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Abstract 
Genetic information, as expressed in the four- 
letter code of the DNA of living organisms, 
represents a complex and richly expressive 
natural knowledge representation system, cap- 
turing procedural information that describes 
how to create and maintain life. The study of 
its semantics (i.e., the field of molecular biology) 
has yielded a wealth of information, but its syn- 
tax has been elaborated primarily at the lowest 
lexical levels, without benefit of formal compu- 
tational approaches that might help to organize 
its description and analysis. This paper 
discusses such an approach, using generative 
grammars to express the information in DNA 
sequences in a declarative, hierarchical manner. 
A prototype implemented in a Prolog-based 
Definite Clause Grammar system is presented, 
which allows such declarative descriptions to be 
used directly for analysis of genetic information 
by parsing DNA. Examples are given of the 
utility of this method in the domain, and speed- 
ups and extensions are also proposed. 

1. Introduction 
Beginning with the understanding of the “genetic code” 
in the 1950’s and ‘60’s, the essential lexical elements of 
the language based in DNA have been understood, and 
a great deal about its higher-level features has also 
been discovered, but not formalized in the sense of 
computational linguistics. More recently, the advent of 
techniques for efficiently isolating genes and determin- 
ing their DNA sequence has led to an explosive accu- 
mulation of data. DNA sequence databases now con- 
tain thousands of entries, each consisting of hundreds 
or even thousands of nucleotide bases (the elements of 
the genetic code, abbreviated g, a, t, and c), and the 
rate at which new data is accumulating is accelerating 
rapidly. In the face of this mass of data, computerized 
DNA sequence analysis is becoming an increasingly 
important tool for molecular biologists in such realms 
as the identification of evolutionarily related sequences 
using homology (similarity) algorithms, the detection 
of specific sequences in large DNA sequence databases 
by pattern-matching techniques, more sophisticated 
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algorithmic investigations of the relation of primary 
sequence to higher-order structure and function, and in 
the planning of recombinant DNA experiments. 

Despite the proliferation of such tools and the explo- 
sive growth of sequence databases, methods for the 
specification and analysis of such genetic information 
tend to approach the underlying DNA sequence as a 
linear data set, as opposed to a highly structured 
language specifying biological information. Yet, it has 
been observed that an abstracted, hierarchical view is 
desirable in dealing with applications such as the pred- 
iction of S-dimensional structure of biomolecules based 
on their primary sequence bathrop871. We propose 
here an approach to DNA and protein sequence 
description and analysis, founded in computational 
linguistics, that provides a unifying conceptual frame- 
work for all the diverse activities described above, and 
which may also itself lead to new insights into the 
organization of DNA. This paper will first introduce 
the notion of applying general grammars to some sim- 
ple DNA features, then discuss the linguistic power 
required for DNA, and then further elaborate a biologi- 
cal example along with an actual implementation and 
sample run. 

2. A Genetic Grammar 
Consider the partial grammar given below as an exam- 
ple. It consists of a collection of rules or productions 
denoted by arrows, each with a non-terminal (NT) 
symbol on its left-hand side (LHS), and a string of NTs 
and/or terminals (Ts) on its right-hand side (RHS) 
separated by commas and ending with a period. Ts 
correspond to the alphabet of the language being 
described, in this case double quoted strings of lower- 
case nucleotide bases (e.g. “gate”); a vertical bar ( 1) 
signifies disjunction on RHSs. These conventions are 
familiar from BNF descriptions of computer languages. 

catBox --> pyrimidine, “cast” . 

tataBox --> "tata", base, "a". 

capSite --> Icacti. 

base --> purine 1 pyrimidine. 

purine --> "g" 1 l(a". 

pyrimidine --> "t" 1 "c". 

What is captured here, in terms of the four DNA bases 
and some prelexical elements describing base classes 
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(i.e. purine and pyrimidine), are highly simplified 
descriptions of a few fairly low-level features of biologi- 
cal interest (catBox, etc.) that occur near the begin- 
nings of many genes and act as signals delineating 
those genes and regulating their expression. This 
grammar fragment could also be described by regular 
expressions, and thus falls into the class of regular 
languages (RLs). In fact, many current pattern- 
matching algorithms used for DNA sequences are based 
on regular expression search. However, the advantages 
of a grammar-based representation begin to emerge as 
higher-level features are expressed, as shown below. 

gene --> upstream, xscript, downstream. 

upstream -- > 
catBox, 40... 50, tataBox, 

xscript --> 
capsite, . . . . xlate, . . . . 

19...27. 

termination. 

The top-level rule for the NT gene in this grammar is 
an abstract declarative statement that a gene is com- 
posed of (1) an upstream region, containing the con- 
trol regions defined above, followed by (2) a central 
region (xscript, so named because it undergoes tran- 
scription in the cell to an intermediate form, called 
messenger RNA, when the gene is expressed), followed 
by (3) a downstream region, not further described 
here. It also shows that the transcribed region 
xscript has within it a sequence xlate which we 
will see reflects a further translation of the messenger 
RNA into protein, the final product of gene expression. 
Note the introduction of a “gap” symbol (‘. e . ‘), which 
simply specifies some otherwise undistinguished span of 
bases; a gap may be indefinite, as in the rule for 
xscript, or bounded by a minimum and a maximum 
span, as in upstream. In terms of parsing, a gap is 
just an indiscriminant consumer of bases. 

These rules taken together show how the grammar 
can be “broken out” into its components in a perspicu- 
ous hierarchical fashion, with detail always presented 
at its appropriate level. Besides encouraging a higher- 
level description than the flat, left-to-right representa- 
tion of regular expressions, grammars afford potentially 
greater expressive power than simple RLs; in the 
genetic domain, situations are encountered which seem 
to require the power of context-free (CF) languages, or 
greater. For example, the structure illustrated in Fig- 
ure 1 represents a recurring theme in molecular biol- 
ogy. At the top are shown the two strands of DNA 
which bind to each other to form the double helix; the 
strands have directionality, indicated by the double 
arrows, and they bind in opposite orientations. 
Nucleotide bases positioned opposite each other are 
complementary, in that they fit each other, or pair, in a 
lock-and-key arrangement: the base “g” is complemen- 
tary to “cl’, and “a” to ‘It”. Because one strand thus 
determines the other’s sequence, only one strand is 
described in any of these grammars. We denote sub- 
strings of bases by Greek letters, and their reversed 
complementary substrings by primes (‘); base pairing 
is represented by dots. 

Figure 1. A Biological “Palindrome” 

Alternative pairing of complementary substrings can 
give rise to biologically significant secondary structure 
in the DNA strands. In Figure 1, what is loosely 
referred to as a palindrome (i.e. Q and a’) in the top 
sequence produces a cruciform structure with unpaired 
loop-outs-(7 and T’)~ shown at the bottom. Sequences 
with potential to form such structures could formally 
be expressed as { uvw ] u,v,w E {gpa,t,c}*, ]u]=]w]=j, 
and for l<i<j ui is the complementary base to w. -- J-i+1 

}, 
which can be shown to be a CF language (see Section 
5) and not regular. In fact, tandem repeats, which are 
also common biological features, are formally copy 
languages (e.g. { ww I w E {g,a,t,c}*}), which require 
even greater than CF power. There are many more 
complex examples of such features of secondary struc- 
ture, particularly in RNA, and protein sequences offer 
an even richer variety. 

Many ad hoc programs have been written, and varia- 
tions on regular expression search implemented, that 
would address various shortcomings of current systems 
[Saurin87,Stadenf)O], but these are neither formal nor 
general. Blattner has formally described a DNA- 
oriented language, which however does not treat the 
sequence itself as a formal language [Schroeder82]. 
Brendel has proposed a somewhat more formal linguis- 
tic approach for DNA sequences /Brendel84], but does 
not carry it much beyond a prelexical level; in any 
case, it has been argued persuasively that the formal- 
ism he offers (Augmented Transition Networks) is less 
clear, concise, efficient, and flexible than the formalism 
we will propose, that of Definite Clause Grammars 
(DCGS) pereira801. 

ased Implementation 
DCGs are grammar systems that can be translated to - 
rules in a Prolog program, which then constitutes a 
parser for the grammar. The translation involves the 
attachment of two parameters to each NT; one 
represents an input string of Ts passed into the NT, 
and the other a remainder list to be passed back out, 
should an initial substring of the first list parse as that 
NT. DCGs have three features that extend their 
power beyond CF: parameter passing, procedural 
attachments, and terminal replacement. This section 
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file. The query given above first succeeds in producing 
the following result. 

AAs = [met,asn,ser,ile,leu,phe,tyr,ser], 
Parse = [ 
. . ., 

xlate([met,asn,ser,ile,leu,phe,tyr,ser]): 
codon(met) : 

3/"atg" 
xlatel([asn,ser,ile,leu,phe,tyr,ser]): 

exon([asn,ser,ile,leu,phe,tyr,ser]): 
. . . 

stopcodon: 
27/"ta" 
purine: 

2 9/"g"] ; 

This parse returns a list of amino acids bound to the 
variable MS, with no splicing. The parse tree 
returned to the variable Parse is printed so that the 
indentation shows the depth of the call, ellipses signify 
recursive calls whose outputs are omitted (due to a 
feature, not shown, that allows the user to “cut off’ the 
parse tree at rules below which it becomes tiresome or 
unnecessary to store the entire parse), and Ts (bases) 
are always preceded with positional references set off 
by fore-slashes. For example, the last four lines indi- 
cate that a stop codon (“tag”‘) was found at positions 
27-29. The positional references are also carried 
through the parse by an added hidden parameter. The 
semicolon at the end is input by the user, and causes 
the query to fail, in effect asking for another answer by 
initiating backtracking. 

AAs = [met 
Parse = c 

, asn,thr, argl, 

. . ., 
xlate([met,asn,thr,arg]) : 

codon(met) : 
3/"atg" 

xlatel([asn,thr,arg]): 
exon([asn]) : 

1 . . 
intron: 

9/"a" 
splice: 

donor: 
lO/"gtatct" 

. . . 
acceptor: 

24/"tcgtag" 
xlatel([thr,arg]): 

exon([thr,arg]): 
. . . 

stopcodon: 
35/"tga"] 

Upon backtracking, an additional parse is discovered, 
by introducing a splice; no other parses exist. Prolog- 
style backtracking is ideally suited to investigating real 
biological situations (e.g. certain viruses) that involve 
alternative splicing such as this, and also alternative 
start sites. Th is is in addition to the potential use of 
grammars for searching sequence databases for possible 
genes, described declaratively at this abstract level. 

5. Efficiency 
While the performance of this prototype system has 
been quite satisfactory in small test systems, for much 
larger search applications we must be concerned with 
efficiency, especially since we are giving up extremely 
fast linear-time string-matching algorithms.2 

Because of the large amount of backtracking that 
may be expected in this application over huge input 
strings, chart parsing (i.e., saving intermediate results 
in a table that may be consulted dynamically) is an 
appropriate strategy to avoid the penalties of re- 
parsing complex features. A form of chart parser is 
easily implemented in a DCG by simply adding at the 
end of a rule an assertion of its LHS NT (with its asso- 
ciated position) as a ground clause into the database 
ahead of the rule itself (using the Prolog asserta). 
Thus, whenever the rule succeeds in parsing that NT, 
the clause entered will intercept any later attempts to 
parse the NT at that position in the input string, and 
succeed before the rule is invoked. Using a small test 
grammar, we find that the efficiency of the chart 
parser would begin to exceed that of the standard 
DCG parse after an average of only 1.9 backtracks 
over a distance of 40 bases - small on the scale of 
DNA sequences. Furthermore, this implementation of 
chart parsing can be greatly improved, because it is 
inefficient to index the NT chart entries by their list 
parameters, and because in fact the chart is much 
more effective if it also stores the points where parses 
fail (a far more frequent occurrence than success); 
such a volume of information in the chart would use 
excessive memory if stored as Prolog data structures. 
One answer is to use DCGs indexed by numerical posi- 
tion rather than by lists. This has the immediate 
benefit of allowing the input string to be stored as an 
external array (written in ‘C’), rather than Prolog 
linked lists, with their time and space overhead. Also, 
numerical indexing allows a far more effective data 
structure for the chart, again using an external array. 
We have now implemented a chart which stores both 
success and failure information, the latter made feasi- 
ble by storage in external bit arrays. 

Related to efficiency concerns are potential problems 
with pure declarative logic-based expressions of gram- 
mar rules. Certain phenomena in genetic grammars 
might result in parses that are inefficient because of 
excessive backtracking, or even fail to terminate in the 
general case, or are under-specified in other regards. 
For example, a straightforward rule for the inverted 

2 However, note that regularizable sub-trees of genetic gram- 
mars could be detected and automatically converted to these 
fast string-matching algorithms. In fact, there are highly- 
optimized dynamic programming algorithms used for DNA 
similarity searches and other purposes which will probably be 
better left as external subroutines called from the DCGs as 
procedural attachments. The DCGs will then constitute or- 
ganizing frameworks containing pure declarative grammars 
and, where appropriate, specialized algorithms, heuristics, 
etc. to maintain the tractability of the system. 
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complementary repeat or “palindrome” described in 
Section 2 is given by the following DCG rule: 

invertedRepeat --> . . . . % loop-out 
invertedRepeat --> [X], 

invertedRepeat, {X:: :Y), [Y]. 

The second clause collects complementary bases (with 
complementarity denoted by an infix operafor ‘: : : ‘), 
and calls itself recursively between them, while the first 
clause is a “gap” that corresponds to the loop-out. 
This rule is mathematically correct, and in fact is a 
direct encoding of the formula given in Section 2, but 
in practice it would not terminate, since the DCG 
implementation of the unbounded gap operator simply 
consumes any number of bases from the input string, 
and changing the clause order does not help. While a 
number of meta-level features and program transfor- 
mation techniques have been proposed to handle such 
problems in logic programming, our current approach 
is to provide a library of built-ins which are individu- 
ally optimized, or constrained, or which make use of 
external subroutines. For instance, a workable rule for 
inverted repeats is: 

invertedRepeat(O,Loop) --> O...Loop. 
invertedRepeat(Length,Loop) --> 

(Next is Length - 13, [X], 
invertedRepeat(Next,Loop), (X::: Y), [Y] . 

By parameterizing the Length of match required and 
the maximum Loop, the rule can be properly con- 
str’ained and forced to terminate. In practice, though, 
even more general rules should permit wider latitude in 
speciEcation and deal with imperfect, matching (see 
Section 6), while addressing efficiency concerns. 

6. Imperfect Matching 
Biologically speaking, the rules for catBox and other 
signal sequences given above were naive in portraying 
exact sequences, when in fact there is a great deal 
of variability observed. Usually such a signal would 
be expressed as a consensus sequence, a canonical 
representation of the most common bases in each posi- 
tion. This need to allow imperfect matching is recog- 
nized in the rules for splice donor and acceptor sites:3 

donor --> "gt", [B3,B4,B5,B6], 
(2 of [purine==>[B3], [B4]="a", 

[BS]="g", [B6]="t" ] 3. 

acceptor --> [B6,B5,-,B3], l(ag", 
(2 of [pyrimidine==>[B3], 

pyrimidine==>[B5], 
pyrimidine==>[B6] 13. 

Here, the infix operator ‘of’ takes as arguments an 
integer and a list of goals, and succeeds when at least 
that number of goals in the list is satisfiable. This 

a Note also the recursive application of the parsing operator; 
while its use here is trivial, and could be replaced by base 
class predicates of arity one (e.g. purine(l33)), it is 
nevertheless a potentially powerful technique for such pur- 
poses as managing “multi-layered” parsing [Woods80]. 

provides a simple probabilistic element. While the “gt” 
and “ag” signals are invariant, matches on only a por- 
tion of the surrounding consensus bases (B3-BB) -are 
required, sometimes only to the level of base cl&sses. 
Some positions may even be unknown, as indicated bY 
the Prolog anonymous variable (-) in acceptor. A 
more sophisticated mechanism, however, is required. 

base/% 1 2 s 4 5 

g 100 50 25 40 50 
a 0 25 25 30 50 

Figure 8. A Hypothetical Consensus Sequence 

Consider the consensus sequence depicted in Figure 3, 
showing the relative base frequency over a hypothetical 
five-position sequence. These involve fractional match 
operators that require some score, measured in terms of 
a distance metric,-to exceed a threshold parameter. For 
example, a trivial scheme might simply examine the 
additive percentages across the sequence, which would 
be a maximum of 265 for a “perfect” fit, (e.g. “ggcga”). 
One might then define a 60% match as 0.6X265= 159, 
for a threshold of 159 defining success. Such metrics 
have been well-studied [Kruskal83], but an implemen- 
tation in logic permits a natural incorporation of 
mechanisms for “eager” success and failure, so that 
only as many comparisons are done, reading left to 
right, as are necessary to prove that the predicate can- 
not fail, given the minimum remaining score (min+), 
or cannot succeed, given the maximum remaining score 
(max+). For example, af a 60% threshold an initial 
&ring df “ca” would be destined to fail, whereas “gt” 
could not fail, regardless of the remaining sequence. 

Furthermore, clause reordering can enhance the 
efficiency of logical proof based on such probabilistic 
elements. For example, in the example above, it would 
be better to test position 5 before position 4, because 5 
would be more likely to fail on inappropriate input 
than 4. In other words, the distribution in position 5 
has more information content, and in fact we can 
reorder our examination of base positions according to 
the inverse rank order of their informational entropy, 

- c PJO&P* where p, is the probability that base 5 

oE{l3,a,t,c) appears in that position [Shannon64]. 
Thus, the order in which these positions would be 
examined is 1, 5, 2, 4, and 3, again using eager success 
and failure. The use of a numerically indexed gram- 
mar structure allows compile-time reordering of the 
examination of positions within a term, and we hope to 
generalize this to clause reordering for eager decision 
through entire rule bodies, though this will be 
significantly complicated by variable gaps within rules. 
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7. Extensions 
The utility of grammars may extend beyond structural 
descriptions of DNA, to encompass functional aspects 
of genetic and biochemical systems. For inst ante, 
there is a fundamental similarity between biochemical 
reactions and the notion of terminal replacement in 
DCGs. In the latter case, input is consumed and 
replaced with another terminal string, just as in a 
reaction substrate is “consumed” and replaced by pro- 
duct. For example, the rule 

oxidativeDeamination, ,lu" --> ttct* 

would replace a “cl’ residue with a “u” (a process used 
experimentally to create “directed” mutations). In 
other words, there is a sense in which the biochemical 
notation reaction 

substrate - product 

corresponds to the grammatical notation 
reaction, product --> substrate. 

Thus, DCGs are able to conceptually capture the idea 
of performing reactions on the DNA sequence, and 
thereby altering it. This should make it possible to 
extend the language to deal with phenomena like gene 
rearrangement, and experimental manipulation of DNA 
fragments. We are examining methods by which this 
formalism (though perhaps with improved syntactic 
representation) may be applied to populations of 
molecules, rather than single input strings, so that, for 
example, grammars could be used as scripts in complex 
experiment-planning systems. 

By a further extension, grammars can be used to 
combine high-level descriptions of sequence with simu- 
lations acting on that sequence. The following gram- 
mar deals with regulatory sequences called promoters, 
which in simple systems may be feedback-inhibited by 
the protein product of the gene they regulate. 

transcribedGene(Time) --> 
activePromoter(Time), xscript, 
(assert(product(Time))). 

activePromoter(Time) --> 
(concentration(Time,C), threshold(T), 
C<T), promoter. 

lifetime(l0). % average 10 seconds 
threshold(7.5). % concentration (mM) 

This grammar deals not only with the sequence data 
but with the environment. The rule transcribed- 
Gene, having parsed an active promoter and a tran- 
scribed region, asserts into the database a discrete 
amount of time-stamped gene product. The rule 
activePromoter postulates a product inhibition, 
succeeding in recognizing its sequence (lexically 
encoded elsewhere in the NT promoter) only if the 
current concentrafion C of product is below some regu- 
latory threshold T (set by the predicate threshold). 
The predicate concentration (not shown) maintains 
the Prolog database of product according to the 
expected lifetime of that product. Repeatedly 
parsing for transcribedGene, at a rate of one parse 
per second, produces the behavior shown in Figure 4. 

synthesis 
r------- 1 r -w-w- 

time --, 

Figure 4. Simulation by Repeated Parsing 

This shows grammars used not jusf for lexical 
analysis, but acting in and on a general context, and 
perhaps even modeling biological molecules (e.g. RNA 
polymerase, the enzyme which moves along the DNA 
copying the RNA transcript). A similar use of logic 
(though not involving grammars) has proven useful in 
more complex simulations and qualitative reasoning 
about biological systems Foton85], and we believe thaf 
the virtues of linguistic descriptions can also be 
brought to bear in describing and experimenting with 
more involved sequence-dependent control systems, 
such as bacterial regulatory systems called operons, 
and attenuators, which depend on alternative palin- 
dromic secondary structures. 
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