
From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



the command line, step 4b, which tells it to use a particular 
macro package for deciphering certain macro commands 
present in the text. The output of ‘troff’ is a ‘troff’ file, 
where the text has been completely replaced by troff 
commands. The final destination of the data stream, step 7, 
indicated by ‘lpr -Plw’, is a particular printer, the ‘lw’ (laser 
writer) printer. This printer is a ‘PostScript’ [11,12] printer 
which takes data in the ‘PostScript’ format. Therefore, step 
5 is required, where the translator ‘dpost’ translates ‘troff’ 
format into ‘PostScript’ format. ‘Dpost’ is given another 
option in step 5b, an option that specifies which subset of 
the document should be printed; in this case, the pages 1 
through 9. Finally, the translator ‘postreverse’ is needed in 
step 6 to order the pages properly front to back. 

Generating an appropriate pipeline can be difficult for 
many reasons. First of all, one needs to know all of the 
different kinds of text present in the file. Second, one needs 
to know what translators are needed to process the file, how 
to invoke them, and the order in which they must appear. 
Third, some options (like ‘-mm’ above) are critical to the 
final appearance of the printed document and must be 
included in the proper place. Fourth, an appropriate printer 
must be chosen and not all printers can print all kinds of 
files. Fifth, for a given printer, other translators may be 
needed, and other options may be desired which have to be 
properly invoked and included in the proper place in the 
pipeline. Sixth, detecting that a printer is ‘down’ or 
otherwise inaccessible, or has a prohibitively long queue of 
current printing jobs, must be done from time to time. 
Finally, users typically use a given printer and options most 
of the time, so that using defaults correctly becomes part of 
the problem. 

Automating the printing process is an important 
research project for two reasons. First of all, from a 
practical point of view, such a system would be quite useful. 
More important, the printing problem is representative of a 
class of software problems which involve the recombination 
of existing programs. Recombining existing programs [26] 
is likely to become a very important mechanism for creating 
software, as well as aid in the problems of understanding, 
debugging, and revising software. Progress on the printing 
problem should identify the next set of research issues 
relevant to the larger problem of automatic programming by 
program recombination. 

Representing software knowledge for automatic 
programming has been addressed by a number of 
researchers. Rich and Waters, and others, have developed 
the “programmer’s apprentice” framework [15-18, 22, 231 
and various techniques for representing knowledge of 
specifm program constructs. Their techniques address a 
lower level of automatic programming and representation of 
software knowledge, and are not directly applicable to the 
problem of automatic recombination of existing programs. 

Wilensky’s UNIX consultant (UC.) project [23-251 addresses 
the representation of software knowledge to help the user 
find particular UNIX commands, but does not address the 
combining of commands to achieve other goals. Other 
research into automatic programming almost exclusively use 
the “transformation approach”, which represents 
programming knowledge as correctness-preserving syntactic 
transformations applied to a semantically correct program 
“specification” [2,3,7,20]. Transformation approaches are not 
applicable to program re-combination, being specifically 
tailored to the construction of small programs for specific 
low-level computations. 

In summary, the problem of printing files in UNIX and 
the goal of automating this task is of both practical and 
theoretical importance, and generates the following specific 
problems that must be addressed in both a model of the 
domain and the implementation: 

1. how are translators and options chosen? 
2. how are they properly ordered? 
3. how are printers selected? 
4. how can user defaults be handled? 
5. how can erroneous printer output be minimized? 

ode1 of File Types and File Printing 

This section describes a model of printing files in a 
UNIX environment. The general model is based on the 
observation that the file to be printed (including data flowing 
through a pipeline) can be viewed as an object with a set of 
properties or types, each type representing one kind of text 
in the file. With this view, a translator can be modelled as 
an operator that changes the set of types of the data object, a 
printer can be modellcd as a terminal operator that can only 
accept data of a specific type, user defaults can be modelled 
as demons, and the printing process can be modelled as a 
sequence of operations to detect the file types, select a 
printer, select the translators, and order them to produce the 
final pipeline. 

With this general model in mind, the specific types of 
knowledge needed and their general representation need to 
be identified. There are three categories of “objects” for 
which knowledge is needed: file types, translators, and 
printers. The kinds of knowledge are listed here: 

Knowledge of files types: 
- text patterns that indicate file types 

Knowledge of translators: 
- translator input type 
- translator output type 
- translator order 
- translator invocation 
- possible options 

Selfridge 381 







[251, is needed. 

The system has no representation for the invocation of a 
piece of software; it assumes all translators can be included 
in a UNIX pipeline. In fact, this was not the case with the 
programs ‘latex’ and ‘dvi2ps’, which had to be embedded in 
other programs for this to be true. The invocation pattern 
and side effects of using ‘latex’ are complicated: ‘latex’ 
takes a command line argument which is the first part of the 
file name, and the extension ‘tex’ is assumed. In addition, 
several log files are created as a side effect and particular 
things happen when certain kinds of errors occur. In order 
for a system to deal with these kinds of things intelligently, 
it needs a comprehensive representation of the invocation 
patterns, side effects, and normal behavior of software and 
software systems. In order to do this, an underlying process 
model of the entire environment, including the file system, 
terminal input and output, and storage allocation is needed. 

Research into representing knowledge of software and 
software systems is an important and growing area, and this 
work has only touched the surface. Several areas for future 
work suggestion themselves, partly derived from the 
limitations of the current system. First of all, a more 
complicated domain is needed. One possibility is to try to 
apply the software knowledge representation techniques used 
here to the problem of information retrieval of software, 
allowing the retrieval of appropriate software modules based 
on a functional description of the software and its behavior. 

In order to do this, more advanced representation 
techniques will be necessary. These techniques should first 
be applied to representing the underlying software 
environment of UNIX: the file system, UNIX invocation 
patterns, and terminal interactions, all of which can get very 
complicated. Once the environment is described, software 
which is embedded in that environment can be more 
completely represented. 

Finally, this work has not been concerned with how 
people think about software [41. A more cognitive approach 
should elucidate the kinds of models people have about 
software and software systems (how a file gets printed would 
be a good initial domain) and should also shed light on how 
people detect and fix various kinds of errors in the process 
and in their model of the process. Such knowledge should 
help us in designing knowledge representations of software 
and systems to use those representations. 

7. Conclusion 

This paper has described a certain approach to the 
representation of knowledge about software. We identified a 
domain, that of printing files in a UNIX environment, which 
is an good example of a complex software system, yet 
tractable from the representation point of view. We explored 

the kinds of knowledge that needed to be represented, and 
built representations of the different software components of 
the printing process. The implementation, ESP, used those 
representations and achieved almost all of the performance 
goals. Most important, this work serves to highlight the next 
set of research issues to be addressed in the area of software 
knowledge representation, which include deeper 
representations of software objects, including module 
invocation and side effects: representation of the underlying 
software environment, including the file system, memory 
allocation, and the terminal interface; and investigation of 
human cognitive models of software. 

, 

8. Acknowledgements 

I would like to thank Ron Brachman, Dewaynne Perry, and 
Bruce Ballard for reading and commenting on earlier 
versions of this paper. Special thanks to Mallory Selfridge 
for several “hard edits” that were instrumental in improving 
the overall quality of the paper. 

9. References 

1. Barth, P., Buthery, S., Barstow, D., The Stream Machine: 
A Data Flow Architecture, 8th International Software 
Engineering Conference: 103-110, 1986 

2. Barstow, D., Automatic Programming for Streams, IJCAI 
‘85: 232-237, 1985 

3. Barstow, D., Knowledge-Based Program Construction, 
North-Holland, 1979 

4. Bobrow, D., Ed., Qualitative Reasoning About Physical 
Systems, MIT Press, 1985 

5. Brownston, L., Farrell, R., Kant, Elaine, Martin, N., 
Programming Expert Systems in OPS5: an 
Introduction to Rule-Based Programming, 
Addison-Wesley, 1986 

6. Gehani, N., Document Formatting and Typesetting on 
the UNIX System, Silicon Press, NJ, 1986 

7. Goldberg, A.T., Knowledge-Based Programming: A 
Survey of Program Design and Construction 
Techniques, IEEE Trans. on SE Se-12 752-768, 1986 

8. Kemighan, B. W., Pike, R., The UNIX Programming 
Environment, Prentice-Hall, NJ, 1984 

9. Perry, D. E., Software Interconnection Models, 
Proceedings of the 9th International Conference on 
Software Engineering, 1987 

10. Pesch, H., Shaller, H., Test Case Generation Using 

384 Knowledge Representation 



PdOg, in 8th International Conference on Software 
Engineering p. 252-258, 1985 

25. Wilensky, R., Some Problems and Proposals for 
Knowledge Representation, Report no. UCB/CSD 
87/351, May, 1987 

11. PostScript Language Reference Manual, Adobe 
Systems Incorporated, published by Addison-Wesley, 
Inc. 1985 

26. IEEE Software, Special Issue on Reuse, January, 1988 

12. PostScript Language Tutorial and Cookbook, Adobe 
Systems Incorporated, published by Addison-Wesley, 
Inc. 1985 

13. Preito-Diaz, R., Neighbors, J. M., Module 
Interconnection Languages: A Survey, TR 189, ICS 
UC1 August, 1982 

14. Neighbors, J.M., The Draco Approach To Constructing 
Software From Reusable Components IEEE Trans. on 
SE., vol. 10, no. 5: 564-574, Sept. 1984, also in [21], 
p. 525-535 

15. Rich, C., Inspection Methods in Programming, MIT AI- 
TR-604, 1981 

16. Rich, C., The Layered Architecture of a System for 
Reasoning About Programs, IJCAI ‘85: 540-546, 
1985 

17. Rich, C., A Formal Representation for Plans in the 
Programmer’s Apprentice, IJCAI ‘8 1: 1044- 1052, 
1981 

18. Rich, C. and Waters, R., editors, Readings in Artificial 
Intelligence and Software Engineering, Morgan 
Kaufman, 1986 

19. Ritchie, D. M., Thompson, K. L., “The UNIX Time- 
sharing System”, CACM, July, 1974 

20. Swartout, W. and Balzer, B., On the Inevitable 
Intertwining of Specification and Implementation, 
CACM 25~438 - 440, 1982 

21. Waters, R.C., The Programmer’s Apprentice: Knowledge 
Based Program Editing, IEEE Trans. on SE SE-8: l- 
12, 1982 

22. Waters, R. C., KBEMACS: A Step Towards the 
Programmer’s Apprentice, MIT AI-TR-753, 1985 

23. Wilensky, R., et al., UC - A Progress Report, Report no. 
UCB/CSD 87/303, Computer Science Division, UC 
Berkeley, July, 1986 

24. Wilensky, R., Aren, Y., Chin, D., Talking to UNIX in 
English: An Overview of UC, CACM 27/6 574-593, 
1984 

Selfridge 385 


