
Overview of an pproach 4x3

Jeffrey Van Baalen and Randall Davis
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139

jvb@ht .ai.mit .edu

Abstract

It has long been acknowledged that having a good
representation is key in effective problem solving.
But what is a “good” representation? We de-
scribe an approach to representation design for
problem solving that answers this question for
a class of problems called analytical reasoning
problems. These problems are typically very dif-
ficult for general problem solvers, like theorem
provers, to solve. Yet people solve them quite
easily by designing a specialized representation
for each problem and using it to aid the solution
process. Our approach is motivated, in large part,
by observations of the problem solving behavior
of people.

The implementation based on this approach takes
as input a straightforward predicate calculus
translation of the problem, tries to gather any
necessary additional information, decides what to
represent and how, designs the representations,
then creates and runs a LISP program that uses
those representations to produce a solution. The
specialized representation created is a structure
whose syntax captures the semantics of the prob-
lem domain and whose behavior enforces those
semantics.

1 Introduction
It has long been acknowledged that having a good rep-
resentation is key in effective problem solving. But what
is a “good” representation. 3 Most answers fall back on
a collection of somewhat vague phrases, including “make
the important things explicit; expose natural constraints;
be complete, concise, transparent; facilitate computation”
[Winston84]. These are of some assistance, but leave un-
resolved at least two important issues. First, saying that
a “good” representation makes the “important” things ex-
plicit really only relabels the phenomenon - How are we
to know what is important. 3 Second, while phrases like
these can conceivably serve as recognizers, allowing us to
determine whether a given representation is good, little

*This paper describes research done at the ArtXcial Intelli-
gence Laboratory of the Massachusetts Institute of Technology.
Support for the authors’ artificial intelligence research is pro-
vided by Digital Equipment Corporation, Wang Corporation,
and the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract NOOOl4-85-
K-0124.

progress has been made on understanding how to design a
good representation prospectively.

We have developed a new approach to this problem with
a number of interesting properties:

e It begins with the initial problem statement, assists
in determining what is “important”and hence what to
represent, then helps identify any missing information
required to solve the problem.

o It offers a more technical explanation of what makes
for a good representation, claiming that it one whose
syntax “captures the semantics” of the problem do-
main and whose behavior enforces those semantics by
maintaining invariants in the syntax.

ID Our approach shows how to design a representation
with these properties, then how to solve the problem
using that representation.

A demonstration of the approach has been implemented
and tested on a small number of verbal reasoning problems
of the sort found on graduate school level admissions tests.
One of the problems, shown in Figure 1, is used through-
out the paper for illustration. Our system takes as input a
straightforward predicate calculus translation of the prob-
lem, gathers any necessary additional information, decides
what to represent and how, designs representations tai-
lored to this specific problem, then creates and runs a LISP
program that uses those representations to produce a so-
lution.

Given: M, N, 0, P, Q, R, and S are all members
of the same family. N is married to P. S is the
grandchild of Q. 0 is the niece of M. The mother
of S is the only sister of M. R is Q’s only child.
M has no brothers. N is the grandfather of 0.
Problem: Name the siblings of S.

Figure 1: An Analytical Reasoning Problem

We document how the system does this, describing how
it decides to both define and represent concepts like COU-
PLE,CHILDREN-OF, and CHILD-SET, eventhoughthose do
not appear in the problem statement. We illustrate how
the LISP program it creates solves the problem efficiently
because it has a good representation.

2 Motivation
Our approach is motivated in large part by observations of
the problem solving behavior people exhibit when solving
problems of the sort shown in Figure 1, and inspired by
the striking difference between that behavior and what we
might call a “classroom logic approach.”

392 Knowledge Representation

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

The classroom logic approach would begin by translating
the problem into predicate calculus (Figure 2), then use a
theorem prover to search for a solution.

M, N, 0, P, Q, R, and S are all MEFAMILY, . . . ,
members of the same family. SEFAMILY
N is married to P. mmried(N, P)
S is the grandchild of Q. grandchild(S, Q)
0 is the niece of M. niece(0, M)
The mother of S is the only rnother(S, z) M &ter(M, CC)
sister of M. [sister(M, x) A sieter(M, y)]

*x=y
R is Q’s only child. child(Q, x) + x = R
M has no brothers. -+brother(M, x)
N is the grandfather of 0. grandfather(O), N)
Name the siblings of S. f ind-aZZ x(sibZing(S, x))
Figure 2: Translation to PC. (Upper case symbols are con-
stants, lower case symbols used as arguments are univer-
sally quantified.)

One difficulty with this approach is that the problem
specification (and hence its translation into PC) is incom-
plete: nothing in Figure 2, for instance, indicates that the
relation married is symmetric. Once identified, that infor-
mation is easily encoded as additional axioms; the harder
part is knowing what is missing: on this task predicate
calculus offers us little or no guidance.

More important from our perspective is that even a mod-
erately experienced human problem solver would not pro-
ceed in this fashion, using an unstructured collection of
axioms. He would instead design and use specialized rep-
resentations and as a direct result produce solutions far
more effectively. By a specialized representation we mean
the sort of thing illustrated in Figure 3, which shows two of
the sample problem statements in a representation people
commonly use.

“R is the only child of Q" “S is the grandchild of Q”
Figure 3a. Figure 3b.

(Divided rectangles represent couples; circles represent sets
of children of the same couple: full circles are closed sets,
broken circles are sets all of whose members may not be
known; the directed arc represents the “children-of” func-
tion between couples and their sets of children.)

Such representations are powerful because they capture
the semantics of the problem domain, in two ways: (i)
structurally: the structure of the representation resembles
the structure of the thing represented (i.e, they are “di-
rect” [Sloman’ll]), and (ii) behaviorally: associated with
the structure are behaviors that are efficient in enforcing
the semantics of the problem domain. We illustrate both of
these informally here using the “children-of’ link; a more
formal discussion appears in Section 5.

In Figure 3 the “children-of” link captures in its struc-
ture the relation (a l-l function) between a couple and

their set of children, because its syntax indicates that it
is a pointer from one object (a couple) to one object (a
set of
tured

children). Other aspects
behaviorally: associated

of the semantics are cap-
with the link are behav-

iors that reflect the fact that it is a function (and hence
a! = Y * f(4 = f(Y)) one behavior infers that two chil-
dren sets are identical when they are the “children-of’ the
same couple. Because it is in addition a 1-1 function, an-
other behavior can infer that two couples are identical if
they are parents of the same children sets.

Inference is done in these representations by a composi-
tion process that is controlled by the behaviors. For exam-
ple, consider what happens as the structures in 3a and 3b
are combined. Using the fact that couples are disjoint, if
we have what appears to be two distinct couples (the top
box in Fieure 3a and 3b) and also know that they share an
individuz (Q), then they
can be combined. Using a

are in fact the same and hence
behavior that embodies this fact

and the behaviors associated with “children-of,” figures 3a
and 3b can be combined to yield Figure 4, making clear
that R is the parent of S.

Figure 4: Composition of the Structures in Figure 3

This composition process is of fundamental importance
because the representation that results from composing
structures always contains all the deductive consequences
of the conjunction of the composed statements. Problem
solving using these representations involves composing the
separate problem statements together into a single struc-
ture, then inspecting that structure for the solution. Com-
position is also a tightly constrained local process guaran-
teed to halt whether or not a solution exists.

The task of our system is to design representations like
these, by picking out the important concepts in the prob-
lem (such as “couples” or “the siblings of an individual”)
and finding ways to operate on them using special purpose
manipulations of the sort illustrated by Figure 4. Our sys-
tem chooses what to represent and how, then solves the
problem using those representations. In fact, it solves the
problem by designing and using, among others, the repre-
sentations illustrated in Figure 3.l

In the rest of this paper we follow this process through,
using the concept of couple and children-of as key examples
of the representation design process, and exploring the ori-
gin of the specialized inference rules illustrated by Figure
4.

‘While our system expresses those representations in terms
of data structures and procedures, language is not so much the
issue: much the same effect can no doubt be accomplished by a
skilled logician carefully selecting axioms, lemmas, and special
purpose inference rules. Whatever the language, the important
point is selecting carefully - the representations and inference
knowledge are specialized to the problem - and capturing the
semantics in the manner suggested above.

Van Baalen and Davis 393

3 Terminology, Typography

The problem of representation design appears to consist of
at least three different decisions: what to represent, how to
represent it, and how to implement those representations.
Determining what to represent involves deciding “what to
pay attention to” - identifying the relevant domain con-
cepts and properties. In the example problem of Figure 1,
it is the <decision to think of the problem in terms of cou-
ples, sets of children, etc. Next we have to decide how to
represent those concepts and properties. Having decided
to pay attention to couples, for instance, it is useful to de-
termine that they form a partition,2 since, as we have seen,
this allows us to use a specialized inference rule. Third is
the familiar choice of data structures: determining whether
to implement a set as a list, array, bit vector, etc.

em

Our approach makes its contributions at the first and
second levels; questions at the third level - data structure
selection - have been studied elsewhere (e.g., [Barstow79]).

In the rest of the paper concepts found in the pred-
icate calculus statement of the problem (Figure 2)
are written using italics (e.g., married). The sys-
tem has a library of types (described below), consist-
ing of mathematical entities like set, fixed-size-set,
and equivalence-relation, noted with a typewriter-
style font. Those types are in turn used as building
blocks to construct our representations, things like COU-
PLE, SIBLING-SET, and PARENTS, noted with a small-caps
font.

4 Knowledge For Representation
Design

An important foundation for our approach is a body of
knowledge called the type library (Figure 5). The types are
used as building blocks in designing specialized representa-
tions. Each type contains a data structure and its associ-
ated manipulation procedures. The set type, for instance,
contains a list data structure to indicate one way of im-
plementing a representation (like COUPLE) built from the
set type and procedures for manipulating sets like “add
element” and “test for equality.”

Figure 5: A Portion of the Type Library. The uppercase
labels are names of types.

Another important knowledge source is a set of concept
revision heuristics. These use properties of existing con-
cepts in a representation or structural properties of a prob-
lem statement to revise concepts into a form that often
proves to be more useful for problem solving. There are
currently 12 such heuristics.

The heuristics that use properties of existing problem
concepts are associated with nodes in the type library tax-
onomies. These use the properties of the node to which
they are attached to suggest reformulations. Several ex-
amples of this type of heuristic are given below.

The other type of heuristics look for structural features
in the problem statement. When a feature is found, the
relevant heuristic suggests a revision. Consider, for exam-
ple, the statement “M has no brothers,” can naturally be
(re)expressed as a constraint on the cardinality of the set
of M’s brothers. One heuristic embodies this intuition by
looking for negation at the top level in universally quanti-
fied formulas. When it finds the problem statement about
M’s brothers, it revises “brother” to “brother-set.”

Whenever a concept is revised, the problem statement
is rewritten to reflect this change. The above revision, for
instance, causes the problem to be rewritten in terms of
“brother-set.” As a result, the original formula is rewritten
as {Z] bTother(M, z)) = 0.3

The type library is organized as a pair of mathe-
matical concept taxonomies, with set and relation as

5 Representation Design
the two roots and specialization links labeling the addi-
tional properties that the more specialized types have.
Those types have additional procedures associated with
them that exploit their properties to provide additional
functionality efficiently. A procedure associated with
partition-element, for example, exploits disjointness to
determine efficiently when two elements of a partition are
the same.

Note that only some of the nodes in the concept taxon-
omy have a type label, reflecting the knowledge that those
nodes are useful building blocks for representations. The
system currently does not, for example, have a type for a
binary, symmetric, intransitive relation.

2A partition is a set of disjoint sets.

The goal of representation design is to create a representa-
tion that “captures the semantics” of the original problem
statement. Earlier we gave an informal definition, indicat-
ing that capturing semantics can be accomplished by at-
tention to the structure and behavior of a representation:
its structure should mimic the thing represented and its be-
havior should enforce the problem semantics. To be more
precise, we say that a representation captures the seman-
tics of a set of formulas when the possible data structures
that can be built from it satisfy those formulas4

3A condition placed on concept revision heuristics guaran-
tees that the revisions preserve satisfiability by showing that
any model of the original problem can be extended to include
the new concepts.

*Technically, we dehe a new satisfaction relation between
representations and sets of formulas as follows. We define a

3% Knowledge Representation

Consider for example the formula:
V+[code(C~, Y)) * cowJe(Cy, +)I

We say that the representation COUPLE captures the se-
mantics of this formula because COUPLE is defined in terms
of set, whose semantics indicate that the two sets {a, y}
and {y, Z} are equal. Thus, any instance of COUPLE will
have the property that whenever {z, y) is a couple, {y, a}
is a couple. A specialized representation is complete when
all the formulas in the problem statement have their se-
mantics captured.

5.1 The Process of Representation
Design

Representation design is a three step process: representa-
tion introduction, dependent representation introduction,
and operationalization. The first two of these are incre-
mental processes aided by concept revision heuristics. In
general, multiple concept revisions can occur in an effort
to allow further representation introduction.

This helps to illustrate two important aspects of our
approach to the problem. First, we believe that good rep-
resentation design is fundamentally an incremental, op-
portunistic process that proceeds best in small steps with
constant rewriting of the problem as the representation
evolves. Second, as we will see in exploring the use of the
type library, we believe the process should be informed
and guided by both the problem statement and the set of
representations available.

Since representation introduction does not in general
produce a complete specialized representation, the goal of
operutionaZizing is to generate procedures that extend the
representations, to ensure that their behavior captures the
semantics of the remaining formulas.

In the remainder of this section we work through what
the system does in designing a representation for the prob-
lem in Figure 2. The input to our system is a straightfor-
ward translation of the problem statement into predicate
calculus, i.e., exactly the set of formulas showu in Figure 2.
The sequence of actions explored below is the first success-
ful path completed by the system when given the example
problem; there are roughly a half dozen other paths ex-
plored but left uncompleted because the system halts with
the first successful one.

5.2 Representation Hntrodueticm
The system begins by attempting to find types in the li-
brary that will prove useful in designing representations
for concepts mentioned in the problem. This is in turn an
iterative process of taxonomic classification and concept
revision.

Taxonomic classification is performed on each primitive
relation and each set in the problem statement, using the
specialization links to decide what properties to investi-
gate. Consider, for example, the relation murried: Figure
5 indicates that relations are specialized first in terms of
degree. The system is able to determine by inspection

that married is binary. Following the links down, the sys-
tern encounters the issue of symmetry, then transitivity;
married is symmetric and intransitive, at which point we
arrived at a leaf node.

Since there is no type at this node, the system checks
to see if there are any concept revision heuristics associ-
ated with the node that can suggest ways to revise the
current concept. One such heuristic suggests restating the
relation married in terms of sets of individuals married
to a fixed individual, i.e., replace assertions of the form
muryied(z, y) with sets of the form {x 1 murried(pl, x)}
(where pr is an arbitrary individual). This introduces a
new concept, the set of all sets of this sort (call it set-
of--spouse+sets), and completes one classification/revision
cycle.

A second cycle begins with another classification effort,
this time at the set node trying to specialize set-of-
spouse-sets. Following the taxonomy, the system deter-
mines whether the elements of this set are themselves sets
(yes) and then whether 0 is an element (yes, since not all
people are married). Once again classification ends and
a revision heuristic at this node suggests, “if a set S con-
tains 0, try introducing the set equal to S - 0.” This is
accomplished by restricting x to be a married individual
in {y 1 murried(z, y)}.

A third classification effort now begins at the set node.
It determines that the new concept is a set of sets not
containing 0 and that all the element sets have cardi-
nality I (it has now reached the fixed-size-set node).
Again classification halts and a revision heuristic found
that states, “when sets of the form {y 1 R(z, y)} all have
cardinality 1 and R is symmetric, introduce sets of the
form {Y I R+(x, Y)) w h ere pZ* is the equivalence relation
defined by VzVy[R*(z, y) e z = y V R(z, y)].” 5

This introduces the set of sets of the form {y I
muTTPied* (33, y)}, where z is restricted to married individ-
uals. Each element of this set is a set of married people,
i.e., our notion of a couple (call this set couples).

Once again this concept is classified; it is a set of sets, it
does not contain the empty set, each of the member sets is
of the same size (cardinality), and it is a partition. Hence
the process arrives at the shaded node in Figure 5. This
time the process halts, because it has arrived at a node
that does have an associated type (partition-element)
and does not have any revision heuristics.

This intertwined process of classification and concept re-
vision has thus in several cycles transformed the problem
from one using assertions phrased in terms of the married
relation to one phrased in terms of couples. As noted,
when new concepts are introduced, the problem is rewrit-
ten. When couples is introduced, for example, all formu-
las using the term murried(x, y) are rewritten to use it
instead. The formula murried(N, P) in the original prob-
lem statement, for instance, is rewritten to coupZe({N, P})
(shorthand for {N, P} E couples).

As a result of this process, a representation is intro-
duced by providing a definition of an abstract data type

class of functions from data structures to logical models. A
representation satisfies a set of formulas just in case there is a
function from this class mapping the data structure built by
that representation to a model of the formulas.

‘The idea here is that we would like to find a partition be-
cause there is a powerful specialized inference procedure asso-
ciated with it. One way to identify a partition is to look for an
equivalence relation that induces it; this heuristic suggests one
way to define such a relation.

Van Baalen and Davis 395

and establishing a correspondence between that data type
and a symbol in the problem statement. The represen-
tation COUPLE, for example, is introduced by defining it
in terms of the library types for partition-element and
all of its ancestors (i.e., set and fixed-size-set), then
establishing a correspondence between COUPLE and the
symbol couple. (Henceforth we will refer to couple as a
“represented symbol” because there is a representation as-
sociated with it.)

While it does not occur in this example, the concept
revisions that occur in this phase can cause new classifica-
tion efforts to begin, sending us back to the representation
introduction phase.

Note finally that at this point we have created much of
the specialized representation shown in Figures 3-4, i.e.,
COUPLES, PARENTS, and CHILD-SETS. The process that
yields the structure in Figure 4 from the two structures in
Figure 3 is realized by the procedures associated with the
partition-element and i-i function types.

5.3 Dependent Representation
Introduction

The goal of this process is to introduce additional represen-
tations that are connected to representations introduced in
the previous process, relying here on heuristics that look
for structural features in the problem statement. These
heuristics have an additional constraint, they look for fea-
tures in the context of existing representations.

To see an example, first recall that each time a new rep-
resentation is introduced the problem is rewritten in terms
of it. One formula that appears in the problem statement
when couple is introduced is:
VprVp&[chiZd(pr, c) A chiZd(p2, c) A pl # 132 =+

murried(l>l, p2)]

(i.e., the parents of an individual are married).’ This
formula gets rewritten in two ways. It uses the term
married, so it will be rewritten when couple is introduced.
It also uses the relation child; during taxonomic classifi-
cation of this relation the system discovers that the set
(x 1 chiZd(z, c)) (i.e., the parents of an individual) has
cardinality 2. A concept revision heuristic at the node for
asymmetric intransitive relation will introduce this set as
a new concept and the formula above will be rewritten in
terms of it. The final result of these (and other) transfor-
mations is:

Vc[coupZe({a I chiZd(z, c)))]
One interesting thing about the revised formula is that it

makes clear that the newly created set is related to an ex-
isting representation: {z I chiZd(a, c)) in fact is a COUPLE

(i.e., the parents of a child are a couple). The following
concepts revision heuristic now becomes applicable: “any
set of the form {y I R(a, y)) appearing as an argument to a
represented symbol (in this case coupZe) should be viewed
as a function F(z) = {y I R(a, y)).” A new concept is
introduced, a function we will call parents, mapping indi-
viduals to couples.

When parents is introduced, the formula above is rewrit-
ten as Vc[coupZe(purents(c))]. Another concept revision
heuristic indicates that “from any many-to-l function F
whose range elements correspond to a representation, cre-
ate a l-l function: create the sets {z I F(z) = y) (i.e., all
the domain elements that map to the same range element);
then create the l-l function G : {z I F(a) = y) ---) y.”

Invoking this heuristic means introducing two new rep-
resentations: CHILD-SET for sets of the form {y] a =
parents(y)) and CHILDREN-OF, a one-to-one function from
COUPLES to CHILD-SETS.

‘The system acquires this formula while identifying missing
information, a process not fully described here. For the current
purposes, assume the formula was given.

5.4 Operationalization
As noted, representation introduction captures much, but
not all, of the semantics of the problem statements by se-
lecting appropriate types from the library. Operational-
izing is a way of extending representations so that they
capture the semantics of problem statements not already
captured.

A formula is operational when it can be interpreted as
code built from just the operations associated with the
types chosen from the library. For example, suppose that
SIBLING-SET is a representation defined as a set of indi-
viduals, and that SIBLINGS is a function from an individual
to that individual’s sibling-set. Then

VzVy[z E siblings(y) w y E siblings(z)]
is operational because: SIBLINGS is defined as a set, one
of the operations associated with the type set is add-
element, and we can interpret the entire formula as a
(demon-like) procedure using only the available operations
(in this case, just add-element): whenever x is added
to the siblings(y), add y to the siblings(x).

We claim this procedure “captures the semantics” of the
formula above because it ensures that the data structures
used to implement SIBLING-SET will, at execution time,
maintain the relationship expressed by the formula. That
is, it executes when a representation is modified in the
process of solving the problem in Figure 2, and responds
by making corresponding changes to other representations.
Making a formula operational captures the semantics by
making the formula itself do the work: we turn a statement
of the relation into a procedure that enforces the relation.

The process of operationalizing formulas not already in
that form is rather complex and lengthy, details are in [Van
Baalen881.

6 Solution
The solution phase uses the representations and procedures
to solve the original problem. Our system translates the
output of the previous two phases into an object oriented
LISP program, which is then executed to solve the problem.
For the problem of Figure 2, the specialized representation
is derived in about twenty minutes on a Symbolics 3600;
the corresponding LISP program is created in about five
minutes; the LISP program in turn requires less than five
seconds to produce the correct answer that 0 is the only
sibling of S.

Recall that the important task of the previous phases
was to capture the semantics of the formulas in the problem
statement, and that this was done by (i) defining appro-
priate representations (like COUPLE), and (ii) putting the
remaining formulas into operational form. The translation

396 Knowledge Representation

to LISP is then achieved simply by (i) translating the repre-
sentations into LISP flavor definitions, and (ii) translating
the operational formulas into methods of the appropriate
flavors. Again details are in [Van Baalen881.

9
Problem reformulation has a long history (e.g., [Newe1166]);
a recent effort in this vein, [Kor@O], is the most direct an-
cestor of ours. Our theory extends this work: it begins with
an incomplete problem and, among other things, identifies
relevant operations in the type library.

[Bobrow68]‘s STUDENT program solved algebra word
problems and is similar in going from a problem specifi-
cation to creation of a representation and solution. The
problems it solved, however, are much simpler, are not
missing information, and most important, are stated in a
vocabulary that is appropriate for their solution.

Efforts to understand the notion of direct or analogical
representation define it in terms of a representation syntax
reflecting the problem semantics([Sloman71], [Hayes74],
[Pylyshyn75]). [Pylyshyn75] points out that one can speak
of representation structure only with respect to a Semantic
Interpretation Function, by which he means “the processes
which construct and use the representation.” The repre-
sentations we design come complete with procedures that
construct and interpret them. Furthermore, we specify
how to understand the meaning of structures built in our
representations in terms of formal models.

8 Comments and Summary
Our approach to representation design is based on two
claims. First, in the context of a problem, we should de-
sign a representation whose syntax captures the semantics
of the problem domain and whose behavior enforces those
semantics by maintaining invariants in the syntax. Second,
it tells us what knowledge to use in specializing represen-
tations and how this knowledge should be organized. The
type library, for instance, defines a collection of types used
to define a specialized representation and is organized as
a taxonomy to facilitate finding maximally specific data
types. The library also organizes semantic reformulation
heuristics.

Our approach differs from more traditional approaches
to problem solving because it begins at an earlier stage
of the problem solving process, starting with the problem
statement and identifying missing information required to
solve the problem, and because it explains how to find a
more useful problem solving vocabulary and how to design
specialized representations from it.

The approach is also still in an early form and as such has
some weaknesses. The representation design heuristics, for
example, while based on broadly applicable mathematical
principles, are still somewhat ad hoc and the intuitions
underlying them are not always clear. We continue to look
for a more methodical underpinning to them.

We also have only a preliminary characterization of the
class of problems for which the current knowledge bases
in the implementation are applicable. This is the class of
problems that can be effectively solved by identifying and
reasoning about extensional sets. We continue to look for a

more precise characterization. Also we believe the
approach applies to a far wider class of problems.

general

-There is also an implicit claim in using the type taxon-
omy to drive information gathering: it assumes that asking
about the properties we know how to exploit in problem
solving will be effective in determining what properties of
a domain concept will be needed to solve the problem and
what properties will be useful in solving the problem. Both
of these are clearly only sometimes true and depend on the
size and sophistication of the library: taxonomic classifica-
tion may fail to enquire about properties that are in fact
necessary to solve the problem (in which case the problem
simply won’t be solved), and may fail to gather facts that
would have been useful. This latter phenomenon is less se-
rious because of the ability of operationalizing to capture
semantics that the type library misses.

Despite its early stage of development, our approach
made it possible for our program to start with a simple
predicate calculus translation of a problem, gather neces-
sary information, decide what to represent and how, design
representations, create a LISP program that uses those rep-
resentations, and finally run the program to produce the
solution. It has succeeded in doing this for a small number
of quite different analytical reasoning problems.

Acknowledgments
Useful comments on drafts of the paper were received

from Yishai Feldman, Walter Hamscher, Reid Simmons,
Dan Weld, Brian Williams, Patrick Winston, and Peng
wu.

eferences
[Amarel68] Amarel, S., “On Representations of Problems

of Reasoning About Actions,” In Michie, D. (editor),
Machine Intelligence 3, pp. 131-171, Edinburgh Univer-
sity Press, 1968.

[Barstow79] Barstow, D., “An Experiment in Knowledge-
Based Automatic Programming,” Artificial Intelligence,
12, pp.73-119, 1979.

[Bobrow68] Bobrow, D.G., “Natural Language Input for
a Computer Problem-Solving System,” in Minsky, M.
(editor), Semantic Information Processing, pp.146-226,
MIT Press, 1968.

[Hayes741 Hayes, P.J., “S ome Problems and Non-Problems
in Representation Theory,” in Brachman, R.J., and
Levesque, H.J. (editors), Readings in Knowledge Rep-
resentation, pp.3-22, Morgan Kaufmann, 1985.

[Korf80] Korf, R.E., “Toward a Model of Representation .
Changes,” Arti

[Newell661 Newe l?
cial Intelligence, 14, pp.41-78, 1980.

, A., “On Representations of Problems,”
in AnnuaZ research review, Department of Computer Sci-
ence, Carne ie-Mellon University, 1966.

[Pylyshyn75] bylyshyn, Z.W., “Do we need images and
analogs?” pp.174177, TINLAP-1, 1975.

[Sloman71] Sloman, A., “Afterthoughts on Analogical
Representations,” in Brachman, R.J., and Levesque,
H.J. (editors), R ea m d’ g s in Knowledge Representation,
pp. 431-440, Morgan Kaufmann, 1985.

[Van Baalen88] Van Baalen, J., “A Theory of Representa-

Addison-Wesley Publishing Co., 1984.

Van Baalen and Davis 397

