From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.
How to Print a File: An Expert System Approach to
Software Knowledge Representation

Peter G. Selfridge
AT&T Bell Laboratories
Room 3C-441
Murray Hill, NJ 07974

Abstract

Representing knowledge of software and software
systems is an important research area and a prerequisite to
engineering expert-level systems to do software tasks.
Printing a file in a UNIX™ environment is an example of a
real-world problem that can pose surprising difficulties to
UNIX users. The printing of files is also illustrative of a
class of software problems characterized by the
recombination of existing programs. Automating the
printing process involves designing knowledge
representations to appropriately capture knowledge of both
the printing software and the printing process and designing
a reasoning system that uses those knowledge representations
in a working implementation. This paper examines the
printing problem in detail, presents a model of printing and
printing software, and describes an implementation designed
to test the model and identify the next set of research issues.
The implementation, ESP, for Expert System for Software,
successfully automates the printing process and illustrates a
knowledge-based approach to software problems.

1. Introduction

Developing knowledge representations for software and
software systems is an important research topic and a
prerequisite to other difficult research topics and practical
problems in Artificial Intelligence. On the practical side,
developing expert level systems to do software tasks is
increasingly important as programming and using large
systems becomes more complicated. Such expert systems
will need explicit knowledge representations of software and
software components and reasoning mechanisms that use
those representations. High-level automatic programming,
where existing software modules. are re-combined for new
purposes, will need knowledge representations that capture
the invocation rules, input and output behavior, and side
effects of software. Finally, if more advanced intelligent
software systems are to be created, models of software as
explicit mechanisms and automatic reasoning systems that
use those mechanistic models will be necessary.

The goal of this research is to take a specific software

domain, that of printing files in UNIX™, develop a model of
the domain and of the software used in that domain, develop

380 Knowledge Representation

knowledge representations and reasoning mechanisms based
on this model, and finally, test the representations and
reasoning mechanisms in a working implementation. A
corollary of this research strategy is that the implementation
should be specific enough so that it makes clear the next set
of research issues that should be addressed.

This paper first examines the printing problem in more
detail, and generates some specific criteria that automating
printing should address. A model of the printing process is
described based on an input/output specification of printing
software and some observations are made on the kind of
knowledge needed to automate the process. Then, an
implementation is described, called ESP, for Expert System
for Printing, that uses knowledge representations and
reasoning techniques derived from the model. The
implementation is illustrated in some annotated examples.
Finally, this work is described more generally, compared
with other approaches to the representation of software, and
used to generate the next set of research questions.

2. The Printing Problem

The UNIX operating system {8, 19] allows programs to
be combined so that the output of one program becomes the
input to the next program; several programs can be
combined into what is called a °‘pipeline’. A program
designed to be included in a pipeline is called here a
translator. The following is a pipeline for printing the file
‘memo’ on a particular printer in our environment:

$ cat memo | eqn | tbl | troff -mm |
1 2 3 4a 4b

dpost -0l1-9 | postreverse | lpr -Plw
5a 5b 6 7

This pipeline is interpreted by UNIX as follows. In step 1,
the file ‘memo’ is opened by the program ‘cat’ and sent as a
stream of data to step 2, the translator ‘eqn’, which translates
equation text into ‘troff’ format, the primary document
format. In step 3, the resulting stream is sent to the
translator ‘tbl’, which does the same thing to the table text.
In step 4, the result is received by the primary formatting
translator, ‘troff’ [6). ‘Troff’ also takes the option indicator
‘-“mm’ from

the command line, step 4b, which tells it to use a particular
macro package for deciphering certain macro commands
present in the text. The output of ‘troff’ is a ‘troff’ file,
where the text has been completely replaced by troff
commands. The final destination of the data stream, step 7,
indicated by ‘Ipr -Plw’, is a particular printer, the ‘1w’ (laser
writer) printer. This printer is a ‘PostScript’ [11,12] printer
which takes data in the ‘PostScript’ format. Therefore, step
5 is required, where the translator ‘dpost’ translates ‘troff’
format into ‘PostScript’ format. ‘Dpost’ is given another
option in step 5b, an option that specifies which subset of
the document should be printed; in this case, the pages 1
through 9. Finally, the translator ‘postreverse’ is needed in
step 6 to order the pages properly front to back.

Generating an appropriate pipeline can be difficult for
many reasons. First of all, one needs to know all of the
different kinds of text present in the file. Second, one needs
to know what translators are needed to process the file, how
to invoke them, and the order in which they must appear.
Third, some options (like ‘-mm’ above) are critical to the
final appearance of the printed document and must be
included in the proper place. Fourth, an appropriate printer
must be chosen and not all printers can print all kinds of
files. Fifth, for a given printer, other translators may be
needed, and other options may be desired which have to be
properly invoked and included in the proper place in the
pipeline. Sixth, detecting that a printer is ‘down’ or
otherwise inaccessible, or has a prohibitively long queue of
current printing jobs, must be done from time to time.
Finally, users typically use a given printer and options most
of the time, so that using defaults correctly becomes part of
the problem.

Automating the printing process is an important
research project for two reasons. First of all, from a
practical point of view, such a system would be quite useful.
More important, the printing problem is representative of a
class of software problems which involve the recombination
of existing programs. Recombining existing programs [26]
is likely to become a very important mechanism for creating
software, as well as aid in the problems of understanding,
debugging, and revising software. Progress on the printing
problem should identify the next set of research issues
relevant to the larger problem of automatic programming by
program recombination.

Representing software knowledge for automatic
programming has been addressed by a number of
researchers. Rich and Waters, and others, have developed
the "programmer’s apprentice” framework [15-18, 22, 23]
and various techniques for representing knowledge of
specific program constructs. Their techniques address a
lower level of automatic programming and representation of
software knowledge, and are not directly applicable to the
problem of automatic recombination of existing programs.

Wilensky’s UNIX consultant (UC) project [23-25] addresses
the representation of software knowledge to help the user
find particular UNIX commands, but does not address the
combining of commands to achieve other goals. Other
research into automatic programming almost exclusively use
the "transformation approach”, which represents
programming knowledge as correctness-preserving syntactic
transformations applied to a semantically correct program
"specification" [2,3,7,20]. Transformation approaches are not
applicable to program re-combination, being specifically
tailored to the construction of small programs for specific
low-level computations.

In summary, the problem of printing files in UNIX and
the goal of automating this task is of both practical and
theoretical importance, and generates the following specific
problems that must be addressed in both a model of the
domain and the implementation:

1. how are translators and options chosen?

2. how are they properly ordered?

3. how are printers selected?

4. how can user defaults be handled?

5. how can erroneous printer output be minimized?

3. A Model of File Types and File Printing

This section describes a model of printing files in a
UNIX environment. The general model is based on the
observation that the file to be printed (including data flowing
through a pipeline) can be viewed as an object with a set of
properties or types, each type representing one kind of text
in the file. With this view, a translator can be modelled as
an operator that changes the set of types of the data object, a
printer can be modelled as a terminal operator that can only
accept data of a specific type, user defaults can be modelled
as demons, and the printing process can be modelled as a
sequence of operations to detect the file types, select a
printer, select the translators, and order them to produce the
final pipeline.

With this general model in mind, the specific types of
knowledge needed and their general representation need to
be identified. There are three categories of "objects” for
which knowledge is needed: file types, translators, and
printers. The kinds of knowledge are listed here:

Knowledge of files types:
- text patterns that indicate file types

Knowledge of translators:
- translator input type
- translator output type
- translator order
- translator invocation
- possible options

Selfridge 381

Knowledge of printers:
- printer status
- printer queue length
- printer host
- host status
- printer invocation
- printer input

Each kind of knowledge can be represented as a
"frame", or knowledge structure, which is a named object
with slots. Two such frames are shown here:

FRAME TYPE: translator

name: tbl

input: tbl

output: troff

order: 10

help: "tbl processes ‘tbl’

commands to format tables™

FRAME TYPE: printer

name: dp2

invocation: "lpr -Pdp2"

input: postscript

status: unknown

host: vivace

h-status: unknown

loc: v"coffee room"

help: vlarge, fancy laser printer"™

For the translator frame, the ‘input’ slot is used after the
file types are detected. For each detected file type in the
user file, the translator knowledge base is searched for a
translator that can translate that type. The ‘output’ slot
indicates what output type is produced, and this is used to
select more translators. The ‘order’ slot is used to order the
translators in the final output command line. (In this
domain, translators have a fixed order that can be
represented by an integer. That is, the translator ‘troff’ is
given a higher order because it always follows ‘tbl’ in the
command line.) The ‘help’ slot is used when a user requests
information about a particular translator or all translators.

The printer frame is similar. The ‘invocation’ slot
indicates how to invoke the printer in a command line. The
‘input’ slot indicates the type of input it needs, the ‘status’,
and ‘host-status’ slots store whether that printer and its
computer host are up or down, and the ‘help’ and ‘location’
slots are used to provide summary information about the
printer. Knowledge about file types and options are
similarly encoded in frames.

User defaults, an important part of the goal of
automating the printing process, can be modelled as small
"demons”, which fire when a specific pattern is observed.
For example, if the user’s default ‘troff’ macro package is ‘-

382 Knowledge Representation

mm’, then when ‘troff’ is to be used in the final output, ‘-
mm’ can be automatically generated and included.

The actual printing process is modelled as the following
‘script’, or sequence of operations:

1. determine the printability of the file

2. determine the set of types of the file

3. select a printer if one is not indicated

4, for each type of file, select a translator that will translate
the type into one that is eventually printable on the
selected printer

S. select other translators if necessary

6. determine the order of the translators and options and
construct the final command line

In summary, this model is based on the idea of the flow
of typed data and the translation of types into other types.
Knowledge of file types, translators, and printers is encoded
in frames, and procedural knowledge is encoded in scripts.

4. Implementation

An implementation called ESP, for Expert System for
Printing, was written to evaluate the approach described
above. ESP consists of 170 OPS5 [5] rules and another 20
routines written in ‘C’, which encode in procedural form a
variety of kinds of low-level knowledge about files and file
types. ESP can be used as a stand-alone program to print
files, examine the knowledge bases of printers, translators,
and options, examine printer queues, remove jobs from
printer queunes, and get help of various kinds. In addition, it
can be called directly from the shell by typing ‘print’
followed by a file name and optionally, a printer and other
option specifications. The details of the implementation will
not be presented here; it suffices to say that the frames
described in the last section are represented as OPSS literals
and that the 170 rules encode the flow of control. Rather,
the performance of ESP is illustrated with regard to the five
specific questions Listed at the end of section 2.

The first example illustrates ESP selecting translators
based on the detected types of the input file, the use of
knowledge about the indicated printer to further refine the set
of translators, and the use of user defaults. The user
requests that ESP print the file ‘memo’ on the ‘xpp2’ printer.
ESP determines the types of the file ‘memo’, and uses
knowledge of the printer to remove ‘troff’ from the list of
types while retaining nroff, which that printer can handle.
This knowledge is derived from the fact the ‘xpp2’ can only
handle ‘ascii’ text, and there is no translator that can
translate ‘troff’ to ‘ascii’. ESP also used knowledge of the
user’s defaults to select the option ‘-mm’ and include it in
the final command line. What the user types is in bold.

% print memo xpp2

‘memo’ CONTAINS ascii tbl troff nroff
TEXT

APPROPRIATE TRANSLATORS: tbl troff nroff

REMOVING troff - nroff PRINTER
INDICATED: Xxpp2

DEFAULT OPTION -mm SELECTED FOR
TRANSLATOR nroff

TRANSLATORS AND OPTIONS ORDERED

GENERATED PRINT COMMAND:

cat memo | tbl | nroff -mm | lpr -Pxpp2

o .

T

The next example illustrates ESP’s response to a more
complicated request. ESP uses its knowledge of options to
recognize the three options in the user’s request. One option
is recognized as being in conflict with a default option, and
the user is informed that the default will not be used.
Knowledge that a ‘troff’ printer is available, and that ‘troff’
is generally preferred over ‘nroff’ is used to select ‘troff’.
Additional knowledge is used to select ‘egn’ (‘negn’ is used
with ‘nroff). A default printer is selected, a set of
translators for handling the file types is selected, and two
other translators are selected which are required (‘dpost’ and
‘postreverse’). Finally, the detected options are inserted intc
the command line using option knowledge.

% print nhg -ms -01-9 -n9
‘nhg’ CONTAINS so pic neqn eqn tbl
troff nroff ascii TEXT
APPROPRIATE TRANSLATORS: soelim pic
neqgn eqn tbl troff nroff
REMOVING nroff - troff PRINTER
AVAILABLE
REMOVING negn - eqgn IS USED WITH TROFF
DEFAULT PRINTER lwc SELECTED FOR troff
INDICATED OPTION -ms OVERRIDES DEFAULT
OPTION -mm
OTHER TRANSLATORS REQUIRED: REQUIRED
TRANSLATORS AND OPTIONS ORDERED
Generated print command:
cat nhg | soelim | pic | eqn | tbl |
troff -ms | dpost -n9 -0l-9 |
postreverse | lpr -Plwc
The next example shows the use of knowledge to
prevent a user from producing erroncous output. ESP
prevents the user from printing a directory and an executable
file. Then, ESP recognizes that there is no way to print a
‘tex’ file on the printer ‘eps2’, and produces an explanation
of a sort (producing better explanations will require further
research). The user then relies on the default printer, and the
request succeeds.

% print /usr/pgs/letters
/usr/pgs/letters IS A directory, WHICH
IS UNPRINTABLE

% print /usx/pgs/bin/maclib
/usr/pgs/bin/maclib IS A executable
file, WHICH IS UNPRINTABLE
% print letter.tex eps2
‘letter.tex’ CONTAINS ascii latex TEXT
APPROPRIATE TRANSLATORS: latex
OTHER TRANSLATORS REQUIRED: dvi2ps
I CAN’T TRANSLATE THE OUTPUT OF dviZps
TO PRINT ON eps2.
THE DEFAULT PRINTER FOR LATEX IS lwc.
% print letter.tex
‘Vletter.tex’ CONTAINS ascii latex TEXT
APPROPRIATE TRANSLATORS: latex
DEFAULT PRINTER lwc SELECTED FOR latex
OTHER TRANSLATORS REQUIRED: dviZps
Generated print command:
cat letter.tex | latex | dvi2ps |
lpr -Plwc
%

In summary, the implementation successfully automated
most (but not all) of the printing process, and resulted in a
very useful tool. The problems posed at the end of section 2
are all handled adequately, and the output of ESP is
sufficient to both print files and allow the user to follow,
more or less, the processing required.

6. Discussion

The main problem addressed by this research was to
design knowledge representations of how to print files in
UNIX, and to test the representations in a working
implementation. The kinds of knowledge needed for this
task were listed, and the printing process was modelled.
This model was used in an implementation, ESP, which
included knowledge representations for file types, translators,
printers, and options, and a collection of rules that accessed
the knowledge base, handled exceptions, and executed sub-
goals to generate the final UNIX pipeline. ESP is being
used daily by a number of technical and non-technical
people.

Although quite adequate for the initial printing domain,
the underlying model of a software module is relatively
shallow. It consists essentially of type knowledge for the
input and the output, similar to Perry [9]. This knowledge is
adequate for the printing implementation but would not be
adequate for a more complicated domain such as information
retrieval. There is no knowledge encoding other kinds of
side effects nor, more important, a representation of some of
the underlying objects. For example, the system has no
knowledge that the option ‘-mm’ tells ‘ooff’ to open a
particular file in a particolar directory. If that file is not
available, the system has no way of intclligently dealing with
that situation or providing any help to the user. A much
more comprehensive model of the underlying objects and
behavior, along the lines of Wilensky’s UC representation

Selfridge 383

[25], is needed.

The system has no representation for the invocation of a
piece of software; it assumes all translators can be included
in a UNIX pipeline. In fact, this was not the case with the
programs ‘latex’ and ‘dvi2ps’, which had to be embedded in
other programs for this to be true. The invocation pattern
and side effects of using ‘latex’ are complicated: °‘latex’
takes a command line argument which is the first part of the
file name, and the extension ‘tex’ is assumed. In addition,
several log files are created as a side effect and particular
things happen when certain kinds of errors occur. In order
for a system to deal with these kinds of things intelligently,
it needs a comprehensive representation of the invocation
patterns, side effects, and normal behavior of software and
software systems. In order to do this, an underlying process
model of the entire environment, including the file system,
terminal input and output, and storage allocation is needed.

Research into representing knowledge of software and
software systems is an important and growing area, and this
work has only touched the surface. Several areas for future
work suggestion themselves, partly derived from the
limitations of the current system. First of all, a more
complicated domain is needed. One possibility is to try to
apply the software knowledge representation techniques used
here to the problem of information retrieval of software,
allowing the retrieval of appropriate software modules based
on a functional description of the software and its behavior.

In order to do this, more advanced representation
techniques will be necessary. These techniques should first
be applied to representing the underlying software
environment of UNIX: the file system, UNIX invocation
patterns, and terminal interactions, all of which can get very
complicated. Once the environment is described, software
which is embedded in that environment can be more
completely represented.

Finally, this work has not been concemned with how
people think about software [4]. A more cognitive approach
should elucidate the kinds of models people have about
software and software systems (how a file gets printed would
be a good initial domain) and should also shed light on how
people detect and fix various kinds of errors in the process
and in their model of the process. Such knowledge should
help us in designing knowledge representations of software
and systems to use those representations.

7. Conclusion

This paper has described a certain approach to the
representation of knowledge about software. We identified a
domain, that of printing files in a UNIX environment, which
is an good example of a complex software system, yet
tractable from the representation point of view. We explored

384 Knowledge Representation

the kinds of knowledge that needed to be represented, and
built representations of the different software components of
the printing process. The implementation, ESP, used those
representations and achieved almost all of the performance
goals. Most important, this work serves to highlight the next
set of research issues to be addressed in the area of software
knowledge representation, which include deeper
representations of software objects, including module
invocation and side effects; representation of the underlying
software environment, including the file system, memory
allocation, and the terminal interface; and investigation of
human cognitive models of software.

8. Acknowledgements

I would like to thank Ron Brachman, Dewaynne Perry, and
Bruce Ballard for reading and commenting on earlier
versions of this paper. Special thanks to Mallory Selfridge
for several "hard edits” that were instrumental in improving
the overall quality of the paper.

9. References

1. Barth, P., Buthery, S., Barstow, D., The Stream Machine:
A Data Flow Architecture, 8th International Software
Engineering Conference: 103-110, 1986

2. Barstow, D., Automatic Programming for Streams, IJCAI
’85: 232-237, 1985

3. Barstow, D., Knowledge-Based Program Construction,
North-Holland, 1979

4. Bobrow, D., Ed., Qualitative Reasoning About Physical
Systems, MIT Press, 1985

5. Brownston, L., Farrell, R., Kant, Elaine, Martin, N.,
Programming Expert Systems in OPS5: an
Introduction to Rule-Based Programming,
Addison-Wesley, 1986

6. Gehani, N., Document Formatting and Typesetting on
the UNIX System, Silicon Press, NJ, 1986

7. Goldberg, A.T., Knowledge-Based Programming: A
Survey of Program Design and Construction
Techniques, IEEE Trans. on SE Se-12: 752-768, 1986

8. Kernighan, B. W., Pike, R., The UNIX Programming
Environment, Prentice-Hall, NJ, 1984

9. Perry, D. E. Software Interconnection Models,
Proceedings of the 9th International Conference on
Software Engineering, 1987

10. Pesch, H., Shaller, H., Test Case Generation Using

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23,

Prolog, in 8th International Conference on Software
Engineering p. 252-258, 1985

PostScript Language Reference Manual, Adobe
Systems Incorporated, published by Addison-Wesley,
Inc. 1985

PostScript Language Tutorial and Cookbook, Adobe
Systems Incorporated, published by Addison-Wesley,
Inc. 1985

Preito-Diaz, R., Neighbors, J. M., Module
Interconnection Languages: A Survey, TR 189, ICS
UCIT August, 1982

Neighbors, J.M., The Draco Approach To Constructing
Software From Reusable Components IEEE Trans. on
SE., vol. 10, no. 5: 564-574, Sept. 1984, also in [21],
p. 525-535

Rich, C., Inspection Methods in Programming, MIT Al-
TR-604, 1981

Rich, C., The Layered Architecture of a System for
Reasoning About Programs, IJCAI ’85: 540-546,
1985

Rich, C., A Formal Representation for Plans in the
Programmer’s Apprentice, IJCAI °81:1044-1052,
1981

Rich, C. and Waters, R., editors, Readings in Artificial
Intelligence and Software Engineering, Morgan
Kaufman, 1986

Ritchie, D. M., Thompson, K. L., "The UNIX Time-
sharing System", CACM, July, 1974

Swartout, W. and Balzer, B., On the Inevitable
Intertwining of Specification and Implementation,
CACM 25:438 - 440, 1982

Waters, R.C., The Programmer’s Apprentice: Knowledge
Based Program Editing, IEEE Trans. on SE SE-8: 1-
12, 1982

Waters, R. C., KBEMACS: A Step Towards the
Programmer’s Apprentice, MIT AI-TR-753, 1985

Wilensky, R., et al., UC - A Progress Report, Report no.
UCB/CSD 87/303, Computer Science Division, UC
Berkeley, July, 1986

. Wilensky, R., Aren, Y., Chin, D., Talking to UNIX in

English: An Overview of UC, CACM 27/6 574-593,
1984

25. Wilensky, R., Some Problems and Proposals for
Knowledge Representation, Report no. UCB/CSD

87/351, May, 1987

26. IEEE Software, Special Issue on Reuse, January, 1988

Selfridge

385

