point. 

Though the procedure and example presented in this paper 
are numerical, the relevance of this work is not limited to 
cases where numerical information of functional relations 
among variables is available. Even when only a qualitative 
model exists, model aggregation is possible and is often 
performed based on such qualitative knowledge as relative 
strengths of interactions among variables and groups of 
variables and relative speeds at which groups of variables 
reach equilibrium through workings of causal mechanisms in 
the system. The work presented here provides justifications 
and suggests procedures for performing such qualitative 
aggregation. One of the authors discusses related qualitative 
aggregation techniques and their relations to the notion of 
causality in a separate document [Iwasaki 881. 

Kuipers uses abstraction by time-scale in order to control 
the exponential growth of the number of possible courses of 
behavior in qualitative simulation wuipers 871. Kuipers has a 
hierarchy of constraint networks of very fast to very slow 
mechanisms. When simulating a fast mechanism, variables 
controlled by slower mechanisms are considered constant, and 
when simulating a slow mechanism, equilibrium among 
variables controlled by faster mechanisms is considered to be 
reached instantaneously. This idea of abstraction by time- 
scale is very similar to the notion of abstraction discussed in 
this thesis. However, Kuipers does not explore the issue of 
generating such a hierarchy of models from one original 
model. The aggregation technique discussed in this paper can 
be used to generate a hierarchy of models of different time- 
scales. 
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