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Abstract 

We present here a new way of reasoning on a device 
based on structure, we call assembling a device. It 
consists of a symbolic combination of local qualitative 
constraints (namely confluences) leading to more 
global relations. Some reference variables are selected 
according to the task to be performed (simulation, 
observation, postdiction,...). The assembling step 
produces a set of equations expressing directly 
“internal” quantities as functions of the reference 
quantities. We call such a set a task-oriented 
assemblage. Then, determining the non ambiguous 
variables for a particular assignment of the reference 
quantities turns out to be straightforward. We can thus 
expect to perform qualitative reasoning on large 
systems. 
The assembling tool is a new rule, we call the 
qualitative resolution rule. It has agreable properties: 
(1) interpretation: each application can be interpreted as 
joining local descriptions to more global ones; (2) 
completeness: an assemblage provides all the non 
ambiguous variables for any assignment. of reference 
variables. 

I Introduction 

Qualitative reasoning about a physical device is an attempt to 
make a computer focus on the device properties in the same 
way an engineer does. A typical problem is to capture key 
features of the device behavior. This has been the main 
concern for people working in the Qualitative Physics area. 
This work shows how a computer program can deduce global 
properties specific to a device by combining local physical 
laws. Essentially we attack the problem by defining a new 
task, which is not based on causality, but on the idea of 
assembling the components of the device. 
Technically speaking, this task is performed by a single rule, 
we call the qualitative resolution rule. First we show on some 
simple and motivating examples how the resolution rule, by 
assembling the device, produces global laws. Thus, 
performing simulation or other tasks, such as observation, 
turns out to be straightforward. This enables us to produce 
very efficient task-oriented programs, even for large-scale 
plants. 
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Then we describe precisely how the resolution rule must be 
applied. This leads us to prove some basic properties of the 
signs algebra. 
Then we state a completeness result: all the non ambiguous 
physical quantities can be drawn from global laws produced 
by the resolution rule. Such a set of global laws is called an 
assemblage. 
In practical terms, we specify the form of the global laws 
composing an assemblage. This enables us to stop firing the 
qualitative resolution rule as soon as it has provided an 
assemblage. 
We conclude by a comparison to De Kleer’s and Brown’s 
work. 

2 Assembling some devices 

2.1 Is the sum of two pipes a pipe? 

Consider a very simple example, a qualitative model for two 
connected pipes (Fig. 1). 

A B C 
Figurel: Two connected pipes 

For each pipe, there is a confluence describing the link 
between the sign of the pressure at the different ends of the 
pipe and the flow Q. The confluence ( 1) resp. ( 2 ) for pipe 
1 and pipe 2 are the following: 

[-A] - [dpgl - [dQl =o (1) 
[dPg] - [dPcl - [dQl-0 (2) 

This model describes separately the different parts of the 
physical device. It is obvious that. two connected pipes behave 
like a single pipe. This means that the following confluence 
must hold: 

[dPA]-[dPC]-[dQl=O (3) 
A system performing qualitative reasoning should be able to 
deduce (3) from (1) and (2). 

2.2 The qualitative resolution rule 
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Deducing confluence ( 3 ) from confluences ( 1) and ( 2 ) 
requires eliminating variable [ dPB ] . The trouble is that 
gaussian elimination is not correct in general for confluences. 
The following rule states under what conditions such an 
elimination can be performed: 
Qualitative Resolution Rule: Let x, y, z, a, b be 

qualitative quantities such that 
x + y=a 

and-x + z=b 
If x is different from ?, then 

y + z=a + b 
Detailed explanation, proof and related properties are given 
below. 
Takex=[dP~],y=-EdPcl-[dQl,z=[dPAl-[dQ] and 
a and b= 0. As [ dP B ] is a physical quantity, its range is 
{ 0, +, - 1. Hence the conclusion can be drawn: 

[@Al - IdPcl- [dQl=O (3) 
Moreover, the qualitative resolution rule provides another 
confluence by “subtracting” confluences ( 1) and (2 ) and 
“eliminating” [ dQ] : 

[dPAl-[dPBl+[dPCl"O (4) 
Initial confluences ( 1) and (2 ) describe links between the 
physical variables involved in the elementary components 
pipe 1 and pipe 2. The inferred confluences ( 3 ) and ( 4 ) 
describe the consequences of connecting the two pipes: they 
are specific properties of the composite device. The qualitative 
resolution rule discovers global relations starting from local 
ones. 

2.3 Consequences for a simulation task 

A cktssical task which a qualitative reasoner should be able to 
perform is simulation, that is predicting the behavior for a 
given input. For example, we would like to perform a 
SimUlatiOn under the assumptions [ dPA] =+ and [ dPC ] =O. 
We can use two obvious rules, we call in this paper 
propagation rules: 
PRl: If the value of a variable x is known, then substitute x 

by its value in all the confluences mentioning x. 
BR2: If an equation mentions exactly one variable, then 

deduce its value. 
Consider the inferred confluences ( 3 ) and ( 4 ) . It is obvious 
using the two propagation rules that [dPBl =+ and [dQl =+. 
The reason for being able to draw these conclusions is that 
confluences ( 3 ) and ( 4 ) are global behavioral descriptions 
of the device as a whole, linking explicitly the internal 
variables [dPB] and [dQ] totheinput [dPAI and [dPCl: 

k=Bl"[dPAl+[dPcl (AlI 
[dQl= [*Al - CdPcl (242) 

By assembling the two pipes and providing the global 
behavioral relations (~1) and (A2 ) , we have reduced (in 
this case - based on the quasi-static assumption) any 
simulation task to simple propagation. For instance, it would 
have been as easy to predict the behavior of the device starting 
from other input values: 

[dPA]=O,[dPC]=+ ==> [dPg]=+, [dQl=- 
[dPA]=+,[d+]=+ ==> 

[dPg]=+,[dQ] remains unknown 

The last case is important. It is possible to compute the value 
of [ dPB ] , but the propagation rules lead to an ambiguous 
value for [dQ] : [dQ] = [+I - [+I. It is often the case that 
some quantities are determinate as others remain ambiguous. 
The method introduced here is not responsible of the 
ambiguity of [ dQ] , but the “qualitativeness” of the model is. 
On the other hand, [ dPB ] is not ambiguous in the model, 
and its value is inferred. 
Now, forget for a while that confluences ( 3 ) and ( 4 ) can be 
inferred and apply propagation directly to the initial 
confluences ( 1) and ( 2 ) . This gives: - [ dPB I - [ dQ ] =- 
(1) and [dPB]-[dQ]=O(2).Nootherinformationcanbe 

gotten, except by using some kind of indirect proof. By itself, 
propagation is incomplete. This example shows intuitively 
the advantage and the meaning of the resolution rule: 

it seems to reduce simulation to simple propagation, while 
propagation by itself is incomplete. 

at the same time, it assembles the parts of the device and 
provides global properties specific of the compound 
device. 

We will now give a deeper insight into the nature of what is 
assembling a device. 

2.4 Assembling the device for simulation 

Consider a general device with input il , . . . , i 
variables ~1, . . . , vp and a qualitative mode P 

, internal 
based on 

confluences involving the qualitative derivatives of these 
quantities. Suppose we want to build a system which can 
answer quickly any simulation-like question : “How does the 
devicereacttoinput [dil]=al,..., [dip]=ap?" 
This can be done in two steps (Fig. 2): 

Assembling the device, that is obtaining from the initial 
qualitative model global relations, for instance relations 
expressing directly the internal variables as functions of 
theinput: [dvj]zf*([dil],..., [dip]), 1ljSn 
These relations will i old whatever values are assigned to 
the input. 

Then propagating input values into these global laws. 
The second step relies only on the two basic propagation 
rules. In our first example, the first step is achieved using the 
resolution rule. 

Assembling the device 

Figure 2: Simulation in two steps 

Solving confluences happens to be an NP-complete problem 
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[Dormoy, 19871. At first sight, if there are k simulations to 
be performed, then we can expect to be confronted k times 
with a (probably) exponential problem. Thus, splitting 
simulation into these two steps is fundamental. The first step 
is NP-complete too, but it is done once and for all, The 
second step will be performed k times, but it is known to be 
polynomial (in the worst case, 0 (nxp) ). 
The first step can be viewed as compiling the device for 
simulation, and so avoids “i-e-interpreting” the initial set of 
confluences for each new simulation. The second step can be 
coded as a very simple and efficient program. This program is 
specific to the device, but this is why it is efficient. We may 
thus expect to perform on-line simulations on large-scale 
plants having multiple input variables. 

2.5 The pressure regulator revisited 

Consider a second example, the well known pressure 
regulator. The model used here (Fig. 3) is slightly different 
from De Kleer’s and Brown’s [ 19841: 

[dPl]-[dP2]-[dQ]=O 

[dP2]-[dP31-[dQ]t[dA]=O [dP4 -[dP51- [dQl=O 

2 3 
IdPI]-[dP2]-[dQ]=O 
[-zl-[dp33- [dQl+[dA]=O 
[-31-L-41- [dQl=O 
[dP41- [dP51- [dQ] =O 
[dP41+[dAl=o 

5 
(1) 

(2) 
(3) 
(4) 
(5) 

Figure 3: The pressure regulator and its model 

PI and P5 are the input variables, P2, P3, ~4, Q and A are 
the internal variables. Assembling the pressure regulator for 
simulation using the resolution rule is possible. For instance, 
we can get the relation involving [ dP2 ] : 

kQl-W'~l+W51 (AlI 
in four steps (Fig. 4): 

[dP21-[dP31-[dQI-[dP41=0 
(6)=(2)-(5) 

W2l-W4k[dQI=O (7)=(6)+(3) 
W21- Wgl - [dQl =O (8)=(Y)+(4) 
[dP+[dP2l+[dPS]=O (9)=(l)-(8) 

In the same way the resolution rule provides the following 
global laws ( [ dP 3 ] will be given later on): 

w4l=w~l+[+jl (A21 
CdQl= W’ll- Wgl (A3) 

Figure 4: Assembling the pressure regulator for simulation 

[dA]=- E-11 - Wgl (A4) 
As in the example of the two pipes, simulation is now 
reduced to propagation. 

2.6 Assembling the device for postdiction 

As expected, the resolution rule assembles the device for 
simulation. But this is not the only point. This example 
highlights other tasks that can be performed using resolution. 
Imagine that we cannot directly observe the input, but that we 
can measure the evolutions of [dAl and [dQl . We are no 
longer interested in simulation, but in postdiction : “what 
input has caused the fact that [do] =a and [ dQ] =q ?" 
Formally, this problem is very similar to simulation: solving 
it only requires expressing the other variables as functions of 
[ dA] and [ dQ ] . The general task of assembling a device can 

still be performed, whatever set of reference variables is 
selected. The global laws of the pressure regulator for 
reference variables IdAl and [ dQ] are: 

W+[dQl-[dAl 
[dP2l=[dQl-MAI 
[dP$=[dQl-MAI 
rm43 =- [dA] 
k@51 =- Id41 - [dM 

We can thus expect to observe a device with the same 
advantages as for simulation. 

3 Scanning the qualitative 
resolution rule 

Before discussing about what the resolution rule can indeed 
produce, we need to pause and see exactly what it is. We are 
starting by the proof, for it may avoid possible confusion. 

3.1 Proof 

The qualitative resolution rule can be stated in several ways. 
We gave the shortest and the most general one: 
Qualitative Resolution Rule: Let x, y, z, a, b be 

qualitative quantities such that 
x + y=a 

and -x + z=b 
If x is different from ?, then 

y + z=a + b 
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Before proving the rule, we need two basic qualitative 3.2 Using the resolution rule in the right way 
calculus properties: 
Quasi-transitivity of qualitative equality: 

If a=b and b=c and bf?, then a=c. 
Compatibility of addition and qualitative 
equality: 

a+b = c is equivalent to a = c - b 
It is very easy to prove these properties provided that the 
relation =, called qualitative equality, or sign compatibility, is 
properly defined: 

a = b iff a = b or a = ? or b = ? 
This relation is not the usual equality. Let F 1 and F2 be two 
expressions, involving additions and products of physical 
quantities, such that F 1 =F 2, and E 1 and E 2 the 
corresponding qualitative expressions. E 1=E2 means that the 
resulting signs of the two expressions F 1 and F2 must be 
compatible. Suppose we have assigned some values to the 
physical variables involved in both F 1 and F 2, and let s 1 
and s 2 be the corresponding values of E 1 and Ea. If s 1 and 
s 2 are non ambiguous, i.e. are both different from ? , they 
must be equal; but if one of them is ? (the sum of a + and a 
-), the underlying real expression may have any sign; hence, 
it may be compatible with any other sign. 
All this is obvious and well-known. The point is that as soon 
as we have formally defined the set s = { + I 0 , - , ? } , its 
addition and product, as well as the qualitative equality, we 
may work within this structure and prove things while 
forgetting the initial motivation. For instance, the proof of 
the first property is: 

If a=? or c=?, then obviously a=c. 
Otherwise a=b=c. 0 

No matter what a, b or c are. 
The second property can be proved by case analysis. 
We can now 

Let x, Y, 
rule: 

give the proof of the rule: 
z,aandbbelikeinthe first statement of the 

x+y=a 
-x+z=b 

We get, by applying the second property: 
Z -bz xandxsa-y 

The assumption xf? allows us to apply the first property: 
z - b =a- Y 

which can be rewritten using again the second property: 
Y+Z =a+b 0 

This proof needs a comment. Probably the most expressive 
way to state the resolution rule is: 

A variable may be eliminated by adding or subtracting two 
confluences, provided that no other variable is eliminated 
at the same time. 

But this may lead to confusion: it could be thought that we 
may add or-subtract two confluences, and then eliminate a 
variable by the “elimination rule” x-x --> 0. This is 
clearly a wrong statement, since x-x is hardly ever 0, unless 
x itself is 0. But the resolution rule states that one can 
proceed as if this were true, and provided that one applies the 
“elimination rule” only once. This is clearly not the way the 

We have shown in the examples above how one succeeds in 
firing he resolution rule. We show here how one can fail. 
In practical t,crms, the relations x+y=a and -x+z=b stand for 
some confluences, and x is a variable involved in both. The 
hypothesis if x is diflerent from ? is thus always verified, 
since x stands for a qualitative derivative of a physical 
quantity. In order to obtain the exact pattern of the rule, the 
second confluence may be multiplied by - if necessary. 
a and b are the respective right-hand sides of the confluences 
(until now 0). y and z are the remaining expressions of the 
respective left-hand sides after having removed X. y and z 
may involve a common variable. There is a problem if y and 
z involve a variable t with opposite coefficients: when 
adding y+z, we get t-t, which cannot be simplified (it is 
not correct to substitute 0 for t-t , cf. previous remark). 
Otherwise, we get t +t or - t -t , which can be simplified 
according to the rule t +t =t . All this is better illustrated by 
the following examples (borrowed from the pressure 
regulator). 

Consider first the two confluences: 
C~~~l-~~~~l-~~Ql+~~l~O (2) 
[dP41+[dA]=0 (5) 

They have a single variable in common, X= [ dA] . We 
must consider the opposite of confluence ( 5 ) . y and z 

have no variable in common: y= [dP2] - [dP3] - [dQ] , 
z=- I dP 4 ] . The resulting confluence is: 

[dP21- [dP$- LdQl- W41=0 
(6)=(Z)-(5) 

+ Let’s try now to combine this confluence and confluence: 
W3l-EdPql-[dQl=O (3) 

There are three possible choices for X: [ dP 3 ] , [ dP 4 ] 
and [dQl. L&try [dP3] first. 
We have Y=- W’41- [dQl 
and Z=[dP2l-[dP~l-[dQl. 
y and z have two variables in common, and we are in the 
case t +t. Hence we get: 

W21-W’ql-MQI-0 (7)=(6)+(3) 
Let’s now try x= [ dP 4 ] starting with the same 

confluences ( 3 ) and (6) (choosing X= [ dQ ] would lead 
to a similar conclusion). We obtain 
y=[dP21-[dP31-IdQl andz=[dP3l+[dQ].Weare 
in the case t-t . The relation y+ z=O is of no practical 
use. Such applications of the resolution rule must be 
avoided. 

For functional purposes, the resolution rule must be stated as 
follows: 

Letx+E1= a and -x+Epb be two confluences, where x 
is a variable and E 1 and E2 have no variable with 
opposite coefficients in common. Then EJ=a+b is a valid 
confluence, where E 3 is the same expression as E1+E2, 
but with no repeated variable. 

3.3 Why resolution? 

We had called the qualitative resolution rule the qualitative 
Gauss rule, because of its similarity with gaussian rule is proved. 
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elimination. But another analogy seems stronger. The 
qualitative resolution rule and the Resolution Rule in logics 
(weakened here to the propositional calculus) have a similar 
aspect: 

Let X, Y, Z be propositional variables (and x, y, z their 
boolean equivalents) such that 

XVY (x + y = 1) 
and 1x v z (-x + z = 1) 

Then 
YVZ (y + z = 1) 

Moreover, the two resolution rules have completeness 
properties (see below). 
It must be mentioned that there is a third resolution rule, 
valid in a model dealing with orders of magnitude (which 
embeds the standard signs model). We have proved no 
completeness result within this framework, but we guess that 
there is one. 
We are thus facing a situation with three similar rules and 
two completeness results (probably three) in models of 
increasing complexity: there is something fishy going on. 
But we have not caught it yet. 

4 Completeness of qualitative resolution 

4.1 Power of the resolution rule 

We have shown in the examples the advantage of performing 
the ‘task we have called assembling a device: the resolution 
rule provides relations, from which the basic propagation 
rules are powerful enough tools to determine the non 
ambiguous variables and their values. Efficient programs 
could be designed in this way. But are we sure that this works 
in all cases ? 
This is a completeness problem. For instance, in the two 
pipes case, the values for [ dP B] and [ dQ I , when not 
ambiguous, are imposed by the model, not by a particular 
method. The challenge, when proposing an effective method, 
is to know whether it can reach all that is embodied in the 
model. This is not true for the propagation rules. But we saw 
that these rules could deduce all the non ambiguous values 
from the global laws produced by resolution whatever the 
assignments of reference variables were. We suspect that the 
resolution rule is complete in this way. 

4.2 Assemblages 

Which kind of global laws the propagation step needs depends 
on the task to be achieved, i.e. on the choice of reference 
variables. Suppose we have selected one. Then the resolution 
rule is requested to discover an assemblage: that is, a set of 
global laws from which the propagation rules deduce all the 
non ambiguous variables and their values for any assignment 
of the reference variables. More formally, an assemblage can 
be defimed as follows: 

Let C be a set of confluences, wi be selected reference 
variables and v j the remaining ones. A set of global laws 
A is called an assemblage for the reference variables wi iff 
for each assignment of the reference variables wi=a i , as 
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soon as the model C imposes the value b j to the internal 
variable v j , then. the basic propagation rules can deduce 
v j =b j from the assemblage. 

The completeness problem comes down to obtaining 
assemblages for each possible choice of reference variables. 

4.3 Partially proved 

Indeed, though we think that it is true in any case, we have 
proved the completeness only in the square case, i.e. when the 
number of confluences and of internal variables are equal. The 
proof is difficult to show: it requires introducing the notions 
of qualitative determinant, qualitative rank, maximal matrices 
with full rank,... Its total length exceeds twenty pages, and 
therefore will not be given here (it can be found in [Dormoy, 
1987-J). 
Incidently, this completeness result also applies when the 
reference set is empty. This means for instance that, if we are 
performing a simulation for some particular input 
perturbations, then the resolution rule can find out all the non 
ambiguous variables from the initial set of confluences as 
performing a simulation for some particular input 
perturbations, then the resolution rule can find out all the non 
ambiguous variables from the initial set of confluences as 
well. But the advantages of the assembly step would be lost if 
the resolution rule were to be used in this way. 

4.4 The general resollution rule is needed 
for completeness 

Unexpectedly, we discovered after having written down the 
completeness proof that this work was not the first attempt to 
seek an effective and complete method for the unicity problem 
in confluences. In the field of economics, Ritschard proposed 
a more constrained form of the resolution rule, but leading to 
a more informative conclusion (the divergences from the 
resolution rule are underlined) [R&hard, 19831: 

Let x+El=a (Cl) and -x+Ez=b (C2) be two 
confluences, where x is a variable and El and E2 have no 
variable with opposite coefficients in common. Assume 
that all the variables involved in ~2 are involved in ~1a 
d. Then E3 =a+b ( 3 ) is a valid confluence, where E3 
is the same expression as E 1 +E2, but with no repeated 
variable. Moreover. if a + b= b. then substituting 
confluence (C ) for confluence (~1) provides an 
eauivalent set of Zonfluences. 

For instance, this rule applies in the pressure regulator 
example to confluences ( 6) and (3) : 

~~~l-~d~3l-~~4l-~dQl~~ (6) 
[ dP 3 ] can be eliminated in confluence ( 6 ) , so giving 

confluence ( 7 ) : 
W21-W4l-[dQl=0 (7) 

This deduction is made by the resolution rule as well, but the 
additional result is that confluence ( 6) can be discarded. 
Ritschard claimed a completeness result concerning this rule. 
Unfortunately, his claim is wrong, as shown by the counter 
example: 



y+z+t=o 
X -z+t=O 

X+Y -t=o 

x-y+2 =o 
All the variables must be 0, but Ritschard’s rule does not 
apply even once. It can be checked that the resolution rule 
works right. 

The completeness result stated above theoretically proves that 
the resolution rule always provides an assemblage. But, in 
practical terms, we must describe precisely the form of the 
global laws composing an assemblage. 
We saw in the examples that we could express an internal 
variable as a function of the reference ones: 

[dv~l=fj([dwll,...,[dwpl) 
For instance:‘[dP2]= [dP1] + [dP5] (Al), drawn from 
thegloballaw: [dPl]-[dP2l+[dP51=0 (9).Butwe 
saw too, when assembling the pressure regulator for 
simulation, that a global law mentioning [ dP 3 ] and the 
input [ dP 1 ] and [ dP5 ] was missing. Completing a 
simulation-oriented assemblage for the pressure regulator 
requires extending the notion of a confluence. The following 
relation holds for [ dp 3 ] : 

W3l=W11+? N’gl (A51 
The use of ? coefficients in confluences must not make 
things confused. This relation means that: 

if [ dP 5 ] is different from 0, then [ dP3 ] cannot be 
determined from this relation. 

if [dP5] =0, then [dP3] = [dPl] (since regular and 
qualitative equalities are equivalent for two qualitative 
quantities different from ?). 

Hence, relation (A5 ) , despite the ? coefficient, provides 
some information. Indeed it provides the best, since [ dP 3 ] 
is ambiguous as soon as [ dP 5 ] is different from 0. 
In general, the way we represent physical laws must not 
change: confluences are suitable. But the goal to be achieved 
for a particular task imposes changes to their form: the 
reference variables must be passed to the right-hand side. The 
resolution rule applies in the same way, but regardless to the 
right-hand side. This means that one can deduce relations 
involving a pattern w-w in their right-hand sides, where w is 
a reference variable. As usual, we run into ambiguity as soon 
as w is different from 0, but such a relation may provide 
some information when w= 0. We call such relations 
task-oriented confluences. 
The conclusion is that the resolution rule provides 
assemblages composed of task-oriented confluences. 

6 Conclusion 

and Brown called RAA the chronological backtracking 
algorithm which determines all the solutions of a set of 
confluences. But RAA cannot capture the way an engineer 
discovers how a device works. Technically speaking, causal 
heuristics are designed to control RAA. But they are intended 
to express more: they are an attempt to set within the 
device-centered model based on confluences the engineer’s 
notion of causal perturbations. 
Our work presents two aspects as well. From a technical 
point of view, the resolution rule avoids the incompleteness 
of propagation by discovering task-oriented assemblages. The 
completeness result makes this step safe. At the same time, 
efficient task-oriented programs are produced. But we intend 
more: in our opinion, assembling a device captures the idea of 
an engineer inglobing local laws into descriptions which are 
specific to the device. 
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