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Abstract 

This paper presents an implemented system for 
modifying digital circuit designs to enhance testa- 
bility. The key contributions of the work are: (1) 
setting design for testability in the context of test 
generation, (2) using failures during test genera- 
tion to focus on testability problems, (3) indexing 
from these failures to a set of suggested circuit 
modifications. This approach does not add testa- 
bility features to the portions of the circuit that 
a test generator can already handle, therefore, 
it promises to reduce the area and performance 
overhead necessary to achieve testability. While 
the system currently has only a small body of do- 
main knowledge, it has demonstrated its ability 
to integrate different DFT techniques and to in- 
troduce only sharply focused modifications on a 
textbook microprocessor, an ability that is miss- 
ing in previous DFT systems. 

a ntroduction 

*This paper describes research done at the Artificial Intelli- 
gence Laboratory of the Massachusetts Institute of Technology. 
Support for the author’s research is provided by the DigitaI 
Equipment Corporation, Wang Corporation, and the Advanced 
Research Projects Agency of the Department of Defense under 
Office of Naval Research contract NOOO14-85-K-0124. 

The key contributions of this work are: (1) setting design 
for testability in the context of test generation, (2) using 
failures during test generation to focus on testability prob- 
lems, (3) indexing from these failures to a set of suggested 
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Figure 1: MAC-2: A textbook microprocessor 

Figure 1 shows a textbook microprocessor. The left half 
is the datapath, the right half is the micro sequencer. The 
components in the sequencer have testability problems be- 
cause they are internal to the circuit and are not easily 
accessible from outside. 

To solve the testability problem for one of those com- 
ponents, the read-only memory (ROM), our system starts 
by consulting its library to see how a ROM can be tested. 
According to the library, a ROM can be tested by applying 
an exhaustive counting sequence on it, address input, then 
verifying that its outputs are correct. When trying to ap- 
ply a counting sequence to the ROM address, the system 
fails because it doesn’t have direct access to the ROM in- 
put (hence it cannot directly input a counting sequence), 
and because even in normal use (i.e., getting addresses 
from the UPC), only a fraction of all the addresses might 
be applied. Our system then suggests that a register and 
an incrementor can be used as a counter (and hence pro- 
vide a counting sequence) when connected in a loop, and 
indicates that the UPC, the Incrementor and the Multi- 
plexor can do this if the Multiplexor always connects the 
UPC and the Incrementor during testing. 

The output side of the ROM is more difficult - ac- 
cording to the system’s TG algorithm, there is no way in 
the current design to observe the output, so the system 
encounters another test generation failure. A heuristic as- 
sociated with this particular kind of failure indicates that 
the output can be observed by adding a shift function to 
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a register. In this case, it suggests adding a shift function 
to the microinstruction register uIR, connecting the addi- 
tional shift-out port to an output of the circuit, then using 
the uIR to shift the ROM contents out so that they can be 
verified. 

The system’s overall approach to finding testability 
problems in a circuit and fixing them by modifying the 
circuit is a four step process: 

1. It runs an external test generator [Shirley, 19861 on 
the circuit to identify the untestable components. 

2. It further examines the testing problem by attempting 
to generate tests for the untestable components and 
analyze the reasons of failure. The test generator for 
this purpose has a simple algorithm and our system 
has access to its internal. 

3. When it encounters a test generation failure, it selects 
a modification according to the nature of the failure. 

4. Finally, the system modifies the circuit and repeats 
the process until all untestable components are pro- 
cessed. 

Previous approaches to DFT have used heuristic testa- 
bility definitions that assume a limited test generation ca- 
pability, i.e., that of a classical, combinational test gen- 
erator. This may result in false testability problems. For 
instance, the LSSD (1 eve sensitive scan design) design rule 1 
approach [Horstmann, 19831 defines testability problems as 
design rule violations. Since LSSD reduces sequential cir- 
cuit testing to combinational circuit testing, this approach 
assumes that the test generator is only able to handle com- 
binational circuits, and as a result would find “testability 
problems” that are not problems to some existing test gen- 
erator. For example, according to the LSSD design rule 
approach, every register in the datapath part of the MAC- 
2 must be changed into a shift register, despite the fact 
that existing test generators (e.g., [Shirley, 19861) can test 
these parts as they are. 

2 es& Generation 
The purpose of testing a circuit is to verify its behavior. 
This is done by exercising the circuit, i.e., by applying in- 
puts to it and comparing its outputs against the expected 
values. Each set of inputs and expected outputs is called 
a test pattern. Circuits as complex as microprocessors are 
tested using divide-and-conquer: first, partition the cir- 
cuit into components, then test each component. This 
partitioning for testing usually follows the schematic or 
a partitioning suggested by the designer. 

Testing a specific component (the focus of the test) in- 
volves three steps: 

1. Work out test patterns for the focus. 

2. Work out how to apply inputs to the focus via the 
surrounding components. 

3. Work out how to observe the focus outputs, again via 0 
the surrounding components. 

Working out how to test a component is a recursive sub- 
problem that bottoms out at primitive logic gates, e.g.. 
AND, OR, and NOT, for which there are simple, well- 
known tests. To test components internal to a VLSI chip, 

the test patterns must be executed through the surround- 
ing components. This typically involves routing signals 
through the circuit, which we refer to as routing tasks. 

st enesatio 
For the purposes of this paper, we define the testability of a 
circuit relative to a test generation algorithm. We say that 
a circuit is testable by an algorithm if the algorithm can 
generate a test for the circuit. If a circuit is not testable 
by that algorithm, then it is the job of our DFT system 
to suggest design changes which will enable the algorithm 
to succeed. Although DFT’s goal has been understood in 
this way previously, only recently have developments in 
TG technology made it possible to do so in an automatic 
DFT system. 

In our system, when a component has a testability prob- 
lem, the problem must be in routing, since its test pattern 
is assumed known (we have built up a library of test pat- 
terns for components by consulting testing experts). For 
example, in Figure 1 the ROM cannot get a counting se- 
quence since none of the five components in the sequencer 
are directly connected to primary inputs in the original 
circuit. Thus routing a counting sequence to the ROM 
fails and this is one of the reasons for the ROM being 
untestable. 
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Figure 2: DFT in the context of TG failure 

Figure 2 shows how our DFT system will fix routing 
problems for a specific test Focus. In order to figure out 
what kind of modifications are helpful, the system checks 
each of a focus’ neighboring components to determine 
whether it can help to solve a routing task. A neighbor 
can 

Q 

help in any of several ways: 

The component may be able to complete the task. For 
example, assume that the Focus is a ROM that needs 
a counting sequence to exercise it. If the neighboring 
component driving it, X, happens to be a shift-register 
connected to a primary input, the task of providing a 
counting sequence can be accomplished by using X in 
its shifting mode (and a test equipment will drive the 
primary input with the counting sequence). 

The component may be able to pass the task along 
for other components to solve. If X has a mode in 
which its output can be made equal to its input, it 
can be made “transparent,” and the task of provid- 
ing a counting sequence can be passed to components 
further “upstream.” 

The component may be able to solve part of the task 
and cooperate with others. For example, suppose X is 
an ordinary register that happens to be in a loop with 
an incrementor (the dashed lines). By using them fo- 
gether we can generate the counting sequence. Thus, 
X accomplishes part of the original task. 
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In each of the three ways of accomplishing a routing logic operations. Each test pattern consists of several test 
task, design modifications may be involved. For instance, phases that are performed in sequence. At the bottom are 
if X is used to complete the task of providing a counting the signals that need to be routed to and from the P/O 
sequence for testing the ROM, i.e., used in the first way ports of a focus. The test pattern for a particular compo- 
as shown above, but it is a register without shift function nent can be selected by choosing one test pattern for each 
originally, it needs a modification. of its functions and merging them. 

Using a component to pass a signal differs from using 
it to cooperate with other components to route a signal. 
When passing a signal the component functions as no more 
than a wire; when cooperating with other components it 
plays a critical role, as for instance, when a register is 
used to hold the state when it is cooperating with an in- 
crementor as a counter. These two usages of components 
produce different subgoals that are handled differently - 
cooperation also involves circuit structure matching tasks 
(described in the next section) in addition to routing tasks. 

Circuits are represented at the register transfer level as 
in Figure 1. Component behaviors are represented as I/O 
mapping functions; this predicts how a component will re- 
spond to a signal such as a counting sequence. The map- 
ping functions are used to determine subgoals for handling 
routing tasks, for example, to determine what signals must 
appear on each I/O port of a component when passing a 
signal. 

4 Domain Knowledge 
The mechanism presented in the previous section offers a 
framework for our DFT system. The domain knowledge 
needed to complete the system consists of (i) test gener- 
ation knowledge, such as test patterns for different com- 
ponents and the way of using components to accomplish 
routing tasks, and (ii) TG failure repair strategies, such as 
the component modifications that help routing tasks. 

The system uses compound component templates to 
specify how components can work together to accomplish 
routing tasks that none of the individual components can 
accomplish alone. A compound component template spec- 
ifies the required components, the connections between 
them, the kinds of routing tasks the compound component 
can handle, the I/O ports at which the compound compo- 
nent handles the routing tasks, and the routing tasks for 
the system to accomplish further. 

The test patterns specify the input stimulus to exer- 
cise components and the predicted responses of the com- 
ponents. Each type of component has its own test pattern 
specifications; we get these from experts. 

Counting, Exhaustive 
(4) Required 

Components 
- Incrementor 
- Register 

(6) Required 
Connections- Test Pattern 

for a type of 
component 

Test Patterns 
for functionalities 
(working modes) 

Test Patterns 
for single 
functionality 

Test Phases 
in test pattern 4 / . 

Signal Requirements 
on ports 

Observe 
all-bit-l 

APPLY APPLY APPLY 
walking-l walking-0 add 

on Output on input-l on input-0 on control 

Figure 3: Test pattern for ALU 

A test pattern for a specific type of component is repre- 
sented in our system as a tree (Figure 3). The root node 
indicates the component type, an ALU in this case. The 
second level nodes represent test patterns for each function 
that this type of component can perform. For example, 
an ALU can Add, And, Shift, etc. The third level nodes 
are alternative test patterns for testing the same function. 
Each of the functions has its own test patterns because 
a component may not have all the functions mentioned 
in the generic test pattern definition and its test pattern 
should vary accordingly. For instance, an ALU without 
logic operations should be tested differently from one with 

(6) Further RTs 
(7) Handling - 

Port 

Figure 4: A compound component 

Figure 4, for example, shows a compound counter that 
can generate a counting sequence. Its required compo- 
nents are a register and an incrementor, connected in a 
loop feeding each other. 

To match compound component templates to a circuit, 
each of the required components must match a compo- 
nent, and each of the required connections must match a 
signal path. The template of Figure 4 matches the circuit 
in Figure 1, with the register matched to the UPC, the 
incrementor matched to the Incrementor, the connection 
from the output of the incrementor to the input of register 
matched to the Multiplexor working at the proper mode, 
etc. 

So far we have discussed the system’s knowledge about 
test generation. Now we introduce how components can 
be modified to repair test generation fai1ures.l Our com- 
ponent modifications are all additive, that is, components 
are modified to perform more functions, never fewer. Con- 

‘There are other strategies, such as swapping components 
to get different test patterns as in [Zhu and Breuer, 19851, that 
are not currently included. 
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sequently, the circuit can always perform its original func- 
tions after the modification. 

The system uses masimum function sets to represent 
what functions can be efficiently added to a particular 
component. Each type of component has its maximum 
function set, which includes all the functions commonly as- 
sociated with it. For instance, the maximum function set 
for register includes load, shift, linear-feedback-shift, etc. 
When a function is needed for a component to handle a 
routing task, and the function is in the maximum function 
set of the component but is not currently implemented, it 
can be added to the component through modification. 

stsaint elaxat i 
This system uses a constraint relaxation mechanism for 
three purposes: to control the search, to represent prefer- 
ences between solutions, and to represent criteria for solu- 
tion validity. For example, without a constraint explicitly 
ruling out solutions that loop (i.e., a signal going in a cir- 
cle), the program would produce many such low-quality 
solutions. 

Category Concern 
sharing Incompatible control for 
controls test segments 

sharing Incompatible modifications 
modifications to the same component 

control-observe Control path crosses 
intersection observation path 

signal Two control paths intersect or 
intersection two observation paths intersect 

loop A signal path intersects itself 

protect focus A focus is used to test itself 

Table 1: Constraint Categories 

use-component-once-except-for-focus 

loop-signal-stable (validity boundary) 

Table 2: The “loop” constraint category 

In our system, most of the constraints on the solu- 
tions are organized in a two-level hierarchical structure. 
Constraints are first divided into 6 categories according 
to the parts of the solutions they are concerned about 
(Table 1). For instance, the “loop” constraint category 
concerns whether a signal path intersects with itself, i.e., 
whether it forms a loop. 

Constraints in each category are then organized by a 
strictness ordering, that is, if a constraint is violated, all 
the constraints in the same category that are stricter are 
also violated. Therefore the violation of constraints in one 
category can be characterized by the weakest constraint 
violated. Table 2 shows the constraints in the “loop” cat- 
egory. 

Search Control 
To reduce the search space, the system first generates 

solutions incrementally in order to take advantage of the 
fact that whenever a constraint is violated in a partial so- 
lution, it is violated in any solution built from the partial 
solution. Whenever the system adds a building block to a 
partial solution, it checks whether the resulting partial so- 
lution is violating any constraint; if so, the resulting partial 
solution will be suspended. 

Second, the system starts with the strictest constraints - 
stricter than needed to guarantee the validity of solutions - 
and it relaxes the constraints gradually when there are not 
enough solutions under the enforced constraints. Since the 
stricter the constraints, the smaller the search space, and 
heuristically, the higher quality the solutions, the system 
is likely to be searching in the smallest search space that 
contains the best solutions. 
Solution Validity and Preference 

In addition to search control, the constraint relaxation 
mechanism also captures knowledge about solution validity 
and preferences. Preference is represented as a relaxable 
constraint as explained above. Validity is represented as a 
validity boundary in each constraint category. A validity 
boundary is the weakest constraint in a category that still 
guarantees the validity of a solution. An example of the 
validity boundary is the “loop-signal-stable” category in 
Table 2, which checks resource contention within a signal 
path. Usually the system will not relax the constraints be- 
yond the validity boundary. Mowever, if the system cannot 
find any valid solution, it will relax the constraint further, 
producing a partial solution for examination by the de- 
signer, to help him fix the remaining testability problems. 
Constraint Relaxation 

When all partial solutions are suspended before the sys- 
tem finds a given number of solutions, the constraints are 
relaxed so that some of the suspended solutions may be 
completed. Each time, the system relaxes the constraints 
minimally, that is, just enough to re-invoke at least one 
suspended partial solution. This is done in three steps: 

1. For each of the constraint categories, collect the weak- 
est violated constraints from each of the suspended 
partial solutions into a Weakest-violation set. If a 
constraint in this set is relaxed, at least one of the 
suspended partial solutions will be re-invoked. 

Collect the strictest constraint in each of the cat- 
egories from the Weakest-violation set to form a 
Strictest-Weakest-violation set. This set contains the 
candidates for a minimal relaxation. 

Relax the constraints in the Strictest-weakest- 
violation set one at a time according to the category 
order in Table 1 until one suspended partial solution 
is re-invoked. 

Unlike the constraints within a category, the constraint 
categories do not have a clean logical relationship, i.e., 
given that a partial solution violates some constraints in 
one category, little can be said about whether the par- 
tial solution violates any constraint in other categories. 
Therefore the order of relaxation among the categories is 
based on a heuristic: relax the constraint first that is re- 
lated to the latest stage of solution construction. For in- 
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stance, given that our system constructs one signal path at 
a time, the ControLobserve intersection category (involving 
two signal paths) is related to a later construction stage 
than that of the loop category (involving only one signal 
path). Hence the former is relaxed earlier. This heuristic 
can be justified by noting that, among all the suspended 
partial solutions, those at the latest stage of construction 
are closest to completion, therefore re-invoking them first 
is likely to yield complete solutions with least constraint 
relaxation. 

6 Related Work 
This research has been inspired by the flexibility and preci- 
sion demonstrated by human DFT experts. For instance, 
multiplexors are used to partition the MC68020 and on- 
chip signature analysis is used only where the accessibility 
is poor [Kuban and Salick, 19841. As one test expert re- 
marked, the strategy is to “introduce just enough hardware 
to make the circuit testable.” Our research is an effort to 
automate some of the techniques used by human experts. 

The work on test generation in [Shirley, 1986; Shirley 
et cd., 19871 h as had a strong impact on this research. 
Shirley’s work recognizes that test generation effort can 
be traded off against DFT effort. Therefore, it may be 
appropriate for a test generator to give up quickly on the 
hardest portions of a circuit, when DFT techniques can 
solve the problem more inexpensively. This is the kind of 
test generator needed to identify testability problems. The 
point at which the test generator gives up can be chosen 
based on the relative costs of generating tests vs modifying 
the circuit. 

Horstmann’s DFT system [Horstmann, 19831 takes a de- 
sign rule approach, using rules from LSSD design stan- 
dards. Abadir’s DFT system [Abadir and Breuer, 19851 
uses a “testable structure embedding” approach, employ- 
ing general circuit structure models, similar to our com- 
pound components, to represent structured DFT methods. 
Our approach differs from these DFT systems in the fol- 
lowing aspects. 

o These systems tend to prevent testability problems 
from arising while our system solves testability prob- 
lems as they arise. Previous DFT systems define a 
testability problem to be either a design rule viola- 
tion [Horstmann, 19831 or a testable structure mis- 
match [Abadir and Breuer, 19851. Rule violations and 
structure mismatches are only heuristically related to 
real testability problems in a circuit. This uncertainty 
forces a conservative strategy that can result in unnec- 
essary modifications. 

l Our approach examines more of a circuit’s potential 
behavior than previous systems and, therefore, can 
use existing components in a larger variety of ways. 
For example, our system can use a register as part of 
a counter but previous systems do not. 

e Our approach can employ a larger variety of DFT 
techniques, both structured and ad hoc DFT tech- 
niques, flexibly. In comparison, Horstmann’s sys- 
tem specializes only in LSSD; Abadir’s system bun- 
dles components that accomplish control/observation 
tasks with the focus, and thus has a coarser granular- 
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ity of testable structure than our system does if both 
are viewed in terms of testable structure matching. 

Zhu’s system [Zhu and Breuer, 19851 is more an opti- 
mization system than a DFT system. This system special- 
izes in replacing components, i.e., selecting from candidate 
replacements according to trade-offs among incompatible 
requirements. In a sense, we are solving a different prob- 
lem; Zhu’s system repairs TG failures caused by compo- 
nents that have no test patterns by swapping in compo- 
nents with known test patterns; our system repairs TG 
failures in signal routing. 

This research has been inspired in part by [Horstmann, 
1983; Abadir and Breuer, 19851. However, in our view 
these DFT systems fail to answer adequately the critical 
question about what a testability problem is, an issue that 
has been central to this research. We define a testability 
problem as a test generation failure, use a test generator 
to locate testability problems, and organize circuit modi- 
fications according to TG failures they repair. 

7 Current Implementation 

Status 
This research is still at the prototype stage, demonstrat- 

ing the plausibility of our approach. We think that test 
generation knowledge accounts for large part of the flex- 
ibility and precision of human DFT experts. The exam- 
ple shown in the introduction of this paper is interesting 
because it shows that our system does not introduce DFT 
hardware on portions of the circuit which we already know 
how to test; and where real testing problems exist, the 
system introduces DFT hardware to solve the actual prob- 
lems, e.g., it introduces only a modification to the output 
side of the ROM. Additional solutions for all the five com- 
ponents in the sequencer part of MAC-2 and for a circuit 
from [Abadir and Breuer, 19851 can be found in [Wu, 19881. 

To date the system has not been tested on real circuits. 
What remains to be seen is how this approach scales up 
with real circuits and whether precise DFT modifications 
actually yield lower total DFT overhead than would result 
with a more structured approach. 

Limitations 
The test generation process underlying our DFT pro- 

cess is computationally intensive since it involves satis- 
fying conjunctive goals. When more capability is added 
to the system in order to make wider changes to circuits 
(e.g., adding connections between internal circuit nodes), 
the complexity problem will become more acute. Using 
more abstract or hierarchical circuit representations might 
help, but more experiments with real circuits are needed. 

Our approach is TG-failure-driven. Therefore the sys- 
tem can employ only DFT techniques that can be viewed 
as repairs to TG-failures. Other techniques, such as parti- 
tioning a circuit, or using bus structure to reduce the TG 
complexity, fall outside our framework. 

Our approach provides a framework for suggesting pre- 
cise DFT modifications. However, due to a lack of re- 
lated knowledge, the system is currently incapable of di- 
rectly evaluating the resulting chip area overhead (requir- 
ing layout knowledge), test time (requiring details of signal 
sequences), fault coverage (requiring quality of test pat- 



terns), etc. The work in [Wu, 19881 considers this issue in 
more detail. 

Finally, our approach is not intended to deal with gate- 
level circuits. That level of detail is, first of all, compu- 
tationally impractical for microprocessor-scale circuits. In 
addition, in order to avoid expensive late design changes, 
our system is intended to work at early design stages when 
only high-level circuit descriptions are available. This 
seems appropriate since many DFT techniques are con- 
cerned with only high-level circuit structures, e.g., built-in 
self testing. 

Future Directions 

Ideally, testability should be considered while design- 
ing a circuit. However, due to the scale of VLSI circuits, 
simply providing the device functionality correct is very 
difficult. As a result, it is common practice to pay atten- 
tion only to functionality at first, then deal with secondary 
goals like testability by debugging, minimally perturbing 
the design while maintaining the primary goals. Our DFT 
system accomplishes a variety of “minimum perturbation” 
because it works only on true testing problems (as defined 
by test generation failures) and because it has a library of 
minimal design modifications indexed by failure type. 

The general idea employed in our approach is to use a 
simulation process to find defects in given design, then use 
the defects to guide the redesign process. Possible addi- 
tional applications of this idea are design for manufactura- 
bility and design for diagnosability. For instance, simu- 
lating how parts of a machine can be put together might 
reveal assembly problems in the design and the solutions 
to them. 

8 Conclusion 
Knowledge about test generation is critical to constructing 
a competent DFT system, yet this knowledge has not been 
used previously. This research proposes that test genera- 
tion knowledge can be introduced into a DFT system by 
following the principle of repairing test generation failures. 

The implemented system currently has only primitive 
domain knowledge and needs more work. It can modify 
a circuit by adding functions to components, but cannot 
add connections due to a lack of circuit layout knowledge. 
Except for the constraint relaxation mechanism, it does 
not have a sophisticated evaluation function. However, 
armed with the knowledge of circuit testing behavior and 
test generation, it has already demonstrated its ability to 
integrate different DFT techniques and to introduce only 
sharply focused modifications on a textbook microproces- 
sor, an ability that is missing in previous DFT systems. 
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