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Abstract 

This paper describes a computational approach, based on 
the theory of causal ordering, for inferring causality from an 
acausal, formal description of a phenomena. Causal ordering 
is an asymmetric relation among the variables in a self- 
contained equilibrium and dynamic structure, which seems to 
reflect people’s intuitive notion of causal dependency relations 
among variables in a system. This paper extends the theory to 
cover models consisting of mixture of dynamic and 
equilibrium equations. When people’s intuitive causal 
understanding of a situation is based on a mixed description, 
the causal ordering produced by the extension reflects this 
intuititve understanding better than that of an equilibrium 
description. The paper also discusses the view of a mixed 
model as an approximation to a completely dynamic model. 

Much of sciences and engineering is concerned with 
characterizations of processes by equations that describe the 
relations that hold among parameters of objects and that 
govern their behavior over time. Formal treatment of the 
foundations of sciences have avoided notations of causation 
and spoke only of functional relations among variables. 
Nevertheless, the notion of causality plays an important role in 
our understanding of phenomena. Even when a formal 
description of a situation is given in terms of acausal, 
mathematical relations, informal explanations of the form, “A 
causes B” are exceedingly common. People are able to 
explain the behavior in causal terms while using an acausal 
formal description of a situation. 

This paper describes a computational approach, based on 
the theory of causal ordering, for inferring causality from an 
acausal, formal description of a phenomena. Causal ordering, 
first presented by Simon [Simon 521, is an asymmetric relation 
among the variables in a self-contained equilibrium or 
dynamic model, which seems to reflect people’s intuitive 
notion of causal dependency relations among variables. This 
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intuitive causal understanding of a situation is based on a 
mixed description, the causal ordering produced by the 
extension reflects this intuitive understanding better than that 
of an equilibrium description. The paper also discusses the 
view of a mixed model as an approximation to a completely 
dynamic model. 

ordermg was mm 
equilibrium structure consisting of equilibrium equations 
[Simon 521. First, we define an equilibrium structure: 

eflnition 1: Self-contained equilibrium structure 

A self-contained equilibrium structure is a system 
of n equilibrium equations in pz variables that 
possesses the following special properties: 

1. That in any subset of k equations taken from 
the structure at least k different variables 
appear with nonzero coefficients in one or 
more of the equations of the subset. 

2. That in any subset of k equations in which 
m 2 k variables appear with nonzero 
coefficients, if the values of any (m - k) 
variables are chosen arbitrarily, then the 
equations can be solved for unique values of 
the remaining k variables. 

The condition (1) above ensures that no part of the structure is 
over-determined. The condition (2) ensures that the equations 
are not dependent because if they are the equations cannot be 
solved for unique values of the variables. 

The idea of causal ordering in a self-contained equilibrium 
structure can be described roughly as follows. A system of n 
equations is called self-contained if it has exactly n unknowns. 
Given a self-contained system, S, if there is a proper subset, s, 
of S that is also self-contained and that does not contain a 
proper self-contained subset, s is called a minimal complete 
subset. Let So be the union of all such minimal complete 
subsets of S; then So is called the set of minimal complete 
subsets of zero order. Since So is self-contained, the values of 
all the variables in So can, in general, be obtained by solving 
the equations in So By substituting these values for all the 
occurrences of these variables in the equations of the set 
(S - S& one obtains a new self-contained structure, which 
is called the derived structure offirst order. Let S, be the set 
of minimal complete subsets of this derived structure. It is 
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called the set of complete subsets of 1st order. Repeat the 
above procedure until the derived structure of the highest 
order contains no proper subset that is self-contained. For 
each equation ei in S, let Vi denote the set of variables 
appearing in ei, and let Wi denote the subset of Vi containing 
the variables belonging to the complete subsets of the highest 
order among those in VP Then, the variables in Wi are said to 
be directly causally dependent on the elements in (Vi - Wi). 

In order for the above procedure to produce causal relations 
in the model that agrees with our intuitive understanding of 
the causal relations in the real situation, the equations 
comprising a model come from an understanding of 
mechanisms. The term mechanism is used here in a general 
sense to refer to distinct conceptual parts in terms of whose 
functions the working of the whole system is to be explained. 
Mechanisms are such things as laws describing physical 
processes or local components that can be described as 
operating according to such laws. An equation representing 
such a mechanism is called a structural equation, and every 
equation in the model should be a structural equation standing 
for a mechanism through which variables influence other 
variables. 

One thing to note about the method of causal ordering is 
that it does not require knowledge about the precise functional 
forms of equations. The only information that the method 
makes use of is what variables appear with a non-zero 
coefficient in what equations, which in terms of mechanisms 
translates to what variables are causally linked by each 
mechanism. 

3. Example : Bathtub 
Though the causal structure produced by the method of 

causal ordering usually agrees with people’s intuitive notions 
of causal relations [Iwasaki and Simon 86, Iwasaki 871, 
sometimes cases arise where a causal structure produced does 
not agree with human intuition. We present one such case to 
motivate extension of the method to dynamic and mixed 
structures. 

The device used as an example is a bathtub as shown in 
Figure 3-l [Kuipers 87a]. There are four variables; the input 
and output flow rates Qi, and Qout, the amount of water in the 
tub, A, the valve opening, K, and the pressure in the bottom of 
the tub, P. 

a,,7 
ILK-I 

b Qout 

Figure 3-1: Bathtub 

The situation can be characterized by the following four 
equations, where cl, c2, and c3 represent positive constants. 

Q Out = KP (1) 
The output flow rate is proportional to the pressure. 

A = ClP (2) 
The pressure is proportional to the amount of water 

Q Out = Qin (3) 
When the system is in equilibrium, the input flow equals 

the output flow. 

Qin = ~2 (4) 
K = c3 (5) 

The input flow rate and the valve opening are exogenous. 
(externally controlled) 

The causal ordering produced for this bathtub model is 
shown in Figure 3-2. “x --> y” means that variable y is 
causally dependent on x. 

Figure 3-2: Equilibrium Causal Ordering of Bathtub 

The causal structure shown in Figure 3-2 may seem counter- 
intuitive. It shows that the output flow rate directly depends 
on the input flow rate, the pressure depends on the output flow 
rate, and the amount depends on the pressure. However, 
intuitively speaking, adding water to the tub increases the 
amount (A), which increases the pressure (P), which in turn 
increases the output flow rate (Q,,). Figure 3-3 shows this 
“intuitive” causal ordering. 

Q in j A -> P j Qo,t 

1‘ 
K 

Figure 3-3: Intuitive Causal Ordering of Bathtub 

In what follows I will first show that the causal ordering in 
Figure 3-2 is in fact the correct ordering for an equilibrium 
model. In the next section, I will show that the “intuitive” 
causal ordering can be obtained by the extension of causal 
ordering to make it applicable to systems of dynamic equation 
as well as mixture of dynamic and equilibrium equations. 

In order to see that the ordering in Figure 3-2 is correct, one 
must realize that the model is an equilibrium one. In an 
equilibrium model, quantities represent the final values 
assumed by variables when equilibrium is attained and not 
transient values. In the bathtub example, if the input flow is 
decreased suddenly, it will cause immediate disturbances in 
the values of other variables. However, the entire system will 
be in a steady state only when the output flow again becomes 
equal to the input flow, which is the situation the equilibrium 
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model depicts. 

Suppose that the value of K is changed by opening up the 
valve a little more, then an immediate reaction will be that 
Q out wilI increase. However, when equilibrium is restored 
eventually, assuming that it will, the equilibrium value of Qoti 
must be equal to Qin (otherwise, the system would not be in 
equilibrium). Thus, changing K only affects the equilibrium 
values of P and A but not Qoti Therefore, equilibrium value 

of Qoti cannot be dependent on P or A, a fact correctly 
reflected in the ordering of Figure 3-2 but not in Figure 3-3. 

Nevertheless, it is true that ordering in Figure 3-3 seems to 
capture some intuitive notion of causality in the situation. It is 
because in this case our “intuitive” causal understanding is of 
a dynamic situation rather than that of the equilibrium 
situation represented by the model above. The next section 
presents causal ordering in dynamic and mixed systems. 

Given a self-contained dynamic structure, one can perform 
elementary row operations to the equations to solve them for 
the n derivatives. This operation produces an equivalent 
system of equations in canonical form. A differential equation 
is said to be in canonical form if and only if there is only one 
derivative in the equation, and the derivative is the only thing 
appearing on the left-hand-side of the equations. A self- 
contained dynamic structure in n variables, x1, . . . , x~, in 
canonical form consists of n equations of the following form, 
wherefi’s (1 I i I n) are functions of their arguments: 

3 ’ = fi<+ x2, * * * , x,1 

We interpret the equations of structure in this form to be 
mechanisms of the system. Therefore, the ith equation, the 
only one containing xf, is regarded as the mechanism 
determining the time path of Xi. Furthermore, variable Xi, 

whose derivative appear in the ith equation, is said to be 
directly causally dependent on the variables that appear with a 
non-zero coefficient in the equation. 

. Causal ordering in a dynamic and mixed 
structures 
In this section, we define self-containment and causal 

ordering for structures consisting of differential equations and 
mixture of differential and equilibrium equations. We will 
then show that the “intuitive” causal ordering similar to that in 
Figure 3-3 emerges as the causal ordering in a mixed model of 
the bathtub. 

4.1. Causal ordering in a dynamic structure 
Dynamic causal ordering is defined for systems consisting 

of first order differential equations. Since a differential 
equation of higher order can be converted into a set of first 
order equations by introducing new variables to stand for 
derivatives, the definition of causal ordering presented here 
applies to a very wide class of dynamic systems. 

Following is the definition of a self-contained dynamic 
structure [Simon and Rescher 661: 

efinition 2: A self-contained dynamic structure 

A self contained dynamic structure is a set of n 
first-order differential equations involving n 
variables such that: 

1. In any subset of k equations of the structure 
the first derivative of at least k different 
variables appear. 

2. In any subset of k equations in which 
r (r 2 k) first derivatives appear, if the 
values of any (r - k) first derivatives are 
chosen arbitrarily, then the remaining k are 
determined uniquely as functions of the n 
variables. 

The above definition of self-containment for a dynamic 
structure is analogous to that for an equilibrium structure. The 
condition (1) above ensures that no part of the structure is 
over-determined while the condition (2) ensures that the 
structure is not under-constrained. 

4.2. Causail ordering in a mixed model 
Systems are in practice often described in terms of a 

combination of equilibrium and dynamic equations. A such 
mixed structure is a natural extension of dynamic structures. 

Before defining self-containment for mixed structures, we 
must introduce some notations. Let M be a system of n 
equations in n variables such that some of the equations are 
equilibrium equations and others are first-order differential 
equations. Then, let Dynamic(M) be the subset of M 
consisting of all the differential equations in M, and let 
Static(M) be the set consisting of all the equilibrium equations 
in M and one constant equation for every variable v whose 
derivative appears in Dynamic(M). A constant equation of a 
variable is an equation of the form, v = c, where c is a 
constant. 

The intuitive meaning of the set Static(M) may be 
understood as follows: the equilibrium equations in a mixed 
set represent mechanisms that restore equilibrium so quickly 
that they can be considered to hold in 0 units of time within 
some time-frame (e.g. days if the time-frame is centuries). On 
the other hand, the dynamic equations represent slower 
mechanisms that require non-zero amounts of time for the 
variables on their right hand sides to affect the variable on 
their left hand sides. Therefore, in a very short period of time 
-- shorter than is required for the variables on the right hand 
side of the differential equation of a slow mechanism to 
appreciably affect the variable on the left hand side -- the 
variable on the left hand side can be considered unchanging. 
Thus, the set Static(M) represents a snap-shot picture (i.e., a 
very short-term equilibrium description) of the dynamic 
behavior of mixed structure M. 

Let M be a system of n equations in n variables such that 
some of the equations are static equations and others are 
dynamic equations of the type defined in the previous section. 

Definition 3: The set M of n equations in n 
variables is a self-contained mixed structure iff: 

1. One or more of the n equations are first-order 
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differential equations 
equilibrium equations. 

and the rest are 

2. In any subset of size k of Dynamic(M), the 
first derivative of at least k different variables 
am=-. 

3. In any subset of size k of Dynamic(M) in 
which r (r 2 k) first derivatives appear, if 
the values of any (r - k) first derivatives 
are chosen arbitrarily, then the remaining k 
are determined uniquely as function of the n 
variables. 

4. The first derivatives of exactly d different 
variables appear in Dynamic(M) where d is 
the size of the set Dynamic(M). 

5. Static(M) is a self-contained equilibrium 
structure. 

Given a self-contained mixed structure, as defined above, the 
causal ordering among its variables and derivatives follow the 
definitions of causal ordering in dynamic and static structures. 
In other words, the causal ordering in a mixed structure can be 
determined as follows: 

1. The ordering among n variables and m derivative 
in subset Dynamic(M) is given by the definition of 
causal ordering in a dynamics structure. 

2. The ordering among variables (but not their 
derivatives) in Static(M) is given by the definition 
of causal ordering in an equilibrium structure. 

4.3. Mixed model of the bathtub 
Now, we are ready to look at the bathtub example again. 

Let M be a mixed structure consisting of equations (l),(2), 
(4), (5) and the following differential equation in place of (3); 

A’ = Sin - Qou WI 
M is a self-contained, mixed structure according to the 
definition given above. Dynamic(M) consists of equation (3d) 
alone, and Static(M) consists of equations (l), (2), (4), (5) and 
the following constant equation: 

A = c3 (W 
The causal ordering in M is shown in Figure 4-1. In the 
figure, an integration link, which is an edge connecting a 
derivative of a variable to the variable itself, is marked by i, 
causal links in the dynamic part of the model (Dynamic(M)) 
are indicated by arrows of broken lines. The causal structure 
indicates existence of a feedback loop. The structure may be 
explained informally in English as follows: 

The output flow rate depends on the pressure, which 
depends on the amount of water the in the tub. The rate of 
change of the amount of water is determined by the input 
and output flow rates. 

Figure 4-1: Mixed Causal Ordering of Bathtub 

The reason for mixing in one model equilibrium equations (1) 
and (2) and differential equation (3d) is because the 
equilibrium relations represented by the first three equations 
are restored much more quickly (in fact, almost 
instantaneously) when disturbed than the relation represented 
by equation (3). Therefore, in a model of a medium temporal 
grain-size, it is reasonable to treat (3) as taking time but to 
treat others as instantaneous. 

5. A mixed s%.ructure as an ap roximation to a 
dynamic structure 

A mixed structure can be viewed as an approximation to a 
dynamic structure. When a mechanism in a dynamic structure 
acts very quickly to restore relative equilibrium, one can 
regard it to be acting instantaneously. Or, when a mechanism 
acts so much more slowly than other mechanisms in the 
system that its effect on the variable it controls is negligible, 
the variable may be considered constant. In these cases, the 
description of the system’s dynamic behavior may be 
simplified by replacing the fast-acting mechanism by an 
equilibrium equation or the slow mechanism by a constant 
equation. This section discusses generating a mixed structure 
from a dynamic structure as an approximation to the latter 
through these two techniques. 

5.1. Equilibrating ynamic Equations 
We will use the term equilibrating to refer to the operation 

of replacing a dynamic equation by its corresponding 
equilibrium equation. Since the differential equations are 
assumed to be in canonical form, equilibration is 
accomplished by replacing the left hand side by 0. 

There are a whole range of mixed structures between the 
completely dynamic structure and the equilibrium structure 
depending on the temporal grain size selected for the model. 
However, substituting an arbitrary subset of a dynamic self- 
contained structure with the corresponding static equations 
will not necessarily produce a self-contained mixed structure. 
Moreover, not every self-contained dynamic structure 
produces a self-contained equilibrium structure when every 
equation is replaced by the corresponding equilibrium 
equation. 

Let us call a variable self-regulating if its derivative is a 
function of the variable itself, and non-self-regulating 
otherwise. 

Definition 4: Self-regulating variables and 
equations 

A differential equation in canonical form is called 
self-regulating if the variable whose derivative is the 
left hand side of the equation also appears on the 
right hand side with a non-zero coefficient. Such a 
variable is also called a self-regulating variable. 

It can be proved that equilibrating any number of self- 
regulating equations in a self-contained dynamic or mixed 
structure will always produce a self-contained mixed structure 
(or a self-contained equilibrium structure if no more dynamic 
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equations are left). However, equilibrating a non-self- 
regulating equation may produce an over-constrained 
structure. The following theorem states this fact. The proof is 
given elsewhere [Iwasaki 883. 

Theorem 5: Equilibrating any number of self- 
regulating equations in a self-contained dynamic or 
mixed structure always produces a self-contained 
mixed structure (or a self-contained equilibrium 
structure if all the dynamic equations in the original 
structure have been equilibrated.) 

K’ = cy WI 

K’ ,+)K 

A’+A’-) P+) p -> Q;ut+)Q 

? I 
out 

5.2. Exogenizing Dynamic Equations 
In contrast to variables that adjust to changes in other 

variables very quickly to restore relative equilibrium, some 
variables responds so slowly to changes in other variables that 
they can be regarded as independent of other variables. The 
equation corresponding to such a variable can be replaced by 
an exogenous variable equation, which amounts to deleting 
from the system under consideration the slow mechanism 
through which others influence this variable. We will call this 
operation of replacing a dynamic equation by an exogenous 
variable equation exogenizing. There are two ways to 
exogenize a variable: 
Case 1: If a variable Xi is changing but the rate of change 
depends mostly on Xi itself and very little on other variables, 
they can be deleted from the expression on the right hand side 
of the differential equation to make it a function of xi alone. 
Case 2: If a variable is not only unaffected by other variables 
but is hardly changing, the dynamic equation can be replaced 
by a constant equation of the variable. 

Conceptually, exogenizing is the opposite of equilibrating, 
because exogenizing a variable assumes it is unaffected by 
other variables while equilibrating a variable assumes it 
responds to changes in other variables extremely quickly to 
restore equilibrium. Exogenizing a variable amounts to 
deleting a mechanism from the system by placing the 
mechanism determining the value of the variable outside the 
scope of the system under consideration, and it is reasonable 
to do so only when the feedback to the variable from the 
variables inside the mechanism is negligible. Exogenizing a 
variable in a self-contained structure always produces a self- 
contained structure. The proof, given elsewhere, follows 
directly from the definition of self-containment of a mixed 
structure [Iwasaki 881. 

Theorem 6: Exogenizing an equation in a self- 
contained dynamic or mixed structure always 
produces a self-contained structure. 

5.3. Bathtub example revisited 
Consider a totally dynamic model, D, of the bathtub 

example consisting of equation (3d) and the following 
equations. The causal ordering in this dynamic structure is 
shown in Figure 5-l. 

Q f *Ui = c4(Qout - fW W 
P’ = c&P - A) CW 
Q’in = c6 W) 

Figure 5-P: Causal Ordering in D 

If it assumed that the mechanism represented by equation (Id) 
acts very quickly to restore equilibrium, one can replace the 
equation by the corresponding equilibrium equation (1). It can 
be easily verified that the resulting mixed structure is self- 
contained. Likewise, replacing- equation (2d) by the 
corresponding equilibrium equation also results in a self- 
contained mixed structure. If both equation (Id) and (2d) are 
equilibrated, the result is also a self-contained mixed structure. 
The mixed structure M in Section 4.3 is produced by assuming 
the mechanisms of (Id) and (2d) to act-very quickly and also 
assuming at the same time that Q, and K are hardly changing. 

However, if it was assumed that the mechanism represented 
by equation (3d) acted very quickly but that the mechanisms 
of (Id) (2d) were slow, the resulting mixed structure, M’, 
consisting of equations (Id), (2d), (4d), (5d) and (3) would not 
be self-contained because Static(M’) is not self-contained. 

This fact can be intuitively explained by examining the 
causal structure in Figure 5-l. Since the only causal path from 
Q, to Qoti - in the causal graph is 
<Q,, A’, A, P’, P, Q,d’, Q,J, the equilibrium between 
Qin and Qoti cannot be restored before A and P are restored to 
equilibrium. Therefore, it produces a contradiction to 
equilibrate equation (3d) without equilibrating (ld) and (2d) at 
the same time. 

6. Discussion 
We have extended the method of causal ordering to 

dynamic and mixed structures. Making assumptions about 
relative speeds of adjustment in mechanisms in a dynamic 
structure amounts to classifying the variables into three 
categories; 

1. Variables whose rates of change are influenced 
only very little by other variables; 

2. Variables that adjust so quickly that they are 
always close to relative equilibrium with other 
variables; 

3. All other variables. 
This idea is closely related to that of aggregation of nearly 
decomposable dynamic system by Simon and Ando. &a.rly 
decomposable systems are those consisting of subsystems of 
variables such that the variables within a subsystem interact 
strongly while the interactions among subsystems are much 
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weaker. They showed that when a given dynamic system is 
nearly decomposable, and if one is only interested in the long- 
term dynamics of the system, then one can aggregate the 
subsystems, assuming them to be always in steady-state 
relative equilibrium, and consider only the movements of the 
aggregated systems [Simon and Ando 611. Their work 
provides theoretical justification for generation of a mixed 
structures as an abstraction of a completely dynamic structures 
using the techniques discussed in Section 5. 

relation. Journal of Philosophy49:517-28,1952 

[Simon and Ando 611 Simon, H. A. and Ando, 
A. Aggregation of Variables in Dynamic Systems. 
Econometrica29, 1961 

[Simon 661 Simon, H. A. and Rescher, N. Causes and 
Counterfactual. Philosophy of Science33:323-40, 1966 

The idea of abstraction by time-scale is used by Kuipers 
[Kuipers 87b3 in order to control the exponential growth of 

the number of possible courses of behavior in qualitative 
simulation. The techniques discussed here can be used to 
generate models of different time-scales. 

The approaches described in this paper have been fully 
implemented as part of a computer program named CAOS for 
reasoning about system behavior in the domain of a coal 
power plant. The program consists of a collection of modules 
for generation of equation models, causal analysis of models, 
dynamic stability analysis, and qualitative prediction of the 
effects of external disturbance. The method of causal ordering 
in a mixed system has also been used in a program called 
YAKA to perform diagnosis of faults in oil refinery plant 
[Lambert et al. 881. 
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