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Abstract 

The lack of robustness in current diagnostic sys- 
tems is an important research issue because it has 
two major consequences: inability to diagnose 
novel faults and inability to diagnose more than 
one type of fault. This paper describes an ap- 
proach that formulates diagnosis of physical sys- 
tems in operation (operative diagnosis) as prob- 
lem solving in a hypothesis space. Such a for- 
mulation increases robustness by: (1) incremen- 
tal hypotheses construction via dynamic inputs, 
since the fault propagation results in changes in 
symptoms over time; (2) reasoning at a higher 
level of abstraction to construct hypotheses, al- 
beit less specific ones, when specific knowledge 
is not available; and (3) partitioning the space 
by grouping fault hypotheses according to the 
type of physical system representation and prob- 
lem solving techniques used in their construction. 
The approach was implemented for aircraft sub- 
systems and evaluated on eight actual aircraft 
accident cases involving engine faults, with very 
promising results. 

% Introduction 
The lack of robustness in current diagnostic systems is an 
important research issue because it has two major conse- 
quences: inability to diagnose novel faults and inability to 
diagnose more than one type of fault. For example, most 
current approaches to diagnosis depend on compiled, spe- 
cific knowledge about the associations between symptoms 
and faults. However, when novel faults occur for which 
there is no specific associational knowledge, approaches 
that depend on such knowledge are inadequate. When the 
diagnosis is done for physical systems in operation (operu- 
ti-ue diagnosis), it is even more important to diagnose novel 
faults because the cost of inappropriate responses may be 
high. 

The purpose of operative diagnosis is to facilitate con- 
tinued, safe operation, rather than identifying the part to 
repair. Moreover, identifying the eflects of the fault on the 
status of the physical system is equally as important as 
identifying the cause of the fault. In operative diagnosis, 
determining system status is often a dynamic process, as 
the effect of the fault propagates while the system con- 
tinues to operate. Therefore, the operative nature of the 
diagnosis affects the reasoning in two ways: the need to 
reason about dynamic inputs and to generate system sta- 
tus. Another important consideration is that testing for 

additional information is limited because of the need for 
safe, continued operation. Limited testing means that in- 
formation available to discriminate hypotheses is less than 
sometimes desired. Moreover, sensed parameters are not 
available for every component in the system, and these sen- 
sor readings are sampled at (usually fixed) intervals. The 
set of symptoms may change because of fault propagation, 
and some changes may be undetected between samples. 

Much research has been done in diagnosis. Several of 
these approaches diagnose known faults where the effect 
of the fault propagates. For example, [Fagan et ad., 1984; 
Patil, 1987; Weiss et al., 1978; Pan, 19831 address diagnosis 
of known faults. Although these and other research efforts 
address the problem in much depth, they do not address 
novel faults. 

The fragility of these systems motivated several current 
approaches that use deep models in the diagnosis process 
[Fink and Lusth, 1987; Davis, 1985; Hamilton e$ ad., 19861. 
These model-based approaches generate hypotheses that 
identify the cause of the problem, (e.g., the faulty compo- 
nent), but not the system status. While this may be suf- 
ficient in cases where all the diagnostician needs to do is 
identify the part to replace, it assumes that no other parts 
need to be replaced or repaired as a result of the fault. Ad- 
ditionally, because they only use functional models, they 
cannot diagnose failures where one component damages 
another physically-adjacent component. Their capability 
to use multiple physical system representations is limited 
or nonexistent. Diagnosing some faults requires multiple 
representations [Davis, 19851, although even Davis’ ap- 
proach cannot generate system status or combine repre- 
sentations. 

This paper describes an approach that views diagnosis 
as problem solving in a hypothesis space. This view en- 
ables an improvement in robustness through incremental 
hypothesis updates, and the abstraction and partitioning of 
the hypotheses in the space. Incremental hypothesis up- 
dates enable diagnosis of dynamic fault behavior caused 
by fault propagation. Within the hypothesis space, the 
approach uses specific associational knowledge when avail- 
able. However, when novel faults occur, the diagnostic 
problem solver uses abstraction of the individual hypotheses 
to provide a diagnosis, albeit a less specific diagnosis. The 
hypothesis space is partitioned into fault classes, group- 
ing faults into different classes if their behavior requires 
different problem solving techniques or representations to 
diagnose them. Other diagnostic approaches can be viewed 
as diagnosing a subset of the classes included here. 

This approach was implemented in a computer program 
called Draphys (aagnostic Reasoning About Physical 
Systems) and demonstrated in the domain of aircraft sub- 
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3.2 Diagnosis of Known Faults 
Draphys uses compiled associational knowledge to diag- 
nose known, commonly occurring faults. For the aircraft 
domain, the fault-symptom associations were obtained by 
interviewing domain experts (pilots and engine designers) 
and by examining actual fault cases. They were imple- 
mented in a rule-based system that permits the temporal 
functions defined by Allen [Allen, 19841 as part of the rules. 

These rules can adequately capture the sequence of 
symptoms as described by the experts, but have represen- 
tational limitations as discussed in [Abbott et al., 19871. 
These include the awkwardness of expressing all the prop- 
agation behavior over time that could occur for any one 
fault, as well as temporal duration. The major question 
addressed below is what to do if the fault is one whose 
symptoms do not correspond to the associational knowl- 
edge. This question is of great interest, since novel faults 
appear to be very difficult for humans to diagnose. 

Fall 
Compressor 
Combustor 
Turbines 

Figure 1: Aircraft Turbofan Engine. 

systems; specifically, an aircraft turbofan engine and hy- 
draulic subsystem. The approach was evaluated using ac- 
tual aircraft accident cases involving engine faults, with 
very promising results. 

2 Hypotheses in Operative 
Diagnosis 

In operative diagnosis, the diagnosis is done to assist in 
continued operation of the system under consideration. 
Each element of the diagnosis problem space is a hypoth- 
esis that describes the cause of the fault and the current 
system status. 

In Draphys, a hypothesis includes: the fault type, the 
cause or source of the problem, the propagation path, and 
the system status. The fault type is either single fault or 
multiple independent faults. The source of the fault is the 
physical component that is broken. The specific cause de- 
scribes how that component is broken. The propagation 
path describes the order in which the fault affected the 
components. The system status describes the components 
affected by the fault and their operational status. The 
operational status of an affected component is either def- 
initely aflected by the failure when symptom information 
justifies it, or possibly u$ected when there is reason to be- 
lieve that the component might be affected but symptom 
information cannot confirm or refute it. 

3 Diagnokis as Problem Solving 
in a Hypothesis Space 

3.1 Aircraft Subsystem Diagnosis 
Inflight diagnosis of aircraft subsystems is an example of 
operative diagnosis. The aircraft subsystems diagnosed by 
Draphys are two turbofan engines, two fuel subsystems, 
and a hydraulic subsystem. A schematic of the engine 
used in later examples is shown in figure 1. 

The input to the diagnosis system is a set of qualita- 
tive sensor values that identify which sensors are abnormal 
and how they are abnormal, e.g., fuel flow is high. A fault 
monitor generates these symptoms by comparing the sen- 
sor readings to expected values computed from a numeri- 
cal simulation model of, for example, the engine. Schutte 
[Schutte and Abbott, 19861 describes the fault monitor. 

3.3 Graceful egradation Via 
Abstraction 

Much of the related research views graceful degradation in 
the presence of novel faults as reasoning with deep models. 
In such a view, it is the eficiency of the reasoning process 
that degrades. The approach presented here does not view 
graceful degradation as an issue of degraded efficiency, but 
an issue of degraded specificity. If the diagnostic system 
cannot identify exactly what the fault is, it can still gener- 
ate useful diagnostic information, even if that information 
is less specific than desired. 

Before presenting the approach, it is useful to explore 
what information should be abstracted and why. If the 
goal of the diagnostician is to select a remedial action to 
take in response to the fault, information should be gen- 
erated to support that selection. During the interviews 
of experts, they described default actions that they would 
take if they did not recognize the fault or if there were 
multiple hypotheses. This action was generally a conser- 
vative response to the fault. For example, if the pilot knew 
he had a compressor failure, but did not know how the fan 
was broken, he would shut down the engine. However, if he 
knew it was an eroded compressor blade, he might reduce 
the throttle on that engine. Thus he had an action associ- 
ated with the general class of compressor failures that was 
(potentially) d ff i erent from the action associated with the 
specific compressor fault. 

Motivated by this and other examples, a structured way 
of forming general categories of faults with associated de- 
fault actions was identified. In the aircraft domain, these 
categories are defined as the components in the physical 
system, as exemplified above. When novel faults occur, di- 
agnostic reasoning takes place at a higher level of abstrac- 
tion. Hypotheses are produced that identify what compo- 
nent is faulty, without identifying how the component is 
broken. The operational status of the component that is 
abstracted (e.g., abnormal rather than low pressure), so 
this abstraction is called status abstraction. Draphys uses 
two such levels, shown in figure 2. 

Since the diagnostic reasoning at the higher abstraction 
level is designed to identify the component that is faulty, 
the symptoms can be abstracted as well. Although it is 
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HYPOTHESIS 1 OF 2 HYPOTHESIS 2 OF 2 

Current Symptoms: Current Symptoms: 

N 1 Abnormal Nl Abnormal 

Fault Type: Single Fault Fault Type: Single Fault 

Propagation Path And Component Status: Propagation Path And Component Status: 

Propagation Type: Functional 

abstracts1 to 
abstracts to 

abstracts to 

Responsible Component 

a Definitely Affected 

Figure 2: The Two Levels of Status Abstraction in Dra- 
pb 

necessary at the lower level to identify how the symp- 
tomatic sensor compares with its expected value (e.g., high 
or low), it is not necessary to make this distinction at the 
higher level. It is only necessary to identify that the value 
of the sensor is abnormal. This is also status abstraction, 
but it is the parameter value status that is abstracted. Fig- 
ure 2 also illustrates the relationship between the specific 
fault hypotheses and the corresponding symptoms. 

The reasoning at the higher level of abstraction is a 
generate-and-test process. When symptoms first appear, 
the generator localizes the fault in a component hierar- 
chy, resulting in a set of candidate components that might 
be the source of the problem. It then constructs fault 
hypotheses by simulating fault propagation from each of 
the candidates. Each resulting hypothesis is then tested 
to determine if it is valid; that is, if it accounts for all 
the current symptoms. Often this generate-and-test pro- 
cess results in multiple valid hypotheses. If new symptoms 
arrive as time progresses, the generator incrementally up- 
dates the old hypotheses to determine whether they can 
account for the new symptoms. If they can, the generator 
retains them. Otherwise, it prunes them. 

An example will clarify this process. Suppose the fault 
is a fan failure. In such a failure, the first sensor af- 
fected would be Ni. Since the fan would not compress air 
properly, the effect of that failure would propagate to the 
high-pressure compressor and thus to N2. It would then 
propagate to the combustor since the under-compressed 
air would not ignite as efficiently. Therefore, the expand- 
ing gases resulting from combustion would not turn the 
turbines as rapidly as it normally would. EGT and EPR 

Propagation Type: Functional 

Figure 3: Hypotheses Resulting From a Symptom in Ni. 

would be symptomatic to reflect this. The turbines would 
not be extracting energy, so the fan and compressor would 
not turn as fast since they derive their power from the 
turbines. Thus the faulty response is perpetuated. 

For this fault, suppose that the first symptom that Dra- 
phys detects is in Ni. Since Ni is an engine parameter, 
Draphys is able to localize the fault to the engine sub- 
system. Each component in the engine subsystem is then 
proposed as a candidate responsible component. 

For each proposed responsible component, Draphys gen- 
erates a fault hypothesis by qualitatively simulating the 
fault propagation behavior. For example, when Draphys 
proposes the fan as the responsible component, it uses a 
model of the engine and its functional interconnections to 
determine that the high-pressure compressor and the Ni 
sensor functionally depend on the fan. Knowing these in- 
terconnections, Draphys then attempts to continue simu- 
lating the propagation of the failure to these functionally 
dependent components. In this example, it checks whether 
the fault’s effect has reached the high-pressure compressor 
by examining the symptoms to see if N2 is symptomatic. 
If it is, then Draphys assumes that the failure affects the 
high-pressure compressor, and continues the process from 
there. If N2 is not symptomatic, as in this example, sim- 
ulated propagation halts on this path. Draphys then ex- 
plores all remaining functional propagation paths. After 
exhausting all paths, the hypothesis is tested for validity. 

Draphys does the same process for each candidate com- 
ponent. In this example, two valid hypotheses are gener- 
ated, shown in figure 3. The first is that the fan is the 
responsible component, and the second is that the Ni sen- 
sor failed. A fault in either component could result in the 
current symptoms. 

Extending this example illustrates the incremental up- 
dating of hypotheses. Assume that a short time after the 
Ni symptom was first detected and diagnosed, a symptom 
in N2 is detected. Draphys then tries to extend the propa- 
gation path of all the valid hypotheses to explain the new 
symptoms by continuing the qualitative simulation from 
the end of the propagation path in the old hypotheses. 
For instance, in one valid hypothesis propagation stopped 
at the fan, because the next component on this functional 
propagation path was the high-pressure compressor. Since 
earlier there was no symptom in N2, Draphys assumed 
that the compressor was unaffected. Now that there is a 
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Current Symptoms: 

N2 Abnormal 

Fault Type: Single Fault 

Propaqation Path And Component Status: 

Propagation Type: Functional 

Current Symptoms: 
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N2 Abnormal 

Hydraulic Pressure Abnormal 

:.:.:.X.X.&$+ Functional Propagation 

4 Physical Propagation 

Responsible Component 

Defintely Affected 

Possibfy Affected 

Faulf Type: Single Fauft 

Figure 4: Hypothesis Remaining After a Symptom in N2. 
Propagation Type: Hybrid 

symptom in N2, Draphys updates the system status for 
this hypothesis and continues the simulated propagation. 

The resulting hypothesis accounts for all symptoms. It 
is the only member of the set of old valid hypotheses that 
can do so, since a sensor failure in N1 could not result in 
functional propagation that would account for the symp- 
tom in Nz. Figure 4 shows this remaining hypothesis. 

3.3.1 Using Multiple Physical System 
Representations 

The reasoning based on the functional model is sufficient 
for the faults that propagate along functional dependency 
links, but not all faults do. Suppose that the fan blade 
broke off and damaged a hydraulic line in the wing to which 
the engine was attached. The monitor detects symptoms in 
N1 and in the hydraulic pressure sensor. Draphys cannot 
explain these symptoms by simulating functional propaga- 
tion, because there is no functional relation$hip between 
these components. I 

A physical proximity relationship does exist. Therefore, 
by knowing that the fan is physically adjacent to the wing 
containing the hydraulic line, Draphys can identify prop- 
agation from the engine to the wing. This represents an- 
other class of faults, since it requires a different representa- 
tion (physical rather than the functional structure). This 
type of fault is analogous to Davis’ bridge fault [Davis, 
19851. 

The reasoning process used is the same as described with 
faults that propagate functionally, except that the models 
used in localization and simulation are based on physical 
structure rather that functional structure. The component 
hierarchy used for localization groups components accord- 
ing to physical location rather than functional relation- 
ships. The simulation model used is a specialized model of 
physical proximity. This specialized model includes direc- 
tional information in representing these physical proximity 
relationships. For instance, it is possible for the fan blade 
to break off and damage the hydraulic line, but not vice 
versa. 

Unfortunately, reasoning with a single representation is 
not sufficient. Once a fan blade separation has caused 
damage in both the engine and in the hydraulic system, 

Figure 5: Composed Hypothesis Explaining a Fan Blade 
Separation. 

the effect of the fault will propagate functionally in both 
subsystems. The initial propagation was physical, but sub- 
sequent propagation was functional. Therefore, explaining 
the current fault behavior requires models of both physical 
and functional structure. Draphys diagnoses hybrid fault 
propagation by composing the simple hypotheses that de- 
scribe the single type of propagation, as illustrated in figure 
5. 

Faults involving physical damage illustrate that some 
known faults are more appropriately represented at the 
higher level of abstraction. The reasoning described for 
diagnosing physical damage could be compiled into spe- 
cific rules, but doing so may not improve ability to take 
remedial action. Moreover, physical damage can occur so 
many different ways that a large number of specific rules 
would result, possibly inhibiting their timely retrieval. 

3.3.2 Partitioning the Hypothesis Space 

So far, four fault classes were described that require 
different problem solving techniques or different physical 
system representations. Figure 6 includes these four fault 
classes, and shows the partitioning of the hypothesis space. 
The present implementation of Draphys diagnoses all fault 
classes shown except for multiple faults. The fault classes 
are examined in order of likelihood and correspond to a 
depth-first, left-to-right traversal of the space as shown. 

4 Evaluation 
Draphys was evaluated by reconst rutting actual civil trans- 
port aircraft accident cases and using their symptoms as 
input [a; b; c; d; e; f; g; h]. Each accident was an engine- 
related failure that resulted in the loss of life and property. 
Four of the eight accident cases were used to guide the 
design and construction of Draphys. The remaining four 
were set aside for evaluation purposes. All eight were re- 
constructed by an objective party and presented as input 
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Figure 6: Hypothesis Space Partitioning. 

to Draphys’. Each level of abstraction was invoked for 
each case to determine the diagnosis success of the asso- 
ciational rules at the specific level and the generate-and- 
test at the higher abstraction level. The physical system 
model used contained approximately 40 components and 
100 interconnections. A brief summary of the resulting 
hypotheses (without system status) is shown in table 1. 

A successful diagnosis was defined as one in which the 
correct hypothesis was among the set of valid hypotheses. 
This definition was used because Draphys may generate 
several valid hypotheses for a particular set of symptoms. 
It may be impossible to isolate to one hypotheses with 
the sensor information available, even for a human expert. 
Moreover, since Draphys does not yet include any repre- 
sentation of uncertainty, the valid hypotheses cannot be 
ordered by likelihood. 

Using this criterion for success, seven of the eight acci- 
dent cases were successfully diagnosed. Of the seven suc- 
cesses, two were diagnosed using the associational rules at 
the specific level of abstraction. All seven of the successes 
were diagnosed at the higher abstraction level. Of these 
seven cases, five involved physical damage. In each of the 
five cases, functional propagation resulted from the phys- 
ical damage. No physical damage cases were diagnosed 
successfully by the associational rules at the specific ab- 
straction level. 

The accident case that was not successfully diagnosed 
was not a structural fault. It involved massive water in- 
gestion into the engine during a heavy rainstorm, leading 
to engine failure. Modifying Draphys to diagnose this fail- 
ure would require modeling the inputs to a device as a 
potential source of the fault, which may be a desirable en- 
hancement. 

Why did this approach work so well? The credit for 
success lies mainly with two aspects of the approach: the 

‘1 am indebted to Paul Schutte for reconstructing the ac- 
cident cases and doing the initial evaluation as described in 
[Schutte et aI., 19871. 

1. Turbine Blade 
Separation 

2. Fan Failure 

3. Fan Failure 

4. Foreign Object 
Ingestion 

5. Water Ingestion 

6. Engine 
Separation 

7. Turbine Disk 
Separation 

8. Bearing 
Failure 

Stage 1 
Hvbothesis 

l l . Turbine Blade 
Separation 

2. Flamaout 

1. Turbine Blade 
Separation 

1. Turbine Blade 
Separation 

1. Turbine Blade 
Separation 

2. Flameout 

1. Fuel System 
Failure 

2. Flameout 

l 1. Turbine Blade 
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1. Turbine Blade 
Separation 

2. Flameout 

Stage 2 
Hypothesis 

1. Fan 
2. Compressor 
3. Combustor 

l 4. Turbine 

‘l.Fan 

l 1. Fan 

* 1. Fan 
2. Compressor 
3. Combustor 
4. Turbine 

1. Combustor 
2. Turbine 

‘1. Engine - Fan 

1. Combustor 
l 2. Turbine 

l l . Compressor 

*correct diannosis 

Table 1: Summary of Accident Case Diagnoses. 

symptoms detected and the models used. Symptoms pro- 
vided by the monitor identify abnormal sensor readings as 
soon as they occur (or the first sample thereafter). This de- 
tects symptoms sooner than current operational systems, 
which alert the operator when a sensor exceeds its total 
normal operating range. 

The physical system models used must represent the be- 
havior of the faulted system for the fault class being di- 
agnosed. For example, the functional model represents 
a model of the normal system, but is at a high enough 
level of abstraction that it represents behavior under many 
fault conditions as well. In contrast, the model of physi- 
cal structure only includes directional proximity informa- 
tion for possible physical damage, thus it does not model 
normal behavior. Including all nondirectional proximity 
relationships may be much less efficient and might not in- 
corporate domain knowledge known from the device design 
about how internal physical damage might occur. In addi- 
tion to appropriate representations, the ability to combine 
the physical and functional models was also important. 

This paper presented an approach that views diagnosis as 
problem solving in a hypothesis space. With this view, ro- 
bustness is improved through reasoning about fault prop- 
agation, permitting incremental hypothesis construction; 
status abstraction of the individual hypotheses, and parti- 
tioning of the hypothesis space to group fault hypotheses 
according to representation and problem solving technique. 

Incremental hypothesis construction based on fault 
propagation behavior can be used to discriminate hypothe- 
ses, particularly when symptoms change over time. How- 
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ever, this requires that the detection process identify when 
sensor readings become abnormal, not just when they ex- 
ceed the normal operating range. 

Abstraction of hypotheses is useful when actions are as- 
sociated with the general fault categories represented by 
the abstract hypotheses. The approach of using different 
abstraction levels for diagnosing novel faults is appropri- 
ate when specific hypotheses are most desirable, but ab- 
stract hypotheses are better than nothing. Moreover, some 
known faults are more appropriately represented at the 
higher level of abstraction, such as, physical damage. This 
is the caSe when more specific hypotheses do not improve 
ability to take remedial action or the increase in number 
of specific hypotheses would inhibit their timely retrieval. 

Partitioning the fault space is appropriate when different 
problem solving techniques or representations are required 
to diagnose different classes of faults. In this approach, dif- 
ferentfault classes and their corresponding diagnostic tech- 
niques and representations were identified. One of these 
classes involved diagnosis of faults which propagate within 
multiple representations, which no other current approach 
can do. Evaluation of this approach revealed that diag- 
nostic capability depends on the available physical system 
models and the fault propagation behavior that they can 
represent. 
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