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Abstract 

The SEt Reasoning Facility (SERF) integrates 
mechanisms for propagating membership propo- 
sitions, deriving relations between sets, and rea- 
soning about closure and cardinality into an ef- 
ficient utility package for reasoning about sets. 
Assertions about relations between sets are com- 
piled into a constraint network defined entirely in 
terms of union, complement, and emptiness con- 
straints. The constraint network supports multi- 
ple modes of inference, such as local propagation 
of membership propositions and graph search for 
set relations using a transitivity table. SERF per- 
mits closure assertions of the form “all members 
of set S are known” and utilizes this capability 
to permit selective applications of closed-world 
assumptions. Cardinality constraints are han- 
dled by a general quantity reasoner. An example 
from geologic interpretation illustrates the value 
of mutually constraining sources of information 
in a typical application of reasoning about sets in 
commonsense problem-solving. 

1 Introduction 
Sets play an important role in representing and reason- 
ing about the commonsense world. Many attributes of 
real-world objects are naturally represented as sets, for in- 
stance, the set of objects on top of a table, the set of rock 
formations along the surface of the Earth, and the set of 
parents a person has. Reasoning about such attributes, 
especially about the changes that occur to them, requires 
mechanisms for reasoning about: 

1. Relationships between sets. If the set of green blocks 
is disjoint from the set of blocks in the room and the 
blocks on the table are a subset of the blocks in the 
room, then there are no green blocks on the table. 

2. Combinations of sets. After erosion occurs, the set of 
geologic formations on the surface of the Earth is the 
union of the newly exposed formations with the initial 
surface formations minus those eroded away. 

3. Elements of sets. If we know that Joe and Amy are 
biological parents of John, then George cannot be a 
parent of John. If Mary’s parents are Amy and Roy, 
then John and Mary are step-siblings. 
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We have implemented mechanisms to support these and 
other tasks, integrating them into the SEt Reasoning Fa- 
cility (SERF). SERF records facts about sets of interest and 
answers queries as directed by the user or problem-solver. 
SERF is designed to derive propositional facts about par- 
ticular sets-not to prove theorems about properties of 
sets in general (contrast with ONTIC [MeAllester, 19871). 
By keeping all reasoning local and vivid (limited use of 
disjunction and negation), we gain efficiency in doing com- 
mon set-related inferences, at the cost of completeness and 
generality. 

A powerful feature of SERF is its integration of dif- 
ferent types of information, in particular ordinal rela- 
tionships (such as E) and set membership. The various 
types of information are mutually constraining, for in- 
stance, SERF computes ordinal relationships from knowl- 
edge about membership and vice versa. SERF draws rel- 
atively weak conclusions when little information is known 
about the members of a set but gives more precise answers 
as more detailed information becomes available. For ex- 
ample, knowing only that C = A U B we can infer that 
]C] 5 IAl + ]B], but given all the members of A and B we 
can determine the exact membership and cardinality of C. 

The following section illustrates some of SERF’S capabili- 
ties with two example applications. The remaining sections 
describe the representations and algorithms employed to 
achieve these results. Section 3 introduces the constraint 
network representation of set operations and describes the 
mechanisms for propagating membership propositions. Fa- 
cilities for representing and deriving relationships between 
sets are presented in Section 4. Section 5 discusses SERF’S 
closure mechanisms: techniques for asserting that a set’s 
elements are exactly those that are known members. Rea- 
soning about cardinality is the subject of Section 6. 

2 

Reasoning about sets is important in simulating and inter- 
preting physical situations [Simmons and Davis, 19871. For 
example, in interpreting the sequence of events that could 
form a geologic region, one must often reason about how 
the set of rock formations along the surface of the Earth 
change as a result of the action of geologic events, such as 
erosion and deposition. 

The effect of erosion on the set of formations along the 
Earth’s surface can be represented by the equation Sz = 
(5’1 - TE) U EX, where Sl is the set of formations on the 
surface before erosion, Sz is the set after erosion, TE is 
the set of formations totally eroded away, and EX is the 
set of newly exposed formations that were under S1 (see 
Figure 1). In addition, we know that TE is a subset of S1 
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Figure 1: G eo o ic interpretation example. The dashed 1 g 
lines represent hypothetical erosion patterns. 

and EX is disjoint from Sr. 
In interpreting a geologic region, we are often interested 

in the relationships between the various sets of rock forma- 
tions, such as between Sr and &, the new and old surfaces, 
and between S2 and the underlying rocks EX. From the 
above description of erosion, SERF can infer that S’s is a 
superset of EX and that EX and TE are disjoint. That 
little else can be derived is to be expected since the general 
description indicates nothing about the extent of erosion. 
As we add more constraints, however, SERF infers more de- 
tailed relationships. For example, if we assert that TE and 
EX are both empty (Figure 1, case a), SERF infers that Sz 
is equal to Sl and disjoint from EX. When we assert that 
TE is empty but EX is not (case b - rocks are partially 
eroded, exposing some underlying formations), SERF infers 
that Sz is a proper superset of both Sr and EX. Finally, 
asserting that Sr C TE ( case c - all formations currently 
on the surface are eroded away) enables SERF to infer that 
S2 = EX. 

Alternatively, SERF can reach these conclusions using 
constraints on the membership of sets. If, in conjunction 
with the erosion equation S2 = (Sr - TE) U EX, we assert 
that RI is the only member of Sr, that R2, R3, and R4 
are the only members of EX and that RI is a member of 
TE, SERF will conclude that Sz = {R2, R3, R4) and thus 
is equal to EX and disjoint from Sr. 

We have also applied set membership reasoning to the 
problem of unifying terms involving set variables. URP, 
a program for reasoning about preferences represented as 
utility functions [Wellman, 19851, performs goal-directed 
inference from a collection of utility decomposition proof 
rules similar to the following: 

(A,B & C)r\(AnB # @)AUI(A,C-A)AUI(B,C-B) 
I- GUI(A - B, C - (A - B)). 

For our current purposes, it is sufficient to note that UI 
and GUI are predicates of multiattribute utility theory 
describing the permissible preference interactions among 
sets of utility attributes. Given a goal formula, such as 
GUI({zl, ~~3, {Q,Q, zz)), the unification problem is to 
find values of A, B, and C to instantiate the premise. To 
help reduce the combinatorial search required to find uni- 
fiers, SERF is used to constrain the members assigned to set 
terms. For example, after URP binds A - B to {3c1, z2) 
and C - (A - B) to { 
C={x1,..., 

~3, x4, ~53, SERF determines that 
x53 and that ~1 and ;ez must be contained in 

A but not in B. 

3 Set Constraint Networks 
SERF represents assertions about sets in a constraint net- 
work [Sussman and Steele, 19801. Nodes in the network 
are set objects, encoding such information as the elements 
that are known to be members and bounds on the set’s 
cardinality. Constraint links enforce relations among the 
sets they connect. 

Each set is associated with four types of information: 

1. Propositions about membership of various elements in 
the set, of the form a E A. 

2. Whether the set is empty. 

3. Whether the set is closed, that is, all of its members 
are known. 

4. Cardinality of the set. 

All set-related propositions, are recorded in a truth 
maintenance system (TMS) [McAllester, 19801 to provide 
for dependency-directed updating upon addition and dele- 
tion of assertions. Propositions are marked tsaae, false, 
or unknown and are tagged with a justification for that 
labeling. 

The two primitive set operations supported in SERF'S 
constraint network representation are union and coxn- 
plement. These are sufficient to represent the standard 
boolean set operations. For example, the intersection op- 
eration A n B can be rendered in terms of our primitives 
by m, where S denotes the complement of a set S (see 
Figure 2). 

Figure 2: A constraint network representing the intersec- 
tion of A and B, built from a union constraint (the OR 
gate) and three complement constraints (the “inverter” 
circles). 

The constraint network is used to propagate assertions 
about set membership. Given the proposition z E A (or 
its negation, x 4 A), the constraints determine whether 
z is an element of sets related to A. The complement 
constraint ensures the equivalence of z E A and z @ A 
using the following two disjunctive clauses: 

ZEA v z&i (1) 
+!A v a&$. (2) 

The union constraint for A U B is represented by three 
propositional clauses: 

&A v z:AuB, (3) 

a@B V ZEAUB, (4) 
XEA V XEB v x$AuB. (5) 

Whenever all but one disjunct in a clause is marked false, 
the remaining proposition is declared true. In Figure 2, 
for example, asserting T @ A implies that a: E A by (l), 
which implies x E A U B, by (3). This in turn implies that 
x @ A n B, by (2). W e can show that our canonization of 
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set operations into union and complement constraints 
preserves the membership inferences derivable from a di- 
rect implementation of the boolean set operations. 

SERF’S membership reasoning is incomplete, however, 
in part due to the locality of constraint propagation. Sup- 
pose, for example, we assert that z E B U C, z $! A, and 
that sets A U B and A U C are equal. A global analysis 
of the constraints reveals that z E B and z E C, since all 
elements not in A must be in both or neither of B and C. 
This conclusion does not follow, however, by considering 
each constraint individually. 

The assertion language is limited in its ability to express 
disjunction, negation, and quantification over sets. For in- 
stance, we cannot encode directly such disjunctive mem- 
bership assertions as “8 E A V y E A.” Although such a 
condition may be implied by the network as a whole in that 
assertions that one is a non-member will result in the other 
being declared a member, it cannot be encoded in the set 
node A itself. For example, we can encode “a: E AVa? E B” 
by asserting z E A U B. Then from z $Z A SERF can infer 
that 8 E B. 

4 Relations Between Sets 
SERF uses the same constraint networks to encode rela- 
tions between sets and to infer new set relationships. For 
example, we can assert that one set is a subset of another, 
or try to deduce whether two sets are disjoint. By using 
the same representation for reasoning about both mem- 
bership and relations, SERF exploits the mutual constraint 
between the two types of information. 

4.1 Basic Relations 
Our inference mechanisms support the four binary set rela- 
tionships: subset (Q, superset (>), disjoint (I]), and total 
(T)l and their respective negations: $Z, 2, M, and T. Ta- 
ble 1 presents their definitions in terms of set membership. 
Equality is represented as the conjunction of & and 2. 

R 
c 

2 
II 
T 

Definition of A R B 

Table 1: The basic binary set relations. 

In order to integrate knowledge about set relations with 
the membership reasoning mechanisms, SERF compiles re- 
lation assertions into networks of union and complement 
constraints augmented by assertions about the emptiness 
of sets. For example, SERF translates A ]I B into an as- 
sertion that the set AUB (the intersection of A and B) is 
empty. Using the membership proposition clauses of Sec- 
tion 3 in conjunction with the knowledge that nothing is a 
member of the empty set, SERF enforces the constraint that 
members of A are not members of B, and vice versa. If we 
retract the disjoint assertion (by retracting the emptiness 

‘A 2’ B means that together A and B span the universe of 
objects. 

constraint), SERF automatically withdraws support from -- 
any membership propositions derived in this manner. Ta- 
ble 2 lists the constraint representations of the eight basic 
relations. 

Table 2: Constraint network representations of the eight 
basic relations. 

4.2 Deriving Relations via Path Search 
Answering queries about the relations holding between sets 
is an important set reasoning task. SERF derives set rela- 
tions by composing paths of relations in the constraint net- 
work using the transitivity of relations. For example, if A is 
disjoint from B and B is a superset of C, A must be disjoint 
from C as well. The implication of (A RI B) A (B R2 C) 
is A (RI o R2) C, where RI o R2 is the relation, if any, in 
the cell of Table 3 corresponding to the row for RI and the 
column for R2. 

0 

-E- 

5z 

ii 

II 
M 
T 

T 

Table 3: The set relation transitivity table. 

The table is complete for chains in the following sense: 
if all we know about sets Sr . . . S, is the chain of relations 
Si Ri &+I, with i = l,...,n-1, then RI O---OR, is 
the strongest implied basic relation. In addition, the tran- 
sitivity operator (0) is associative, so relation pairs in the 
chains may be combined in any order. 

To determine the relations holding between a pair of 
sets, SERF searches the constraint network, combining the 
relations found on different paths. The search proceeds in 
a breadth-first manner, maintaining at each node the set of 
basic relations known to hold with the starting set. Search 
proceeds from a node only if this collection of relations has 
been strengthened on the incoming path. The method is 
similar to that employed by others for deriving temporal 
and arithmetic relations by transitivity (e.g., [Allen, 1983; 
Simmons, 19861). 

For example, in the simple relation network of Figure 3, 
the derived relation between A and D is the conjunction of 
those found on the two paths: T o ;P = 1 and 1 o T = T. 
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Combining each of these with D II E yields A p E and 
A 1 E, that is, A is a proper superset of E. In our path 
search algorithm, each set node can be visited at most four 
times, once for each of the basic relations. Because the 
algorithm adds no new structure to the constraint network, 
its worst-case complexity is O(T), where T is the number 
of relations asserted between sets. 

Relationships between set A and set B 

MB. 

A<c> II :E 
Figure 3: A network of relations. Path search using the 
transitivity table reveals that A > E. 

As described above, SERF encodes the relations of Ta- 
ble 1 using only union, complement, and emptiness con- 
straints. Thus, in searching this network, SERF must first 
translate union and complement relations into the corre- 
sponding relations of Table 3. A complement constraint 
expands into A II ii and A T A. A union constraint im- 
plies that both A and B are subsets of AU B. Degenerate 
sets gain some relations automatically: 0 is a disjoint sub- 
set of any set, and 0 is a total superset. Non-degeneracy 
constraints also restrict the possible combinations of rela- 
tions that can hold between sets. SERF enforces the fol- 
lowing constraints: 

A#Q)a[AgBvAjB], 

A#h[AzBVATB]. 
For example, if A is nonempty and A & B, SERF deduces 
that A 1 B and uses that relation in its path search algo- 
rithm. 

4.3 eriving elations via embership 
Comparison 

SERF also derives relations between sets by comparing 
their members. This mechanism enables SERF to deduce 
relationships even between sets that are not connected in 
the constraint network. For example, if A is known to con- 
tain elements 21, 2~2, and 22s and B contains 22, 24, and 
~5, SERF concludes that A and B are not disjoint, since 
they have an element in common. In addition, if 2s E C, 
SERF infers that A sf C, since one of the known elements 
of A is not an element of C. 

The necessary conditions for membership comparison 
can be easily derived from Table 1. For example, the def- 
inition of subset entails that A C B if all the elements of 
A are elements of B or, conversely, if all the elements of 
B are elements of A. Similarly, A sf B if some element of 
A is an element of B or, equivalently, some element of B 
is an element of A. Table 4 presents the complete set of 
conditions needed to derive relationships by membership 
comparison. In the table, Some means that at least one of 
the elements of the first set is a member of the second set. 
AU means that all of the known members of the first set 
are members of the second and that the first set is closed, 

Table 4: Using membership comparison to derive ordinal 
relationships. 

that is, the set has no members other than those explicitly 
enumerated. 

Performing comparison by sorting the membership lists 
and then iterating, the computational complexity of this 
algorithm is C(nlogn), where n is the number of known 
elements in the sets. In the problems we have encountered, 
the membership comparison mechanism is more efficient 
than the path search mechanism since the number of set 
members are typically much less than the number of set 
relations in the network. Hence, our strategy is to use 
membership comparison first and try path search only if 
more information remains to be derived. 

5 losuse 
Asserting that a set is closed means that the only mem- 
bers of the set are those currently known to the system. 
The knowledge that a set is closed adds significantly to 
the range of inferences SERF can perform. For example, in 
comparing the members between two sets (see Section 4.3), 
SERF cannot determine relations such as subset or disjoint 
unless it is known that one of the sets is closed. Simi- 
larly, the membership propagation constraints make use 
of set closure. If B is closed and z is not known to be a 
member of B (that is, the proposition z E B is false or 
unknown), SERF infers that 2 E B. (This inference re- 
lies on an implicit SERF assumption that all distinct terms 
denote distinct objects.) 

Defining closure in terms of the current state of knowl- 
edge complicates dependency maintenance. The difficulty 
appears in the following situation: suppose we assert that 
21 E A and that A is closed. If we issue a query about 22, 
the system will respond that 22 E A, justified by the asser- 
tions that A is closed and 21 E A. If we then retract the 
assertion that A is closed, the TMS retracts the assertion 
that 22 E ii. Thus, subsequently asserting zr E A causes 
no contradiction. If we reassert that A is closed, however, 
we do not want the TMS to reassert that 22 E A, since 
that would conflict with the assertion that 222 E A. 

To guard against such unwanted contradictions, SERF 
implements the closure assertion as “the set S has exactly n 
members.” When a closure assertion is made, SERF counts 
the number of currently known elements and creates a clo- 
sure assertion of this form. The assertion is justified by 
the current membership propositions of the set, so that the 
closure is retracted if any of the membership propositions 
are retracted. In the problem above, the first assertion of 
closure becomes “A has exactly one member,” justified by 
21 E A, and the second “A has exactly two members,” 
justified by both memberships. Since 22 E /i is justified 
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by the first assertion, closing 
result in a contradiction. 

A the second time will not 

Selective application of closed-world assumptions is a 
useful technique in commonsense reasoning. SERF enables 
users to make closed-world assumptions over the members 
of sets through a simple extension to the closure mecha- 
nism described above. The only difference is that no con- 
tradiction is raised if an object is asserted to be a member 
of a set closed under the closed-world assumption. When- 
ever an element is added to or removed from such a set, 
SERF retracts the current closure assumption, modifies the 
membership propositions, then imposes a new closure as- 
sertion. 

SERF’S mechanism for closed-world assumptions imple- 
ments a form of non-monotonic reasoning, where conclu- 
sions drawn from a given set of premises may become in- 
validated by subsequent assertions. The underlying T’MS 
itself is monotonic; conclusions are withdrawn only by ex- 
plicit retraction. 

Cardinality 
SERF provides mechanisms for describing and reasoning 
about the cardinality of sets. The mechanism uses the 
Quantity Lattice [Simmons, 19861 to reason about arith- 
metic relations, addition and subtraction, and numeric in- 
terval constraints. The cardinality reasoning mechanism is 
a separable component of SERF in that none of the mecha- 
nisms described above depend on cardinality information. 
This gives the user the option of not utilizing the cardi- 
nality component if the added power (and added compu- 
tational complexity) is not required. 

The cardinality of a set is implemented as a quantity 
in the Quantity Lattice. The value of a quantity is con- 
strained by its arithmetic relations (<, 2, >, 2, =, #) to 
other quantities or numbers. Using this mechanism, one 
can constrain the number of elements in a set without snec- 
ifying its exact elements. 

SERF ensures that the cardinality of a set is consistent 
with its membership, emptiness, and closure constraints. 
Whenever a member is added to or removed from a set, 
an assertion is made that the cardinality is greater than 
or equal to the number of currently known elements. The 
assertion that a set is closed implies that the upper and 
lower bounds on the cardinality of the set are equal. Con- 
versely, if the upper bound on cardinality is constrained to 
be equal to the number of known elements, the set is as- 
serted to be closed. In all cases, appropriate dependencies 
are recorded to facilitate retraction and explanation. 

Cardinality constraints are propagated across union re- 
lations. Given A U B, the system asserts IAl 5 IA U BI, 
14 L IA U BI, IA U BI I I4 + PI, IAU BI 2 IAl, and 
JA U BI 5 ]B]. In add t i ion, if the size of the universe is 
known, the system asserts that the sum of the cardinalities 
of a set and -its complement equals the cardinality of the 
universal set. 

The use of cardinality increases the range of inferences 
that SERF can perform.- For example, if we-assert that the 
size of the set of John’s parents is two and assert that Mary 
and Joe are members of the parent set of John, then SERF 
can infer that George cannot be a parent of John since that 
would violate the cardinality constraints. 

The system can also use cardinality information to infer 
new relations. For example, knowing that IAl is greater 
than IBI, the system can infer that A sf B. Using the 
definitions of Table I, the implication 

I&= $2 Sl vz E s21* I&l 5 IS21, 

and the equivalence between z # Si and z E ,!?I, we can 
al_o derive A jrB from ]A] > IBI and A 1 B from IAl > 
IBI. As with our other inference mechanisms, this is an 
efficient but incomplete means of determining set relations. 

7 =+Y 
SERF is a utility for generic set reasoning that integrates 
mechanisms for propagating membership propositions, de- 
riving relations between sets, and reasoning about closure 
and cardinality. The central constraint network mecha- 
nism integrates multiple sources of knowledge and supports 
multiple modes of inference, such as local propagation and 
path search. We have found a comprehensive set reasoner 
to be useful in several domains and expect these techniques 
to be applicable to a wide variety of commonsense reason- 
ing tasks involving sets. 
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