
epresenting Genetic Information with ormal rammars

David B. Searls
Unisys Paoli Research Center
P.O. Box 517, Paoli, PA 19301

Abstract
Genetic information, as expressed in the four-
letter code of the DNA of living organisms,
represents a complex and richly expressive
natural knowledge representation system, cap-
turing procedural information that describes
how to create and maintain life. The study of
its semantics (i.e., the field of molecular biology)
has yielded a wealth of information, but its syn-
tax has been elaborated primarily at the lowest
lexical levels, without benefit of formal compu-
tational approaches that might help to organize
its description and analysis. This paper
discusses such an approach, using generative
grammars to express the information in DNA
sequences in a declarative, hierarchical manner.
A prototype implemented in a Prolog-based
Definite Clause Grammar system is presented,
which allows such declarative descriptions to be
used directly for analysis of genetic information
by parsing DNA. Examples are given of the
utility of this method in the domain, and speed-
ups and extensions are also proposed.

1. Introduction
Beginning with the understanding of the “genetic code”
in the 1950’s and ‘60’s, the essential lexical elements of
the language based in DNA have been understood, and
a great deal about its higher-level features has also
been discovered, but not formalized in the sense of
computational linguistics. More recently, the advent of
techniques for efficiently isolating genes and determin-
ing their DNA sequence has led to an explosive accu-
mulation of data. DNA sequence databases now con-
tain thousands of entries, each consisting of hundreds
or even thousands of nucleotide bases (the elements of
the genetic code, abbreviated g, a, t, and c), and the
rate at which new data is accumulating is accelerating
rapidly. In the face of this mass of data, computerized
DNA sequence analysis is becoming an increasingly
important tool for molecular biologists in such realms
as the identification of evolutionarily related sequences
using homology (similarity) algorithms, the detection
of specific sequences in large DNA sequence databases
by pattern-matching techniques, more sophisticated

This work was supported by the National Institutes of Health
(DRR) under grant ROlRR04026-01.

algorithmic investigations of the relation of primary
sequence to higher-order structure and function, and in
the planning of recombinant DNA experiments.

Despite the proliferation of such tools and the explo-
sive growth of sequence databases, methods for the
specification and analysis of such genetic information
tend to approach the underlying DNA sequence as a
linear data set, as opposed to a highly structured
language specifying biological information. Yet, it has
been observed that an abstracted, hierarchical view is
desirable in dealing with applications such as the pred-
iction of S-dimensional structure of biomolecules based
on their primary sequence bathrop871. We propose
here an approach to DNA and protein sequence
description and analysis, founded in computational
linguistics, that provides a unifying conceptual frame-
work for all the diverse activities described above, and
which may also itself lead to new insights into the
organization of DNA. This paper will first introduce
the notion of applying general grammars to some sim-
ple DNA features, then discuss the linguistic power
required for DNA, and then further elaborate a biologi-
cal example along with an actual implementation and
sample run.

2. A Genetic Grammar
Consider the partial grammar given below as an exam-
ple. It consists of a collection of rules or productions
denoted by arrows, each with a non-terminal (NT)
symbol on its left-hand side (LHS), and a string of NTs
and/or terminals (Ts) on its right-hand side (RHS)
separated by commas and ending with a period. Ts
correspond to the alphabet of the language being
described, in this case double quoted strings of lower-
case nucleotide bases (e.g. “gate”); a vertical bar (1)
signifies disjunction on RHSs. These conventions are
familiar from BNF descriptions of computer languages.

catBox --> pyrimidine, “cast” .

tataBox --> "tata", base, "a".

capSite --> Icacti.

base --> purine 1 pyrimidine.

purine --> "g" 1 l(a".

pyrimidine --> "t" 1 "c".

What is captured here, in terms of the four DNA bases
and some prelexical elements describing base classes

386 Knowledge Representation

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

(i.e. purine and pyrimidine), are highly simplified
descriptions of a few fairly low-level features of biologi-
cal interest (catBox, etc.) that occur near the begin-
nings of many genes and act as signals delineating
those genes and regulating their expression. This
grammar fragment could also be described by regular
expressions, and thus falls into the class of regular
languages (RLs). In fact, many current pattern-
matching algorithms used for DNA sequences are based
on regular expression search. However, the advantages
of a grammar-based representation begin to emerge as
higher-level features are expressed, as shown below.

gene --> upstream, xscript, downstream.

upstream -- >
catBox, 40... 50, tataBox,

xscript -->
capsite, xlate,

19...27.

termination.

The top-level rule for the NT gene in this grammar is
an abstract declarative statement that a gene is com-
posed of (1) an upstream region, containing the con-
trol regions defined above, followed by (2) a central
region (xscript, so named because it undergoes tran-
scription in the cell to an intermediate form, called
messenger RNA, when the gene is expressed), followed
by (3) a downstream region, not further described
here. It also shows that the transcribed region
xscript has within it a sequence xlate which we
will see reflects a further translation of the messenger
RNA into protein, the final product of gene expression.
Note the introduction of a “gap” symbol (‘. e . ‘), which
simply specifies some otherwise undistinguished span of
bases; a gap may be indefinite, as in the rule for
xscript, or bounded by a minimum and a maximum
span, as in upstream. In terms of parsing, a gap is
just an indiscriminant consumer of bases.

These rules taken together show how the grammar
can be “broken out” into its components in a perspicu-
ous hierarchical fashion, with detail always presented
at its appropriate level. Besides encouraging a higher-
level description than the flat, left-to-right representa-
tion of regular expressions, grammars afford potentially
greater expressive power than simple RLs; in the
genetic domain, situations are encountered which seem
to require the power of context-free (CF) languages, or
greater. For example, the structure illustrated in Fig-
ure 1 represents a recurring theme in molecular biol-
ogy. At the top are shown the two strands of DNA
which bind to each other to form the double helix; the
strands have directionality, indicated by the double
arrows, and they bind in opposite orientations.
Nucleotide bases positioned opposite each other are
complementary, in that they fit each other, or pair, in a
lock-and-key arrangement: the base “g” is complemen-
tary to “cl’, and “a” to ‘It”. Because one strand thus
determines the other’s sequence, only one strand is
described in any of these grammars. We denote sub-
strings of bases by Greek letters, and their reversed
complementary substrings by primes (‘); base pairing
is represented by dots.

Figure 1. A Biological “Palindrome”

Alternative pairing of complementary substrings can
give rise to biologically significant secondary structure
in the DNA strands. In Figure 1, what is loosely
referred to as a palindrome (i.e. Q and a’) in the top
sequence produces a cruciform structure with unpaired
loop-outs-(7 and T’)~ shown at the bottom. Sequences
with potential to form such structures could formally
be expressed as { uvw] u,v,w E {gpa,t,c}*,]u]=]w]=j,
and for l<i<j ui is the complementary base to w. -- J-i+1

},
which can be shown to be a CF language (see Section
5) and not regular. In fact, tandem repeats, which are
also common biological features, are formally copy
languages (e.g. { ww I w E {g,a,t,c}*}), which require
even greater than CF power. There are many more
complex examples of such features of secondary struc-
ture, particularly in RNA, and protein sequences offer
an even richer variety.

Many ad hoc programs have been written, and varia-
tions on regular expression search implemented, that
would address various shortcomings of current systems
[Saurin87,Stadenf)O], but these are neither formal nor
general. Blattner has formally described a DNA-
oriented language, which however does not treat the
sequence itself as a formal language [Schroeder82].
Brendel has proposed a somewhat more formal linguis-
tic approach for DNA sequences /Brendel84], but does
not carry it much beyond a prelexical level; in any
case, it has been argued persuasively that the formal-
ism he offers (Augmented Transition Networks) is less
clear, concise, efficient, and flexible than the formalism
we will propose, that of Definite Clause Grammars
(DCGS) pereira801.

ased Implementation
DCGs are grammar systems that can be translated to -
rules in a Prolog program, which then constitutes a
parser for the grammar. The translation involves the
attachment of two parameters to each NT; one
represents an input string of Ts passed into the NT,
and the other a remainder list to be passed back out,
should an initial substring of the first list parse as that
NT. DCGs have three features that extend their
power beyond CF: parameter passing, procedural
attachments, and terminal replacement. This section

Searls 387

file. The query given above first succeeds in producing
the following result.

AAs = [met,asn,ser,ile,leu,phe,tyr,ser],
Parse = [
. . .,

xlate([met,asn,ser,ile,leu,phe,tyr,ser]):
codon(met) :

3/"atg"
xlatel([asn,ser,ile,leu,phe,tyr,ser]):

exon([asn,ser,ile,leu,phe,tyr,ser]):
. . .

stopcodon:
27/"ta"
purine:

2 9/"g"] ;

This parse returns a list of amino acids bound to the
variable MS, with no splicing. The parse tree
returned to the variable Parse is printed so that the
indentation shows the depth of the call, ellipses signify
recursive calls whose outputs are omitted (due to a
feature, not shown, that allows the user to “cut off’ the
parse tree at rules below which it becomes tiresome or
unnecessary to store the entire parse), and Ts (bases)
are always preceded with positional references set off
by fore-slashes. For example, the last four lines indi-
cate that a stop codon (“tag”‘) was found at positions
27-29. The positional references are also carried
through the parse by an added hidden parameter. The
semicolon at the end is input by the user, and causes
the query to fail, in effect asking for another answer by
initiating backtracking.

AAs = [met
Parse = c

, asn,thr, argl,

. . .,
xlate([met,asn,thr,arg]) :

codon(met) :
3/"atg"

xlatel([asn,thr,arg]):
exon([asn]) :

1 . .
intron:

9/"a"
splice:

donor:
lO/"gtatct"

. . .
acceptor:

24/"tcgtag"
xlatel([thr,arg]):

exon([thr,arg]):
. . .

stopcodon:
35/"tga"]

Upon backtracking, an additional parse is discovered,
by introducing a splice; no other parses exist. Prolog-
style backtracking is ideally suited to investigating real
biological situations (e.g. certain viruses) that involve
alternative splicing such as this, and also alternative
start sites. Th is is in addition to the potential use of
grammars for searching sequence databases for possible
genes, described declaratively at this abstract level.

5. Efficiency
While the performance of this prototype system has
been quite satisfactory in small test systems, for much
larger search applications we must be concerned with
efficiency, especially since we are giving up extremely
fast linear-time string-matching algorithms.2

Because of the large amount of backtracking that
may be expected in this application over huge input
strings, chart parsing (i.e., saving intermediate results
in a table that may be consulted dynamically) is an
appropriate strategy to avoid the penalties of re-
parsing complex features. A form of chart parser is
easily implemented in a DCG by simply adding at the
end of a rule an assertion of its LHS NT (with its asso-
ciated position) as a ground clause into the database
ahead of the rule itself (using the Prolog asserta).
Thus, whenever the rule succeeds in parsing that NT,
the clause entered will intercept any later attempts to
parse the NT at that position in the input string, and
succeed before the rule is invoked. Using a small test
grammar, we find that the efficiency of the chart
parser would begin to exceed that of the standard
DCG parse after an average of only 1.9 backtracks
over a distance of 40 bases - small on the scale of
DNA sequences. Furthermore, this implementation of
chart parsing can be greatly improved, because it is
inefficient to index the NT chart entries by their list
parameters, and because in fact the chart is much
more effective if it also stores the points where parses
fail (a far more frequent occurrence than success);
such a volume of information in the chart would use
excessive memory if stored as Prolog data structures.
One answer is to use DCGs indexed by numerical posi-
tion rather than by lists. This has the immediate
benefit of allowing the input string to be stored as an
external array (written in ‘C’), rather than Prolog
linked lists, with their time and space overhead. Also,
numerical indexing allows a far more effective data
structure for the chart, again using an external array.
We have now implemented a chart which stores both
success and failure information, the latter made feasi-
ble by storage in external bit arrays.

Related to efficiency concerns are potential problems
with pure declarative logic-based expressions of gram-
mar rules. Certain phenomena in genetic grammars
might result in parses that are inefficient because of
excessive backtracking, or even fail to terminate in the
general case, or are under-specified in other regards.
For example, a straightforward rule for the inverted

2 However, note that regularizable sub-trees of genetic gram-
mars could be detected and automatically converted to these
fast string-matching algorithms. In fact, there are highly-
optimized dynamic programming algorithms used for DNA
similarity searches and other purposes which will probably be
better left as external subroutines called from the DCGs as
procedural attachments. The DCGs will then constitute or-
ganizing frameworks containing pure declarative grammars
and, where appropriate, specialized algorithms, heuristics,
etc. to maintain the tractability of the system.

Seat-Is 389

complementary repeat or “palindrome” described in
Section 2 is given by the following DCG rule:

invertedRepeat --> % loop-out
invertedRepeat --> [X],

invertedRepeat, {X:: :Y), [Y].

The second clause collects complementary bases (with
complementarity denoted by an infix operafor ‘: : : ‘),
and calls itself recursively between them, while the first
clause is a “gap” that corresponds to the loop-out.
This rule is mathematically correct, and in fact is a
direct encoding of the formula given in Section 2, but
in practice it would not terminate, since the DCG
implementation of the unbounded gap operator simply
consumes any number of bases from the input string,
and changing the clause order does not help. While a
number of meta-level features and program transfor-
mation techniques have been proposed to handle such
problems in logic programming, our current approach
is to provide a library of built-ins which are individu-
ally optimized, or constrained, or which make use of
external subroutines. For instance, a workable rule for
inverted repeats is:

invertedRepeat(O,Loop) --> O...Loop.
invertedRepeat(Length,Loop) -->

(Next is Length - 13, [X],
invertedRepeat(Next,Loop), (X::: Y), [Y] .

By parameterizing the Length of match required and
the maximum Loop, the rule can be properly con-
str’ained and forced to terminate. In practice, though,
even more general rules should permit wider latitude in
speciEcation and deal with imperfect, matching (see
Section 6), while addressing efficiency concerns.

6. Imperfect Matching
Biologically speaking, the rules for catBox and other
signal sequences given above were naive in portraying
exact sequences, when in fact there is a great deal
of variability observed. Usually such a signal would
be expressed as a consensus sequence, a canonical
representation of the most common bases in each posi-
tion. This need to allow imperfect matching is recog-
nized in the rules for splice donor and acceptor sites:3

donor --> "gt", [B3,B4,B5,B6],
(2 of [purine==>[B3], [B4]="a",

[BS]="g", [B6]="t"] 3.

acceptor --> [B6,B5,-,B3], l(ag",
(2 of [pyrimidine==>[B3],

pyrimidine==>[B5],
pyrimidine==>[B6] 13.

Here, the infix operator ‘of’ takes as arguments an
integer and a list of goals, and succeeds when at least
that number of goals in the list is satisfiable. This

a Note also the recursive application of the parsing operator;
while its use here is trivial, and could be replaced by base
class predicates of arity one (e.g. purine(l33)), it is
nevertheless a potentially powerful technique for such pur-
poses as managing “multi-layered” parsing [Woods80].

provides a simple probabilistic element. While the “gt”
and “ag” signals are invariant, matches on only a por-
tion of the surrounding consensus bases (B3-BB) -are
required, sometimes only to the level of base cl&sses.
Some positions may even be unknown, as indicated bY
the Prolog anonymous variable (-) in acceptor. A
more sophisticated mechanism, however, is required.

base/% 1 2 s 4 5

g 100 50 25 40 50
a 0 25 25 30 50

Figure 8. A Hypothetical Consensus Sequence

Consider the consensus sequence depicted in Figure 3,
showing the relative base frequency over a hypothetical
five-position sequence. These involve fractional match
operators that require some score, measured in terms of
a distance metric,-to exceed a threshold parameter. For
example, a trivial scheme might simply examine the
additive percentages across the sequence, which would
be a maximum of 265 for a “perfect” fit, (e.g. “ggcga”).
One might then define a 60% match as 0.6X265= 159,
for a threshold of 159 defining success. Such metrics
have been well-studied [Kruskal83], but an implemen-
tation in logic permits a natural incorporation of
mechanisms for “eager” success and failure, so that
only as many comparisons are done, reading left to
right, as are necessary to prove that the predicate can-
not fail, given the minimum remaining score (min+),
or cannot succeed, given the maximum remaining score
(max+). For example, af a 60% threshold an initial
&ring df “ca” would be destined to fail, whereas “gt”
could not fail, regardless of the remaining sequence.

Furthermore, clause reordering can enhance the
efficiency of logical proof based on such probabilistic
elements. For example, in the example above, it would
be better to test position 5 before position 4, because 5
would be more likely to fail on inappropriate input
than 4. In other words, the distribution in position 5
has more information content, and in fact we can
reorder our examination of base positions according to
the inverse rank order of their informational entropy,

- c PJO&P* where p, is the probability that base 5

oE{l3,a,t,c) appears in that position [Shannon64].
Thus, the order in which these positions would be
examined is 1, 5, 2, 4, and 3, again using eager success
and failure. The use of a numerically indexed gram-
mar structure allows compile-time reordering of the
examination of positions within a term, and we hope to
generalize this to clause reordering for eager decision
through entire rule bodies, though this will be
significantly complicated by variable gaps within rules.

3% Knowledge Representation

7. Extensions
The utility of grammars may extend beyond structural
descriptions of DNA, to encompass functional aspects
of genetic and biochemical systems. For inst ante,
there is a fundamental similarity between biochemical
reactions and the notion of terminal replacement in
DCGs. In the latter case, input is consumed and
replaced with another terminal string, just as in a
reaction substrate is “consumed” and replaced by pro-
duct. For example, the rule

oxidativeDeamination, ,lu" --> ttct*

would replace a “cl’ residue with a “u” (a process used
experimentally to create “directed” mutations). In
other words, there is a sense in which the biochemical
notation reaction

substrate - product

corresponds to the grammatical notation
reaction, product --> substrate.

Thus, DCGs are able to conceptually capture the idea
of performing reactions on the DNA sequence, and
thereby altering it. This should make it possible to
extend the language to deal with phenomena like gene
rearrangement, and experimental manipulation of DNA
fragments. We are examining methods by which this
formalism (though perhaps with improved syntactic
representation) may be applied to populations of
molecules, rather than single input strings, so that, for
example, grammars could be used as scripts in complex
experiment-planning systems.

By a further extension, grammars can be used to
combine high-level descriptions of sequence with simu-
lations acting on that sequence. The following gram-
mar deals with regulatory sequences called promoters,
which in simple systems may be feedback-inhibited by
the protein product of the gene they regulate.

transcribedGene(Time) -->
activePromoter(Time), xscript,
(assert(product(Time))).

activePromoter(Time) -->
(concentration(Time,C), threshold(T),
C<T), promoter.

lifetime(l0). % average 10 seconds
threshold(7.5). % concentration (mM)

This grammar deals not only with the sequence data
but with the environment. The rule transcribed-
Gene, having parsed an active promoter and a tran-
scribed region, asserts into the database a discrete
amount of time-stamped gene product. The rule
activePromoter postulates a product inhibition,
succeeding in recognizing its sequence (lexically
encoded elsewhere in the NT promoter) only if the
current concentrafion C of product is below some regu-
latory threshold T (set by the predicate threshold).
The predicate concentration (not shown) maintains
the Prolog database of product according to the
expected lifetime of that product. Repeatedly
parsing for transcribedGene, at a rate of one parse
per second, produces the behavior shown in Figure 4.

synthesis
r------- 1 r -w-w-

time --,

Figure 4. Simulation by Repeated Parsing

This shows grammars used not jusf for lexical
analysis, but acting in and on a general context, and
perhaps even modeling biological molecules (e.g. RNA
polymerase, the enzyme which moves along the DNA
copying the RNA transcript). A similar use of logic
(though not involving grammars) has proven useful in
more complex simulations and qualitative reasoning
about biological systems Foton85], and we believe thaf
the virtues of linguistic descriptions can also be
brought to bear in describing and experimenting with
more involved sequence-dependent control systems,
such as bacterial regulatory systems called operons,
and attenuators, which depend on alternative palin-
dromic secondary structures.

References
[Brendel84] V B rendel and HG Busse, Genome Structure

Described by Formal Languages. Nucleic Acids Research 12,
1984, pp. 2561-2568.

[Koton85] P Koton, Towards a Problem Solving System for
Molecular Genetics. MIT Laboratory for Computer Science
Technical Report 338, 1985.

[Kruskal83] JB Kruskal, An Overview of Sequence
Comparison. In Time Warps, String Edits, and Macro-
molecules, D. Sankoff and J.B. Kruskal (ed.), Addison-
Wesley, 1983, pp. l-44.

[Lathrop87] RH Lathrop, TA Webster, and TF Smith,
Ariadne: Pattern-Directed Inference and Hierarchical
Abstraction in Protein Structure Recognition. Com-
munications of the ACM30, 1987, pp. 909-921.

[Pereira80] FCN Pereira and DHD Warren, Definite Clause
Grammars for Language Analysis - A Survey of the For-
malism and a Comparison with Augmented Transition
Networks. Artificial Intelligence 13, 1980, pp. 231-278.

[Saurin87] W Saurin and P Marliere, Matching Relational
Patterns in Nucleic Acid Sequences. Computer Applications
in the Biosciences 3, 1987, pp. 115-120.

[SchroederSZ] JL Schroeder and FR Blattner, Formal Descrip-
tion of a DNA Oriented Computer Language. Nucleic Acids
Research IQ, 1982, p. 69.

[Shannon641 CE Shannon and W Weaver, The Mathematical
Theory of Communication. University of Illinois Press, Urba-
na, IL, 1964.

[St,aden80] R Staden, A Computer Program to Search for
tRNA Genes. Nucleic Acids Research 8, 1980, pp. 817-825.

[WoodsSO] WA Woods, Cascaded ATN Grammars. American
Journal of Computational Linguistics 6, 1980, pp. 1-12.

Searls 391

