
Design for Testability

Peng Wu
MIT AI Lab

545 Technology Sq., Rm833
Cambridge, MA 02139

Abstract

This paper presents an implemented system for
modifying digital circuit designs to enhance testa-
bility. The key contributions of the work are: (1)
setting design for testability in the context of test
generation, (2) using failures during test genera-
tion to focus on testability problems, (3) indexing
from these failures to a set of suggested circuit
modifications. This approach does not add testa-
bility features to the portions of the circuit that
a test generator can already handle, therefore,
it promises to reduce the area and performance
overhead necessary to achieve testability. While
the system currently has only a small body of do-
main knowledge, it has demonstrated its ability
to integrate different DFT techniques and to in-
troduce only sharply focused modifications on a
textbook microprocessor, an ability that is miss-
ing in previous DFT systems.

a ntroduction

*This paper describes research done at the Artificial Intelli-
gence Laboratory of the Massachusetts Institute of Technology.
Support for the author’s research is provided by the DigitaI
Equipment Corporation, Wang Corporation, and the Advanced
Research Projects Agency of the Department of Defense under
Office of Naval Research contract NOOO14-85-K-0124.

The key contributions of this work are: (1) setting design
for testability in the context of test generation, (2) using
failures during test generation to focus on testability prob-
lems, (3) indexing from these failures to a set of suggested

. I
-

circuit modifications.

Testing Focus

--I ‘\
Shift

Figure 1: MAC-2: A textbook microprocessor

Figure 1 shows a textbook microprocessor. The left half
is the datapath, the right half is the micro sequencer. The
components in the sequencer have testability problems be-
cause they are internal to the circuit and are not easily
accessible from outside.

To solve the testability problem for one of those com-
ponents, the read-only memory (ROM), our system starts
by consulting its library to see how a ROM can be tested.
According to the library, a ROM can be tested by applying
an exhaustive counting sequence on it, address input, then
verifying that its outputs are correct. When trying to ap-
ply a counting sequence to the ROM address, the system
fails because it doesn’t have direct access to the ROM in-
put (hence it cannot directly input a counting sequence),
and because even in normal use (i.e., getting addresses
from the UPC), only a fraction of all the addresses might
be applied. Our system then suggests that a register and
an incrementor can be used as a counter (and hence pro-
vide a counting sequence) when connected in a loop, and
indicates that the UPC, the Incrementor and the Multi-
plexor can do this if the Multiplexor always connects the
UPC and the Incrementor during testing.

The output side of the ROM is more difficult - ac-
cording to the system’s TG algorithm, there is no way in
the current design to observe the output, so the system
encounters another test generation failure. A heuristic as-
sociated with this particular kind of failure indicates that
the output can be observed by adding a shift function to

358 Common Sense Reasoning

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

a register. In this case, it suggests adding a shift function
to the microinstruction register uIR, connecting the addi-
tional shift-out port to an output of the circuit, then using
the uIR to shift the ROM contents out so that they can be
verified.

The system’s overall approach to finding testability
problems in a circuit and fixing them by modifying the
circuit is a four step process:

1. It runs an external test generator [Shirley, 19861 on
the circuit to identify the untestable components.

2. It further examines the testing problem by attempting
to generate tests for the untestable components and
analyze the reasons of failure. The test generator for
this purpose has a simple algorithm and our system
has access to its internal.

3. When it encounters a test generation failure, it selects
a modification according to the nature of the failure.

4. Finally, the system modifies the circuit and repeats
the process until all untestable components are pro-
cessed.

Previous approaches to DFT have used heuristic testa-
bility definitions that assume a limited test generation ca-
pability, i.e., that of a classical, combinational test gen-
erator. This may result in false testability problems. For
instance, the LSSD (1 eve sensitive scan design) design rule 1
approach [Horstmann, 19831 defines testability problems as
design rule violations. Since LSSD reduces sequential cir-
cuit testing to combinational circuit testing, this approach
assumes that the test generator is only able to handle com-
binational circuits, and as a result would find “testability
problems” that are not problems to some existing test gen-
erator. For example, according to the LSSD design rule
approach, every register in the datapath part of the MAC-
2 must be changed into a shift register, despite the fact
that existing test generators (e.g., [Shirley, 19861) can test
these parts as they are.

2 es& Generation
The purpose of testing a circuit is to verify its behavior.
This is done by exercising the circuit, i.e., by applying in-
puts to it and comparing its outputs against the expected
values. Each set of inputs and expected outputs is called
a test pattern. Circuits as complex as microprocessors are
tested using divide-and-conquer: first, partition the cir-
cuit into components, then test each component. This
partitioning for testing usually follows the schematic or
a partitioning suggested by the designer.

Testing a specific component (the focus of the test) in-
volves three steps:

1. Work out test patterns for the focus.

2. Work out how to apply inputs to the focus via the
surrounding components.

3. Work out how to observe the focus outputs, again via 0
the surrounding components.

Working out how to test a component is a recursive sub-
problem that bottoms out at primitive logic gates, e.g..
AND, OR, and NOT, for which there are simple, well-
known tests. To test components internal to a VLSI chip,

the test patterns must be executed through the surround-
ing components. This typically involves routing signals
through the circuit, which we refer to as routing tasks.

st enesatio
For the purposes of this paper, we define the testability of a
circuit relative to a test generation algorithm. We say that
a circuit is testable by an algorithm if the algorithm can
generate a test for the circuit. If a circuit is not testable
by that algorithm, then it is the job of our DFT system
to suggest design changes which will enable the algorithm
to succeed. Although DFT’s goal has been understood in
this way previously, only recently have developments in
TG technology made it possible to do so in an automatic
DFT system.

In our system, when a component has a testability prob-
lem, the problem must be in routing, since its test pattern
is assumed known (we have built up a library of test pat-
terns for components by consulting testing experts). For
example, in Figure 1 the ROM cannot get a counting se-
quence since none of the five components in the sequencer
are directly connected to primary inputs in the original
circuit. Thus routing a counting sequence to the ROM
fails and this is one of the reasons for the ROM being
untestable.

x
I

: SUPPlY I
t I----, , Signal
---I le--

L---J

*
Task:
Observe
Response

Figure 2: DFT in the context of TG failure

Figure 2 shows how our DFT system will fix routing
problems for a specific test Focus. In order to figure out
what kind of modifications are helpful, the system checks
each of a focus’ neighboring components to determine
whether it can help to solve a routing task. A neighbor
can

Q

help in any of several ways:

The component may be able to complete the task. For
example, assume that the Focus is a ROM that needs
a counting sequence to exercise it. If the neighboring
component driving it, X, happens to be a shift-register
connected to a primary input, the task of providing a
counting sequence can be accomplished by using X in
its shifting mode (and a test equipment will drive the
primary input with the counting sequence).

The component may be able to pass the task along
for other components to solve. If X has a mode in
which its output can be made equal to its input, it
can be made “transparent,” and the task of provid-
ing a counting sequence can be passed to components
further “upstream.”

The component may be able to solve part of the task
and cooperate with others. For example, suppose X is
an ordinary register that happens to be in a loop with
an incrementor (the dashed lines). By using them fo-
gether we can generate the counting sequence. Thus,
X accomplishes part of the original task.

wu 359

In each of the three ways of accomplishing a routing logic operations. Each test pattern consists of several test
task, design modifications may be involved. For instance, phases that are performed in sequence. At the bottom are
if X is used to complete the task of providing a counting the signals that need to be routed to and from the P/O
sequence for testing the ROM, i.e., used in the first way ports of a focus. The test pattern for a particular compo-
as shown above, but it is a register without shift function nent can be selected by choosing one test pattern for each
originally, it needs a modification. of its functions and merging them.

Using a component to pass a signal differs from using
it to cooperate with other components to route a signal.
When passing a signal the component functions as no more
than a wire; when cooperating with other components it
plays a critical role, as for instance, when a register is
used to hold the state when it is cooperating with an in-
crementor as a counter. These two usages of components
produce different subgoals that are handled differently -
cooperation also involves circuit structure matching tasks
(described in the next section) in addition to routing tasks.

Circuits are represented at the register transfer level as
in Figure 1. Component behaviors are represented as I/O
mapping functions; this predicts how a component will re-
spond to a signal such as a counting sequence. The map-
ping functions are used to determine subgoals for handling
routing tasks, for example, to determine what signals must
appear on each I/O port of a component when passing a
signal.

4 Domain Knowledge
The mechanism presented in the previous section offers a
framework for our DFT system. The domain knowledge
needed to complete the system consists of (i) test gener-
ation knowledge, such as test patterns for different com-
ponents and the way of using components to accomplish
routing tasks, and (ii) TG failure repair strategies, such as
the component modifications that help routing tasks.

The system uses compound component templates to
specify how components can work together to accomplish
routing tasks that none of the individual components can
accomplish alone. A compound component template spec-
ifies the required components, the connections between
them, the kinds of routing tasks the compound component
can handle, the I/O ports at which the compound compo-
nent handles the routing tasks, and the routing tasks for
the system to accomplish further.

The test patterns specify the input stimulus to exer-
cise components and the predicted responses of the com-
ponents. Each type of component has its own test pattern
specifications; we get these from experts.

Counting, Exhaustive
(4) Required

Components
- Incrementor
- Register

(6) Required
Connections- Test Pattern

for a type of
component

Test Patterns
for functionalities
(working modes)

Test Patterns
for single
functionality

Test Phases
in test pattern 4 / .

Signal Requirements
on ports

Observe
all-bit-l

APPLY APPLY APPLY
walking-l walking-0 add

on Output on input-l on input-0 on control

Figure 3: Test pattern for ALU

A test pattern for a specific type of component is repre-
sented in our system as a tree (Figure 3). The root node
indicates the component type, an ALU in this case. The
second level nodes represent test patterns for each function
that this type of component can perform. For example,
an ALU can Add, And, Shift, etc. The third level nodes
are alternative test patterns for testing the same function.
Each of the functions has its own test patterns because
a component may not have all the functions mentioned
in the generic test pattern definition and its test pattern
should vary accordingly. For instance, an ALU without
logic operations should be tested differently from one with

(6) Further RTs
(7) Handling -

Port

Figure 4: A compound component

Figure 4, for example, shows a compound counter that
can generate a counting sequence. Its required compo-
nents are a register and an incrementor, connected in a
loop feeding each other.

To match compound component templates to a circuit,
each of the required components must match a compo-
nent, and each of the required connections must match a
signal path. The template of Figure 4 matches the circuit
in Figure 1, with the register matched to the UPC, the
incrementor matched to the Incrementor, the connection
from the output of the incrementor to the input of register
matched to the Multiplexor working at the proper mode,
etc.

So far we have discussed the system’s knowledge about
test generation. Now we introduce how components can
be modified to repair test generation fai1ures.l Our com-
ponent modifications are all additive, that is, components
are modified to perform more functions, never fewer. Con-

‘There are other strategies, such as swapping components
to get different test patterns as in [Zhu and Breuer, 19851, that
are not currently included.

360 CommonSenseReasoning

sequently, the circuit can always perform its original func-
tions after the modification.

The system uses masimum function sets to represent
what functions can be efficiently added to a particular
component. Each type of component has its maximum
function set, which includes all the functions commonly as-
sociated with it. For instance, the maximum function set
for register includes load, shift, linear-feedback-shift, etc.
When a function is needed for a component to handle a
routing task, and the function is in the maximum function
set of the component but is not currently implemented, it
can be added to the component through modification.

stsaint elaxat i
This system uses a constraint relaxation mechanism for
three purposes: to control the search, to represent prefer-
ences between solutions, and to represent criteria for solu-
tion validity. For example, without a constraint explicitly
ruling out solutions that loop (i.e., a signal going in a cir-
cle), the program would produce many such low-quality
solutions.

Category Concern
sharing Incompatible control for
controls test segments

sharing Incompatible modifications
modifications to the same component

control-observe Control path crosses
intersection observation path

signal Two control paths intersect or
intersection two observation paths intersect

loop A signal path intersects itself

protect focus A focus is used to test itself

Table 1: Constraint Categories

use-component-once-except-for-focus

loop-signal-stable (validity boundary)

Table 2: The “loop” constraint category

In our system, most of the constraints on the solu-
tions are organized in a two-level hierarchical structure.
Constraints are first divided into 6 categories according
to the parts of the solutions they are concerned about
(Table 1). For instance, the “loop” constraint category
concerns whether a signal path intersects with itself, i.e.,
whether it forms a loop.

Constraints in each category are then organized by a
strictness ordering, that is, if a constraint is violated, all
the constraints in the same category that are stricter are
also violated. Therefore the violation of constraints in one
category can be characterized by the weakest constraint
violated. Table 2 shows the constraints in the “loop” cat-
egory.

Search Control
To reduce the search space, the system first generates

solutions incrementally in order to take advantage of the
fact that whenever a constraint is violated in a partial so-
lution, it is violated in any solution built from the partial
solution. Whenever the system adds a building block to a
partial solution, it checks whether the resulting partial so-
lution is violating any constraint; if so, the resulting partial
solution will be suspended.

Second, the system starts with the strictest constraints -
stricter than needed to guarantee the validity of solutions -
and it relaxes the constraints gradually when there are not
enough solutions under the enforced constraints. Since the
stricter the constraints, the smaller the search space, and
heuristically, the higher quality the solutions, the system
is likely to be searching in the smallest search space that
contains the best solutions.
Solution Validity and Preference

In addition to search control, the constraint relaxation
mechanism also captures knowledge about solution validity
and preferences. Preference is represented as a relaxable
constraint as explained above. Validity is represented as a
validity boundary in each constraint category. A validity
boundary is the weakest constraint in a category that still
guarantees the validity of a solution. An example of the
validity boundary is the “loop-signal-stable” category in
Table 2, which checks resource contention within a signal
path. Usually the system will not relax the constraints be-
yond the validity boundary. Mowever, if the system cannot
find any valid solution, it will relax the constraint further,
producing a partial solution for examination by the de-
signer, to help him fix the remaining testability problems.
Constraint Relaxation

When all partial solutions are suspended before the sys-
tem finds a given number of solutions, the constraints are
relaxed so that some of the suspended solutions may be
completed. Each time, the system relaxes the constraints
minimally, that is, just enough to re-invoke at least one
suspended partial solution. This is done in three steps:

1. For each of the constraint categories, collect the weak-
est violated constraints from each of the suspended
partial solutions into a Weakest-violation set. If a
constraint in this set is relaxed, at least one of the
suspended partial solutions will be re-invoked.

Collect the strictest constraint in each of the cat-
egories from the Weakest-violation set to form a
Strictest-Weakest-violation set. This set contains the
candidates for a minimal relaxation.

Relax the constraints in the Strictest-weakest-
violation set one at a time according to the category
order in Table 1 until one suspended partial solution
is re-invoked.

Unlike the constraints within a category, the constraint
categories do not have a clean logical relationship, i.e.,
given that a partial solution violates some constraints in
one category, little can be said about whether the par-
tial solution violates any constraint in other categories.
Therefore the order of relaxation among the categories is
based on a heuristic: relax the constraint first that is re-
lated to the latest stage of solution construction. For in-

wu 341

stance, given that our system constructs one signal path at
a time, the ControLobserve intersection category (involving
two signal paths) is related to a later construction stage
than that of the loop category (involving only one signal
path). Hence the former is relaxed earlier. This heuristic
can be justified by noting that, among all the suspended
partial solutions, those at the latest stage of construction
are closest to completion, therefore re-invoking them first
is likely to yield complete solutions with least constraint
relaxation.

6 Related Work
This research has been inspired by the flexibility and preci-
sion demonstrated by human DFT experts. For instance,
multiplexors are used to partition the MC68020 and on-
chip signature analysis is used only where the accessibility
is poor [Kuban and Salick, 19841. As one test expert re-
marked, the strategy is to “introduce just enough hardware
to make the circuit testable.” Our research is an effort to
automate some of the techniques used by human experts.

The work on test generation in [Shirley, 1986; Shirley
et cd., 19871 h as had a strong impact on this research.
Shirley’s work recognizes that test generation effort can
be traded off against DFT effort. Therefore, it may be
appropriate for a test generator to give up quickly on the
hardest portions of a circuit, when DFT techniques can
solve the problem more inexpensively. This is the kind of
test generator needed to identify testability problems. The
point at which the test generator gives up can be chosen
based on the relative costs of generating tests vs modifying
the circuit.

Horstmann’s DFT system [Horstmann, 19831 takes a de-
sign rule approach, using rules from LSSD design stan-
dards. Abadir’s DFT system [Abadir and Breuer, 19851
uses a “testable structure embedding” approach, employ-
ing general circuit structure models, similar to our com-
pound components, to represent structured DFT methods.
Our approach differs from these DFT systems in the fol-
lowing aspects.

o These systems tend to prevent testability problems
from arising while our system solves testability prob-
lems as they arise. Previous DFT systems define a
testability problem to be either a design rule viola-
tion [Horstmann, 19831 or a testable structure mis-
match [Abadir and Breuer, 19851. Rule violations and
structure mismatches are only heuristically related to
real testability problems in a circuit. This uncertainty
forces a conservative strategy that can result in unnec-
essary modifications.

l Our approach examines more of a circuit’s potential
behavior than previous systems and, therefore, can
use existing components in a larger variety of ways.
For example, our system can use a register as part of
a counter but previous systems do not.

e Our approach can employ a larger variety of DFT
techniques, both structured and ad hoc DFT tech-
niques, flexibly. In comparison, Horstmann’s sys-
tem specializes only in LSSD; Abadir’s system bun-
dles components that accomplish control/observation
tasks with the focus, and thus has a coarser granular-

362 Common Sense Reasoning

ity of testable structure than our system does if both
are viewed in terms of testable structure matching.

Zhu’s system [Zhu and Breuer, 19851 is more an opti-
mization system than a DFT system. This system special-
izes in replacing components, i.e., selecting from candidate
replacements according to trade-offs among incompatible
requirements. In a sense, we are solving a different prob-
lem; Zhu’s system repairs TG failures caused by compo-
nents that have no test patterns by swapping in compo-
nents with known test patterns; our system repairs TG
failures in signal routing.

This research has been inspired in part by [Horstmann,
1983; Abadir and Breuer, 19851. However, in our view
these DFT systems fail to answer adequately the critical
question about what a testability problem is, an issue that
has been central to this research. We define a testability
problem as a test generation failure, use a test generator
to locate testability problems, and organize circuit modi-
fications according to TG failures they repair.

7 Current Implementation

Status
This research is still at the prototype stage, demonstrat-

ing the plausibility of our approach. We think that test
generation knowledge accounts for large part of the flex-
ibility and precision of human DFT experts. The exam-
ple shown in the introduction of this paper is interesting
because it shows that our system does not introduce DFT
hardware on portions of the circuit which we already know
how to test; and where real testing problems exist, the
system introduces DFT hardware to solve the actual prob-
lems, e.g., it introduces only a modification to the output
side of the ROM. Additional solutions for all the five com-
ponents in the sequencer part of MAC-2 and for a circuit
from [Abadir and Breuer, 19851 can be found in [Wu, 19881.

To date the system has not been tested on real circuits.
What remains to be seen is how this approach scales up
with real circuits and whether precise DFT modifications
actually yield lower total DFT overhead than would result
with a more structured approach.

Limitations
The test generation process underlying our DFT pro-

cess is computationally intensive since it involves satis-
fying conjunctive goals. When more capability is added
to the system in order to make wider changes to circuits
(e.g., adding connections between internal circuit nodes),
the complexity problem will become more acute. Using
more abstract or hierarchical circuit representations might
help, but more experiments with real circuits are needed.

Our approach is TG-failure-driven. Therefore the sys-
tem can employ only DFT techniques that can be viewed
as repairs to TG-failures. Other techniques, such as parti-
tioning a circuit, or using bus structure to reduce the TG
complexity, fall outside our framework.

Our approach provides a framework for suggesting pre-
cise DFT modifications. However, due to a lack of re-
lated knowledge, the system is currently incapable of di-
rectly evaluating the resulting chip area overhead (requir-
ing layout knowledge), test time (requiring details of signal
sequences), fault coverage (requiring quality of test pat-

terns), etc. The work in [Wu, 19881 considers this issue in
more detail.

Finally, our approach is not intended to deal with gate-
level circuits. That level of detail is, first of all, compu-
tationally impractical for microprocessor-scale circuits. In
addition, in order to avoid expensive late design changes,
our system is intended to work at early design stages when
only high-level circuit descriptions are available. This
seems appropriate since many DFT techniques are con-
cerned with only high-level circuit structures, e.g., built-in
self testing.

Future Directions

Ideally, testability should be considered while design-
ing a circuit. However, due to the scale of VLSI circuits,
simply providing the device functionality correct is very
difficult. As a result, it is common practice to pay atten-
tion only to functionality at first, then deal with secondary
goals like testability by debugging, minimally perturbing
the design while maintaining the primary goals. Our DFT
system accomplishes a variety of “minimum perturbation”
because it works only on true testing problems (as defined
by test generation failures) and because it has a library of
minimal design modifications indexed by failure type.

The general idea employed in our approach is to use a
simulation process to find defects in given design, then use
the defects to guide the redesign process. Possible addi-
tional applications of this idea are design for manufactura-
bility and design for diagnosability. For instance, simu-
lating how parts of a machine can be put together might
reveal assembly problems in the design and the solutions
to them.

8 Conclusion
Knowledge about test generation is critical to constructing
a competent DFT system, yet this knowledge has not been
used previously. This research proposes that test genera-
tion knowledge can be introduced into a DFT system by
following the principle of repairing test generation failures.

The implemented system currently has only primitive
domain knowledge and needs more work. It can modify
a circuit by adding functions to components, but cannot
add connections due to a lack of circuit layout knowledge.
Except for the constraint relaxation mechanism, it does
not have a sophisticated evaluation function. However,
armed with the knowledge of circuit testing behavior and
test generation, it has already demonstrated its ability to
integrate different DFT techniques and to introduce only
sharply focused modifications on a textbook microproces-
sor, an ability that is missing in previous DFT systems.

Acknowledgments
The author wishes to thank Prof. Randall Davis for su-

pervising this work and Mark Shirley for many discussions.
Both have made great contributions to the ideas presented
here and to the presentation of the paper. Gordon Robin-
son, of GenRad, provided many discussions on testing,
Walter Hamscher and Reid Simmons carefully read the
draft and offered many useful comments, while Choon P.
Goh supplied encouragement, a careful reading of the draft
and many useful comments.

efesences
[Abadir and B reuer, 19851 Magdy S. Abadir and Melvin A.

Breuer . A Knowledge-Based System for Designing
Testable VLSI Chips. IEEE Design U Test of Comput-
ers, :56-68, August 1985.

[Bennetts, 19841 R. G. Bennetts. Design of Testable Logic Cir-
cuits, chapter Foreword, pages v-v. Addison-Wesley Pub-
lishing Company, 1984.

[Davis, 19821 Randall Davis. Expert Systems: Where are we?
and where do we go from here? Technical Report A.I.
Memo N. 665, MIT, Artificial Intelligence Laboratory,
June 1982.

[Davis, 19831 Randall Davis. Reasoning from First Principles
in Electronic Troubleshooting. Int J. Man-Machine Stud-
ies, (19):403-423, 1983.

[Horstmann, 19831 Paul W. H orstmann. Design for Testability
Using Logic Programming. In Proceedings of 1983 Inter-
national Test Conference, pages 706-713, 1983.

[Kuban and Salick, 19841 John R. Kuban and John E. Salick.
Testing Approached in the MC68020. VLSI Design, :22-
30, November 1984.

[Lai, 19811 Kwok-Woon Lai. Functional Testing for Digi-
tal Systems. Technical Report CMU-CS-148, Carnegie-
Mellow University, 198 1.

[McCluskey, 19851 Edward J. McCluskey. Built-In Self-Test
Techniques. IEEE Design and Test of computers, 2(2):21-
28, April 1985.

[Robinson, 19851 Gordon D. Robinson. What is Testability?
Feb 1985. Available from the author.

[Shirley et al., 19871 M. Shirley, P. Wu, R. Davis, and G.
Robinson. A Synergistic Combination of Test Generation
and Design for Testability. In International Testing Con-
ference 1987 Proceedings, pages 701-711, The Computer
Society of the IEEE, 1987.

[Shirley, 19831 Mark H. Shirley. Digital Test Generation from
Hierarchical Models and Failure Symptoms. Master’s the-
sis, Massachusetts Institute of Technology, May 1983.

[Shirley, 19861 Mark Harper Shirley. Generating Test by Ex-
ploiting Designed Behavior. In Proceedings of the Fifth
National Conference on Artificial Intelligence (AAAI-86),
pages 884-890, AAAI, August 1986.

[Williams and others, 19731 M. J. Y. Williams and others. En-
hancing Testability of Large-Scale Integrated Circuits via
Test Points and Additional Logic. IEEE trana on Com-
puters, C-22(1):46-60, January 1973.

[Wu, 19881 Peng Wu. Test Generation Guided Design for
Testability. Master’s thesis, Massachusetts Institute of
Technology, May 1988.

[Zhu and Breuer, 19851 Xi-an Zhu and Melvin A. Breuer. A
knowledge based system for selecting a test methodology
for a PLA. In PTOC. 22nd Design Automation Conference,
pages 259-265, June 1985.

wu 363

