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Abstract 

It has long been acknowledged that having a good 
representation is key in effective problem solving. 
But what is a “good” representation? We de- 
scribe an approach to representation design for 
problem solving that answers this question for 
a class of problems called analytical reasoning 
problems. These problems are typically very dif- 
ficult for general problem solvers, like theorem 
provers, to solve. Yet people solve them quite 
easily by designing a specialized representation 
for each problem and using it to aid the solution 
process. Our approach is motivated, in large part, 
by observations of the problem solving behavior 
of people. 

The implementation based on this approach takes 
as input a straightforward predicate calculus 
translation of the problem, tries to gather any 
necessary additional information, decides what to 
represent and how, designs the representations, 
then creates and runs a LISP program that uses 
those representations to produce a solution. The 
specialized representation created is a structure 
whose syntax captures the semantics of the prob- 
lem domain and whose behavior enforces those 
semantics. 

1 Introduction 
It has long been acknowledged that having a good rep- 
resentation is key in effective problem solving. But what 
is a “good” representation. 3 Most answers fall back on 
a collection of somewhat vague phrases, including “make 
the important things explicit; expose natural constraints; 
be complete, concise, transparent; facilitate computation” 
[Winston84]. These are of some assistance, but leave un- 
resolved at least two important issues. First, saying that 
a “good” representation makes the “important” things ex- 
plicit really only relabels the phenomenon - How are we 
to know what is important. 3 Second, while phrases like 
these can conceivably serve as recognizers, allowing us to 
determine whether a given representation is good, little 

*This paper describes research done at the ArtXcial Intelli- 
gence Laboratory of the Massachusetts Institute of Technology. 
Support for the authors’ artificial intelligence research is pro- 
vided by Digital Equipment Corporation, Wang Corporation, 
and the Advanced Research Projects Agency of the Department 
of Defense under Office of Naval Research contract NOOOl4-85- 
K-0124. 

progress has been made on understanding how to design a 
good representation prospectively. 

We have developed a new approach to this problem with 
a number of interesting properties: 

e It begins with the initial problem statement, assists 
in determining what is “important”and hence what to 
represent, then helps identify any missing information 
required to solve the problem. 

o It offers a more technical explanation of what makes 
for a good representation, claiming that it one whose 
syntax “captures the semantics” of the problem do- 
main and whose behavior enforces those semantics by 
maintaining invariants in the syntax. 

ID Our approach shows how to design a representation 
with these properties, then how to solve the problem 
using that representation. 

A demonstration of the approach has been implemented 
and tested on a small number of verbal reasoning problems 
of the sort found on graduate school level admissions tests. 
One of the problems, shown in Figure 1, is used through- 
out the paper for illustration. Our system takes as input a 
straightforward predicate calculus translation of the prob- 
lem, gathers any necessary additional information, decides 
what to represent and how, designs representations tai- 
lored to this specific problem, then creates and runs a LISP 
program that uses those representations to produce a so- 
lution. 

Given: M, N, 0, P, Q, R, and S are all members 
of the same family. N is married to P. S is the 
grandchild of Q. 0 is the niece of M. The mother 
of S is the only sister of M. R is Q’s only child. 
M has no brothers. N is the grandfather of 0. 
Problem: Name the siblings of S. 

Figure 1: An Analytical Reasoning Problem 

We document how the system does this, describing how 
it decides to both define and represent concepts like COU- 
PLE,CHILDREN-OF, and CHILD-SET, eventhoughthose do 
not appear in the problem statement. We illustrate how 
the LISP program it creates solves the problem efficiently 
because it has a good representation. 

2 Motivation 
Our approach is motivated in large part by observations of 
the problem solving behavior people exhibit when solving 
problems of the sort shown in Figure 1, and inspired by 
the striking difference between that behavior and what we 
might call a “classroom logic approach.” 
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The classroom logic approach would begin by translating 
the problem into predicate calculus (Figure 2), then use a 
theorem prover to search for a solution. 

M, N, 0, P, Q, R, and S are all MEFAMILY, . . . , 
members of the same family. SEFAMILY 
N is married to P. mmried( N, P) 
S is the grandchild of Q. grandchild( S, Q) 
0 is the niece of M. niece( 0, M) 
The mother of S is the only rnother(S, z) M &ter(M, CC) 
sister of M. [sister(M, x) A sieter(M, y)] 

*x=y 
R is Q’s only child. child(Q, x) + x = R 
M has no brothers. -+brother( M, x) 
N is the grandfather of 0. grandfather(O), N) 
Name the siblings of S. f ind-aZZ x(sibZing(S, x)) 
Figure 2: Translation to PC. (Upper case symbols are con- 
stants, lower case symbols used as arguments are univer- 
sally quantified.) 

One difficulty with this approach is that the problem 
specification (and hence its translation into PC) is incom- 
plete: nothing in Figure 2, for instance, indicates that the 
relation married is symmetric. Once identified, that infor- 
mation is easily encoded as additional axioms; the harder 
part is knowing what is missing: on this task predicate 
calculus offers us little or no guidance. 

More important from our perspective is that even a mod- 
erately experienced human problem solver would not pro- 
ceed in this fashion, using an unstructured collection of 
axioms. He would instead design and use specialized rep- 
resentations and as a direct result produce solutions far 
more effectively. By a specialized representation we mean 
the sort of thing illustrated in Figure 3, which shows two of 
the sample problem statements in a representation people 
commonly use. 

“R is the only child of Q" “S is the grandchild of Q” 
Figure 3a. Figure 3b. 

(Divided rectangles represent couples; circles represent sets 
of children of the same couple: full circles are closed sets, 
broken circles are sets all of whose members may not be 
known; the directed arc represents the “children-of” func- 
tion between couples and their sets of children.) 

Such representations are powerful because they capture 
the semantics of the problem domain, in two ways: (i) 
structurally: the structure of the representation resembles 
the structure of the thing represented (i.e, they are “di- 
rect” [Sloman’ll]), and (ii) behaviorally: associated with 
the structure are behaviors that are efficient in enforcing 
the semantics of the problem domain. We illustrate both of 
these informally here using the “children-of’ link; a more 
formal discussion appears in Section 5. 

In Figure 3 the “children-of” link captures in its struc- 
ture the relation (a l-l function) between a couple and 

their set of children, because its syntax indicates that it 
is a pointer from one object (a couple) to one object (a 
set of 
tured 

children). Other aspects 
behaviorally: associated 

of the semantics are cap- 
with the link are behav- 

iors that reflect the fact that it is a function (and hence 
a! = Y * f(4 = f(Y)) one behavior infers that two chil- 
dren sets are identical when they are the “children-of’ the 
same couple. Because it is in addition a 1-1 function, an- 
other behavior can infer that two couples are identical if 
they are parents of the same children sets. 

Inference is done in these representations by a composi- 
tion process that is controlled by the behaviors. For exam- 
ple, consider what happens as the structures in 3a and 3b 
are combined. Using the fact that couples are disjoint, if 
we have what appears to be two distinct couples (the top 
box in Fieure 3a and 3b) and also know that they share an 
individuz (Q), then they 
can be combined. Using a 

are in fact the same and hence 
behavior that embodies this fact 

and the behaviors associated with “children-of,” figures 3a 
and 3b can be combined to yield Figure 4, making clear 
that R is the parent of S. 

Figure 4: Composition of the Structures in Figure 3 

This composition process is of fundamental importance 
because the representation that results from composing 
structures always contains all the deductive consequences 
of the conjunction of the composed statements. Problem 
solving using these representations involves composing the 
separate problem statements together into a single struc- 
ture, then inspecting that structure for the solution. Com- 
position is also a tightly constrained local process guaran- 
teed to halt whether or not a solution exists. 

The task of our system is to design representations like 
these, by picking out the important concepts in the prob- 
lem (such as “couples” or “the siblings of an individual”) 
and finding ways to operate on them using special purpose 
manipulations of the sort illustrated by Figure 4. Our sys- 
tem chooses what to represent and how, then solves the 
problem using those representations. In fact, it solves the 
problem by designing and using, among others, the repre- 
sentations illustrated in Figure 3.l 

In the rest of this paper we follow this process through, 
using the concept of couple and children-of as key examples 
of the representation design process, and exploring the ori- 
gin of the specialized inference rules illustrated by Figure 
4. 

‘While our system expresses those representations in terms 
of data structures and procedures, language is not so much the 
issue: much the same effect can no doubt be accomplished by a 
skilled logician carefully selecting axioms, lemmas, and special 
purpose inference rules. Whatever the language, the important 
point is selecting carefully - the representations and inference 
knowledge are specialized to the problem - and capturing the 
semantics in the manner suggested above. 
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3 Terminology, Typography 

The problem of representation design appears to consist of 
at least three different decisions: what to represent, how to 
represent it, and how to implement those representations. 
Determining what to represent involves deciding “what to 
pay attention to” - identifying the relevant domain con- 
cepts and properties. In the example problem of Figure 1, 
it is the <decision to think of the problem in terms of cou- 
ples, sets of children, etc. Next we have to decide how to 
represent those concepts and properties. Having decided 
to pay attention to couples, for instance, it is useful to de- 
termine that they form a partition,2 since, as we have seen, 
this allows us to use a specialized inference rule. Third is 
the familiar choice of data structures: determining whether 
to implement a set as a list, array, bit vector, etc. 

em 

Our approach makes its contributions at the first and 
second levels; questions at the third level - data structure 
selection - have been studied elsewhere (e.g., [Barstow79]). 

In the rest of the paper concepts found in the pred- 
icate calculus statement of the problem (Figure 2) 
are written using italics (e.g., married). The sys- 
tem has a library of types (described below), consist- 
ing of mathematical entities like set, fixed-size-set, 
and equivalence-relation, noted with a typewriter- 
style font. Those types are in turn used as building 
blocks to construct our representations, things like COU- 
PLE, SIBLING-SET, and PARENTS, noted with a small-caps 
font. 

4 Knowledge For Representation 
Design 

An important foundation for our approach is a body of 
knowledge called the type library (Figure 5). The types are 
used as building blocks in designing specialized representa- 
tions. Each type contains a data structure and its associ- 
ated manipulation procedures. The set type, for instance, 
contains a list data structure to indicate one way of im- 
plementing a representation (like COUPLE) built from the 
set type and procedures for manipulating sets like “add 
element” and “test for equality.” 

Figure 5: A Portion of the Type Library. The uppercase 
labels are names of types. 

Another important knowledge source is a set of concept 
revision heuristics. These use properties of existing con- 
cepts in a representation or structural properties of a prob- 
lem statement to revise concepts into a form that often 
proves to be more useful for problem solving. There are 
currently 12 such heuristics. 

The heuristics that use properties of existing problem 
concepts are associated with nodes in the type library tax- 
onomies. These use the properties of the node to which 
they are attached to suggest reformulations. Several ex- 
amples of this type of heuristic are given below. 

The other type of heuristics look for structural features 
in the problem statement. When a feature is found, the 
relevant heuristic suggests a revision. Consider, for exam- 
ple, the statement “M has no brothers,” can naturally be 
(re)expressed as a constraint on the cardinality of the set 
of M’s brothers. One heuristic embodies this intuition by 
looking for negation at the top level in universally quanti- 
fied formulas. When it finds the problem statement about 
M’s brothers, it revises “brother” to “brother-set.” 

Whenever a concept is revised, the problem statement 
is rewritten to reflect this change. The above revision, for 
instance, causes the problem to be rewritten in terms of 
“brother-set.” As a result, the original formula is rewritten 
as {Z ] bTother(M, z)) = 0.3 

The type library is organized as a pair of mathe- 
matical concept taxonomies, with set and relation as 

5 Representation Design 
the two roots and specialization links labeling the addi- 
tional properties that the more specialized types have. 
Those types have additional procedures associated with 
them that exploit their properties to provide additional 
functionality efficiently. A procedure associated with 
partition-element, for example, exploits disjointness to 
determine efficiently when two elements of a partition are 
the same. 

Note that only some of the nodes in the concept taxon- 
omy have a type label, reflecting the knowledge that those 
nodes are useful building blocks for representations. The 
system currently does not, for example, have a type for a 
binary, symmetric, intransitive relation. 

2A partition is a set of disjoint sets. 

The goal of representation design is to create a representa- 
tion that “captures the semantics” of the original problem 
statement. Earlier we gave an informal definition, indicat- 
ing that capturing semantics can be accomplished by at- 
tention to the structure and behavior of a representation: 
its structure should mimic the thing represented and its be- 
havior should enforce the problem semantics. To be more 
precise, we say that a representation captures the seman- 
tics of a set of formulas when the possible data structures 
that can be built from it satisfy those formulas4 

3A condition placed on concept revision heuristics guaran- 
tees that the revisions preserve satisfiability by showing that 
any model of the original problem can be extended to include 
the new concepts. 

*Technically, we dehe a new satisfaction relation between 
representations and sets of formulas as follows. We define a 
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Consider for example the formula: 
V+[code(C~, Y)) * cowJe(Cy, +)I 

We say that the representation COUPLE captures the se- 
mantics of this formula because COUPLE is defined in terms 
of set, whose semantics indicate that the two sets {a, y} 
and {y, Z} are equal. Thus, any instance of COUPLE will 
have the property that whenever {z, y) is a couple, {y, a} 
is a couple. A specialized representation is complete when 
all the formulas in the problem statement have their se- 
mantics captured. 

5.1 The Process of Representation 
Design 

Representation design is a three step process: representa- 
tion introduction, dependent representation introduction, 
and operationalization. The first two of these are incre- 
mental processes aided by concept revision heuristics. In 
general, multiple concept revisions can occur in an effort 
to allow further representation introduction. 

This helps to illustrate two important aspects of our 
approach to the problem. First, we believe that good rep- 
resentation design is fundamentally an incremental, op- 
portunistic process that proceeds best in small steps with 
constant rewriting of the problem as the representation 
evolves. Second, as we will see in exploring the use of the 
type library, we believe the process should be informed 
and guided by both the problem statement and the set of 
representations available. 

Since representation introduction does not in general 
produce a complete specialized representation, the goal of 
operutionaZizing is to generate procedures that extend the 
representations, to ensure that their behavior captures the 
semantics of the remaining formulas. 

In the remainder of this section we work through what 
the system does in designing a representation for the prob- 
lem in Figure 2. The input to our system is a straightfor- 
ward translation of the problem statement into predicate 
calculus, i.e., exactly the set of formulas showu in Figure 2. 
The sequence of actions explored below is the first success- 
ful path completed by the system when given the example 
problem; there are roughly a half dozen other paths ex- 
plored but left uncompleted because the system halts with 
the first successful one. 

5.2 Representation Hntrodueticm 
The system begins by attempting to find types in the li- 
brary that will prove useful in designing representations 
for concepts mentioned in the problem. This is in turn an 
iterative process of taxonomic classification and concept 
revision. 

Taxonomic classification is performed on each primitive 
relation and each set in the problem statement, using the 
specialization links to decide what properties to investi- 
gate. Consider, for example, the relation murried: Figure 
5 indicates that relations are specialized first in terms of 
degree. The system is able to determine by inspection 

that married is binary. Following the links down, the sys- 
tern encounters the issue of symmetry, then transitivity; 
married is symmetric and intransitive, at which point we 
arrived at a leaf node. 

Since there is no type at this node, the system checks 
to see if there are any concept revision heuristics associ- 
ated with the node that can suggest ways to revise the 
current concept. One such heuristic suggests restating the 
relation married in terms of sets of individuals married 
to a fixed individual, i.e., replace assertions of the form 
muryied( z, y) with sets of the form {x 1 murried(pl, x)} 
(where pr is an arbitrary individual). This introduces a 
new concept, the set of all sets of this sort (call it set- 
of--spouse+sets), and completes one classification/revision 
cycle. 

A second cycle begins with another classification effort, 
this time at the set node trying to specialize set-of- 
spouse-sets. Following the taxonomy, the system deter- 
mines whether the elements of this set are themselves sets 
(yes) and then whether 0 is an element (yes, since not all 
people are married). Once again classification ends and 
a revision heuristic at this node suggests, “if a set S con- 
tains 0, try introducing the set equal to S - 0.” This is 
accomplished by restricting x to be a married individual 
in {y 1 murried(z, y)}. 

A third classification effort now begins at the set node. 
It determines that the new concept is a set of sets not 
containing 0 and that all the element sets have cardi- 
nality I (it has now reached the fixed-size-set node). 
Again classification halts and a revision heuristic found 
that states, “when sets of the form {y 1 R(z, y)} all have 
cardinality 1 and R is symmetric, introduce sets of the 
form {Y I R+(x, Y)) w h ere pZ* is the equivalence relation 
defined by VzVy[R*(z, y) e z = y V R(z, y)].” 5 

This introduces the set of sets of the form {y I 
muTTPied* (33, y)}, where z is restricted to married individ- 
uals. Each element of this set is a set of married people, 
i.e., our notion of a couple (call this set couples). 

Once again this concept is classified; it is a set of sets, it 
does not contain the empty set, each of the member sets is 
of the same size (cardinality), and it is a partition. Hence 
the process arrives at the shaded node in Figure 5. This 
time the process halts, because it has arrived at a node 
that does have an associated type (partition-element) 
and does not have any revision heuristics. 

This intertwined process of classification and concept re- 
vision has thus in several cycles transformed the problem 
from one using assertions phrased in terms of the married 
relation to one phrased in terms of couples. As noted, 
when new concepts are introduced, the problem is rewrit- 
ten. When couples is introduced, for example, all formu- 
las using the term murried(x, y) are rewritten to use it 
instead. The formula murried(N, P) in the original prob- 
lem statement, for instance, is rewritten to coupZe({N, P}) 
(shorthand for {N, P} E couples). 

As a result of this process, a representation is intro- 
duced by providing a definition of an abstract data type 

class of functions from data structures to logical models. A 
representation satisfies a set of formulas just in case there is a 
function from this class mapping the data structure built by 
that representation to a model of the formulas. 

‘The idea here is that we would like to find a partition be- 
cause there is a powerful specialized inference procedure asso- 
ciated with it. One way to identify a partition is to look for an 
equivalence relation that induces it; this heuristic suggests one 
way to define such a relation. 
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and establishing a correspondence between that data type 
and a symbol in the problem statement. The represen- 
tation COUPLE, for example, is introduced by defining it 
in terms of the library types for partition-element and 
all of its ancestors (i.e., set and fixed-size-set), then 
establishing a correspondence between COUPLE and the 
symbol couple. (Henceforth we will refer to couple as a 
“represented symbol” because there is a representation as- 
sociated with it.) 

While it does not occur in this example, the concept 
revisions that occur in this phase can cause new classifica- 
tion efforts to begin, sending us back to the representation 
introduction phase. 

Note finally that at this point we have created much of 
the specialized representation shown in Figures 3-4, i.e., 
COUPLES, PARENTS, and CHILD-SETS. The process that 
yields the structure in Figure 4 from the two structures in 
Figure 3 is realized by the procedures associated with the 
partition-element and i-i function types. 

5.3 Dependent Representation 
Introduction 

The goal of this process is to introduce additional represen- 
tations that are connected to representations introduced in 
the previous process, relying here on heuristics that look 
for structural features in the problem statement. These 
heuristics have an additional constraint, they look for fea- 
tures in the context of existing representations. 

To see an example, first recall that each time a new rep- 
resentation is introduced the problem is rewritten in terms 
of it. One formula that appears in the problem statement 
when couple is introduced is: 
VprVp&[chiZd(pr, c) A chiZd(p2, c) A pl # 132 =+ 

murried(l>l, p2)] 

( i.e., the parents of an individual are married).’ This 
formula gets rewritten in two ways. It uses the term 
married, so it will be rewritten when couple is introduced. 
It also uses the relation child; during taxonomic classifi- 
cation of this relation the system discovers that the set 
(x 1 chiZd(z, c)) (i.e., the parents of an individual) has 
cardinality 2. A concept revision heuristic at the node for 
asymmetric intransitive relation will introduce this set as 
a new concept and the formula above will be rewritten in 
terms of it. The final result of these (and other) transfor- 
mations is: 

Vc[coupZe({a I chiZd(z, c)))] 
One interesting thing about the revised formula is that it 

makes clear that the newly created set is related to an ex- 
isting representation: {z I chiZd(a, c)) in fact is a COUPLE 

( i.e., the parents of a child are a couple). The following 
concepts revision heuristic now becomes applicable: “any 
set of the form {y I R(a, y)) appearing as an argument to a 
represented symbol (in this case coupZe) should be viewed 
as a function F(z) = {y I R(a, y)).” A new concept is 
introduced, a function we will call parents, mapping indi- 
viduals to couples. 

When parents is introduced, the formula above is rewrit- 
ten as Vc[coupZe(purents(c))]. Another concept revision 
heuristic indicates that “from any many-to-l function F 
whose range elements correspond to a representation, cre- 
ate a l-l function: create the sets {z I F(z) = y) (i.e., all 
the domain elements that map to the same range element); 
then create the l-l function G : {z I F(a) = y) ---) y.” 

Invoking this heuristic means introducing two new rep- 
resentations: CHILD-SET for sets of the form {y ] a = 
parents(y)) and CHILDREN-OF, a one-to-one function from 
COUPLES to CHILD-SETS. 

‘The system acquires this formula while identifying missing 
information, a process not fully described here. For the current 
purposes, assume the formula was given. 

5.4 Operationalization 
As noted, representation introduction captures much, but 
not all, of the semantics of the problem statements by se- 
lecting appropriate types from the library. Operational- 
izing is a way of extending representations so that they 
capture the semantics of problem statements not already 
captured. 

A formula is operational when it can be interpreted as 
code built from just the operations associated with the 
types chosen from the library. For example, suppose that 
SIBLING-SET is a representation defined as a set of indi- 
viduals, and that SIBLINGS is a function from an individual 
to that individual’s sibling-set. Then 

VzVy[z E siblings(y) w y E siblings(z)] 
is operational because: SIBLINGS is defined as a set, one 
of the operations associated with the type set is add- 
element, and we can interpret the entire formula as a 
(demon-like) procedure using only the available operations 
(in this case, just add-element): whenever x is added 
to the siblings(y), add y to the siblings(x). 

We claim this procedure “captures the semantics” of the 
formula above because it ensures that the data structures 
used to implement SIBLING-SET will, at execution time, 
maintain the relationship expressed by the formula. That 
is, it executes when a representation is modified in the 
process of solving the problem in Figure 2, and responds 
by making corresponding changes to other representations. 
Making a formula operational captures the semantics by 
making the formula itself do the work: we turn a statement 
of the relation into a procedure that enforces the relation. 

The process of operationalizing formulas not already in 
that form is rather complex and lengthy, details are in [Van 
Baalen881. 

6 Solution 
The solution phase uses the representations and procedures 
to solve the original problem. Our system translates the 
output of the previous two phases into an object oriented 
LISP program, which is then executed to solve the problem. 
For the problem of Figure 2, the specialized representation 
is derived in about twenty minutes on a Symbolics 3600; 
the corresponding LISP program is created in about five 
minutes; the LISP program in turn requires less than five 
seconds to produce the correct answer that 0 is the only 
sibling of S. 

Recall that the important task of the previous phases 
was to capture the semantics of the formulas in the problem 
statement, and that this was done by (i) defining appro- 
priate representations (like COUPLE), and (ii) putting the 
remaining formulas into operational form. The translation 

396 Knowledge Representation 



to LISP is then achieved simply by (i) translating the repre- 
sentations into LISP flavor definitions, and (ii) translating 
the operational formulas into methods of the appropriate 
flavors. Again details are in [Van Baalen881. 

9 
Problem reformulation has a long history (e.g., [Newe1166]); 
a recent effort in this vein, [Kor@O], is the most direct an- 
cestor of ours. Our theory extends this work: it begins with 
an incomplete problem and, among other things, identifies 
relevant operations in the type library. 

[Bobrow68]‘s STUDENT program solved algebra word 
problems and is similar in going from a problem specifi- 
cation to creation of a representation and solution. The 
problems it solved, however, are much simpler, are not 
missing information, and most important, are stated in a 
vocabulary that is appropriate for their solution. 

Efforts to understand the notion of direct or analogical 
representation define it in terms of a representation syntax 
reflecting the problem semantics([Sloman71], [Hayes74], 
[Pylyshyn75]). [Pylyshyn75] points out that one can speak 
of representation structure only with respect to a Semantic 
Interpretation Function, by which he means “the processes 
which construct and use the representation.” The repre- 
sentations we design come complete with procedures that 
construct and interpret them. Furthermore, we specify 
how to understand the meaning of structures built in our 
representations in terms of formal models. 

8 Comments and Summary 
Our approach to representation design is based on two 
claims. First, in the context of a problem, we should de- 
sign a representation whose syntax captures the semantics 
of the problem domain and whose behavior enforces those 
semantics by maintaining invariants in the syntax. Second, 
it tells us what knowledge to use in specializing represen- 
tations and how this knowledge should be organized. The 
type library, for instance, defines a collection of types used 
to define a specialized representation and is organized as 
a taxonomy to facilitate finding maximally specific data 
types. The library also organizes semantic reformulation 
heuristics. 

Our approach differs from more traditional approaches 
to problem solving because it begins at an earlier stage 
of the problem solving process, starting with the problem 
statement and identifying missing information required to 
solve the problem, and because it explains how to find a 
more useful problem solving vocabulary and how to design 
specialized representations from it. 

The approach is also still in an early form and as such has 
some weaknesses. The representation design heuristics, for 
example, while based on broadly applicable mathematical 
principles, are still somewhat ad hoc and the intuitions 
underlying them are not always clear. We continue to look 
for a more methodical underpinning to them. 

We also have only a preliminary characterization of the 
class of problems for which the current knowledge bases 
in the implementation are applicable. This is the class of 
problems that can be effectively solved by identifying and 
reasoning about extensional sets. We continue to look for a 

more precise characterization. Also we believe the 
approach applies to a far wider class of problems. 

general 

-There is also an implicit claim in using the type taxon- 
omy to drive information gathering: it assumes that asking 
about the properties we know how to exploit in problem 
solving will be effective in determining what properties of 
a domain concept will be needed to solve the problem and 
what properties will be useful in solving the problem. Both 
of these are clearly only sometimes true and depend on the 
size and sophistication of the library: taxonomic classifica- 
tion may fail to enquire about properties that are in fact 
necessary to solve the problem (in which case the problem 
simply won’t be solved), and may fail to gather facts that 
would have been useful. This latter phenomenon is less se- 
rious because of the ability of operationalizing to capture 
semantics that the type library misses. 

Despite its early stage of development, our approach 
made it possible for our program to start with a simple 
predicate calculus translation of a problem, gather neces- 
sary information, decide what to represent and how, design 
representations, create a LISP program that uses those rep- 
resentations, and finally run the program to produce the 
solution. It has succeeded in doing this for a small number 
of quite different analytical reasoning problems. 
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