
Robert M. Mac Gregor
USC/Information Sciences Institute

4676 Admiralty Way, Suite 1001
Marina de1 Rey, CA 90292

macgreg@vaxa.isi.edu

Abstract

This paper describes the design of a pattern
matcher for a knowledge representation system
called LOOM. The pattern matcher has a very
rich pattern-forming langua.ge, and is logic-based,
with a deductive mechanism which includes a
truth-maintenance component as an integral part
of the pattern-matching logic. The technol-
ogy behind the LOOM matcher uses an infer-
ence engine called a classifier to perform the
matches. The LOOM matcher is more expressive
and more complete than previous classification-
based pattern-matchers, and is expected to be
significantly more efficient.

This paper describes the pattern-matching facility that has
been designed for a knowledge representation system called
LOOM [MacGregor and Bates, 19871. LOOM belongs to
the KL-ONE [B rachman and Schmolze, 19851 family of
knowledge representation systems. A distinctive pattern-
matching architecture has been developed for some of these
systems-they use an analytic inference engine called a
classifier to perform the match operation. As we shall see
later, these pattern matchers apply the results of logical de-
ductions to the pattern-matching process-hence, we refer
to them as deductive pattern matchers.

In the classification-based approach to pattern match-
ing, an instance is matched to a pattern by first abstracting
it, and then classifying the abstraction. This strategy is
employed by two recent systems, KL-TWO [Vilain, 19851
and BACK [Luck et al., 1987; Nebel and Luck, 19871. In
this paper, we describe an extension of this approach which
(1) is deductively more powerful than, and (2) is expected
to be more efficient than, the strategies used in these ear-
lier systems.

In many ML-ONEstyle knowledge representation sys-
tems, two languages are provided for expressing knowledge,
a concept language and a fact 1anguage.l The concept lan-
guage expresses knowledge about unary relations (which
we call concepts) and binary relations (which we simply
call relations). The fact language states facts about indi-
viduals. If the assertions about an individual 1 collectively

satisfy the definition of some concept C, then I is an in-
stance of 6. In the classification-based approach, a con-
cept P is associated with a pattern P(z); thus, matching
an individual to a pattern corresponds to recognizing an
instantiation relationship between the individual and the
corresponding concept.

Section 2 describes LOOM’s language for defining con-
cepts/patterns; Section 3 introduces the notion of the type
of a database individual, and illustrates how an individ-
ual’s type can change as facts are asserted or retracted;
Section 4 opens with an outline of the deductive architec-
ture of the LOOM matcher, and then illustrates it with
an extended example; Section 5 shows how the expressive-
ness of the pattern language increases when implications
between concepts/patterns can influence the pattern se-
mantics; Section 6 briefly suggests how LOOM’s pattern
matcher can be employed to drive a production-rule sys-
tem; Section 7 contains a discussion of some of the practical
implications of the LOOM architecture.

LOOM provides a relational algebra for creating definitions
of concepts and relations. The operators defconcept and
defrelation are invoked to bind a symbol. to a relational
algebra expression- binding a symbol to a concept (or re-
lation) expression effectively defines a new predicate sym-
bol. For example, after evaluating the defconcept for
Person in Figure 1, we can employ Person in our fact
language: (tell (person Bill)) asserts that Bill is a
Person, while (ask (Person Bill)) tests to see if Bill
satisfies Person.

The language contains three classes of elementary con-
cept expressions: (1) The term : primitive denotes a
unique2, primitive3 concept; (2) A role-restriction quan-
tifier can be applied to a relation to generate a role-
restricting concept defined by the restriction placed on
that relation, e.g., the expression (: at-least 2 child)
denotes the concept such that the attached role child must
have at least two role fillers. The language provides the
numeric quantifiers : at-least, :at-most, and : exactly,
and a universal quantifier :all; (3) A role-relating con-
cept expression specifies a relationship which constrains

*This research was sponsored by the Defense Advanced Re-
search Projects Agency under contract MDA903-81-C-0335.

‘We are referring here to hybrid knowledge representa-
tion systems- a hybrid system incorporates multiple reasoners
which apply to separate partitions of the knowledge space (see
[Vilain, 1985; Brachman et cl., 19831).

2Formally, each app earance of the term :primitive, in a
sequence of concept expressions denotes a different concept, i.e.,
the ith appearance of :primitive represents the ith primitive
concept.

3A concept or relation is primitive if it cannot be completely
characterized in terms of other concepts(relations).

IVIacGregor 403

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

(defconcept Person :primitive)
(defconcept Male (:and Person :primitive))
(defconcept Female (:and Person :primitive))
(defconcept Married (:and Person :primitive))
(defrelation child :primitive

(:implies (:domain Person) (:range Person))
:closed-world)

(defrelation daughter
(:and child (:range Female)))

(defconcept Father
(:and Male (:at-least 1 child)))

(defconcept Successful-Father
(:and Father (:a11 daughter Married)))

Figure 1: Concept and Relation Definitions

the fillers of two or more of the concept’s roles, e.g., the
expression (= input-voltage output-voltage) specifies
the concept such that the fillers of the roles input-voltage
and output-voltage have the same value.

Compound expressions are built-up from simple expres-
sions by applying the operators :and, :or, and :not,
which correspond to the operations of intersection, union,
and relative complement, respectively.

An elementary relation expression consists of either the
term : primitive (which in this context denotes a unique
relation instead of a concept) or the projection of a relation
defined by restricting its domain or its range. For example,
inFigure 1, therelation daughter is defined by intersecting
the relation child with the relation defined by restricting
the range of the universal binary relation to the concept
Female.

The language provides specialized operators other than
those just mentioned (e.g., the unary operator :inverse
which generates the inverse of a relation). It also contains a
special syntax for defining concepts representing sets or in-
tervals, e.g., the set of colors {Red, Blue, Yellow, . ..}
or the range of numbers greater than 4.

In Figure 1, Father is defined as ‘a Male with
at least one child", while a Successful-Father is
“a Father all of whose daughters are Married.”
These declarations define the predicates Father and
Successful-Father. If we assert in our fact lan-
guage (tell (Male Bill) (child Bill Mary)) then
the query (ask (Father Bill)) returns TRUE.

Figure 3 provides a formal semantics for the expressions
illustrated in Figure 1.

The def concept and def relat ion operators permit
non-terminological knowledge to be asserted about a
newly-defined concept or relation. The : implies clause in
the definition of child (see Figure 1) asserts that its do-
main and range fillers must satisfy the predicate Person.
Section 5 contains further examples illustrating the use of
: implies. Covering and disjointness relationships can also
be asserted between concepts and relations.

We note that the ability to attach a name to a pattern, so
that it can be referenced* within other patterns, is absent
in most rule-based languages.

4Note: LOOM
form a cycle.

requires that references between patterns not

Person

Married Male Female

Father

I
Successful-Father

Figure 2: Tree of Classified Concepts

LOOM adopts an open-world semantics, and employs a
three-valued (TRUE, UNKNOWN, FALSE) logic. The key-
word :closed-worldinthedefinition ofchildinFigure1
indicates that closed-world semantics apply when deter-
mining membership in the relation child.

3 Types
LOOM allocates a database object to represent each indi-
vidual about which one or more facts have been asserted.
The primary function of the LOOM pattern matcher is to
maintain an up-to-date record of alI instantiates relation-
ships between individuals in the database and concepts
whose definitions they match. The intersection of all con-
cepts matched by a particular individual is called the type
of the individual. An encoding of the type, consisting of a
list of the most-specific concepts belonging to the type, is
attached to each database object. Figure 2 shows the hier-
archy of concepts defined by the definitions in Figure 1. If
a database object matches the concepts Married, Person,
and Female, then its type is (: and Married, Person,
Female), while the list (Married Female) represents an
encoding of that type.

As facts about database individuals are asserted or re-
tracted, the types of those individuals will change. The
left side of Figure 4 shows a sequence of assertions and re-
tractions made to an (initially empty) database, while the
right side of the figure shows the changes in the (encoded)
types of the individuals that result from the updates.

The next section walks us through this sequence of up-
dates, and discusses how the computation of these types is
accomplished.

eductive Cycle
This section outlines the deductive architecture of the pat-
tern matcher, and illustrates how the deductive machinery
works by tracing the deductions applied to the database
individual Fred after each of the assertions shown in Fig-
ure 4.

A concept A subsumes a concept B if the definitions
of A and B logically imply that members of B must
also be members of A. For example, in our knowledge
base, Male(X) implies Person(X) for all individuals X,
hence, Person subsumes Male. An important feature of
classification-based systems such as LOOM is their ability
to compute subsumption relationships between concepts
and relations. A classifier [Schmolze and Lipkis, 19831

404 Knowledge Representation

Expression
e

:primitive (concept)
:primitive (relation)
(:and Cl C2)
(:and RI Rz)
(:at-least 1 I?)
(:exactly 1 R)
(:a11 R C)
(:domain C)
(:range C)
(defconcept C . . . (:implies Cl C2))
(defrelation R . . . (:implies 221 Rz))

Interpretation

Ml
a unique primitive concept
a unique primitive relation
AZ. [Cl~(Z) A [CP](~)
XSY. fifh]l(x, Y) A URzJ@, Y)
Xx. 3~. [R@, Y)
Xx. 3y. [R]l(z,y) AVYZ. (I[R&,v> A [R](w)) --) Y = z
h.z. VY- UR]I(? Y) --+ ImY>
XSY. ucnb) XSY. my)
vx. ucnb) + cuwd A uc2nw vxy. uwb, Y) + wnb, y) A ua2nh ~1)

Figure 3: Semantics of Some Term-Forming Expressions

performs the service of computing all subsumption rela-
tionships between a given concept and all other concepts
in a concept network. This procedure is made efficient by
organizing all concepts into a partial lattice in which more-
general concepts (subsumers) are placed above less-general
concepts (subsumees). The tree shown in Figure 2 shows
the result of classifying each of the concept definitions from
Figure 1.5

The search algorithm employed by the LOOM classifier
for applying subsumption tests was developed by Tom Lip-
kis for the NIKL (see [Moser, 19831) classifier. Here we list
three properties which serve as a partial characterization
of the Lipkis algorithm. We will use the word test to mean
Uperform a subsumption test on”. Let N stand for the
concept being classified:

1. Don’t test a concept C if a descendant (subsumee) of C is
known to subsume N;

2. Don’t test a concept C unless at least one parent (imme-
diate subsumer) of C is known to subsume N;

3. Don’t test primitive concepts.

When classifying large networks, the observed effect of
these properties is that only a small percentage of all clas-
sified concepts are tested during the classification of a new
concept.

Within the classification-based paradigm, a concept is
treated as if it were a pattern. We will say an individual
I matches a concept C if I is an instance of C. It follows
that we equate the process of finding all concepts which I
matches with the process of computing the type of I. A
complete pattern-matching system requires the following
facility-after every change to the database, we want to
compute matches for alI database individuals against all
concepts, i.e., we need to continuously maintain the type
of each individual. The program that accomplishes this
task is called a recognizer.6

5Note: The LOOM classifier also builds a partial lattice re-
flecting all subsumption relationships computed between (bi-
nary) relations. These are not shown in Figure 2.

GThe term realizer is sometimes used in place of the term
recognizer.

We will call two database individuals 11 and 12 adjacent
if for some relation r, the predication r(Ir,12) has been
asserted. Three types of database modifications can cause
the type of a database individual I to change:

i) asserting or retracting a unary predicate on I;

ii) changing the value of one of I’s roles;

iii) changing the type of an individual adjacent to I.

Applying the procedure adjust-individual-type to an indi-
vidual I will

1. recompute I’s type (if necessary), and

2. call adjust-individual-type recursively, if I’s type has
changed, to adjust the types of individuals adjacent
to I.

The job of the recognizer is to apply the procedure udjust-
individual-type after each database update to any individ-
uals affected by a class (i) or class (ii) change.

A concept expression which is matched by an in-
stance I is called an abstraction of I. The procedure
adjust-individual-type employs a strategy called abstrac-
tion/classification (A/C) :

“to find those concepts which are matched by an in-
dividual I, we form an abstraction A of I, and then
classify A. I necessarily matches all concepts which
subsume A.”

The straightforward application of the A/C strategy rep-
resents an elegant but impractical method for computing
the type of an individual: if the abstraction A chosen for
I is not sufficiently complete, then only some of the con-
cepts matching I will be found by classifying A. However,
the abstraction-generating schemes used in KL-TWO and
BACK are designed to match only a subset of the possi-
ble concept expressions, because the cost of generating a
sufficiently-detailed abstraction is prohibitive.’

The solution is to abandon a purely forward-chaining
A/C strategy in favor of one in which the classifier, while
classifying an abstraction, can ask questions about the in-
dividual behind the abstraction being classified-the ques-
tions represent backward chaining. In the LOOM scheme,

71n particular, the abstractions they generate do not include
the role-relating concepts defined in section 2.

MacGregor 405

Step Encoded Type(s)
Al. (tell (Married Fred)) Fred: (Married)
A2. (tell (child Fred Suzy)) Suzy: (Person)
A3. (tell (Male Fred)) Fred: (Father Married)
A4. (tell (Female Suzy)) Suzy: (Female)
A5. (tell (Married Suzy)) Fred: (Successful-Father Married); Suzy: (Married Female)
A6. (forget (Married Suzy)) Fred: (Father Married); Suzy: (Female)
A7. (tell (Successful-Father Fred)) Fred: (Successful-Father Married); Suzy: (Married Female)

Figure 4: Database Assertions and Retractions

the classifier, while classifying an abstraction A of I, can
interrogate I directly about details missing in the abstrac-
tion A. Rather than generating a ‘complete” abstraction
to begin with, a sufficiently-detailed abstraction for I is
built-up incrementally during the A/C process.

The existing implementations of abstraction/classifi-
cation pattern-matchers are relatively inefficient: they re-
compute a database object’s type each time it is modi-
fied, i.e., a classification occurs once per database update.
Also, there may be facts about an individual which get ab-
stracted, but are not used during the classification step-
these components of the abstraction represent wasted com-
putation. The LOOM scheme avoids these problems:

Initially, the abstraction of an individual consists only
of the conjunction of all unary predicates (concepts) as-
serted for that individual. While computing the type of
a database object, three lists are attached to the object:
TYPE is a list of the most-specific concepts matched so far;
HITS is a list of questions (phrased as algebraic expres-
sions) which received positive answers; MISSES contains
questions which received non-positive answers. Whenever
the value of a role R of a database individual is modified,
the expressions in the individual’s HITS and MISSES lists
are inspected. lf the answers to the HITS expressions are
still positive, while the answers to MISSES questions are
not positive, then no recomputation of the type is nec-
essary. Each augmentation of the HITS list becomes an
augmentation of the abstraction as well.

Summarizing, the LOOM pattern-matcher embodies
three ideas which distinguish it from the earlier abstrac-
tion/classification pattern matchers

1. The algorithm generates an abstraction incrementally
rather than all at once; this is possible because

2. The classification step mixes backward chaining (the ques-
tions) with forward chaining (the normal mode of a clas-
sifier);

3. The addition of the HITS and MISSES lists significantly
reduces the type-computation overhead, i.e., it reduces the
frequency of classification.

Here we trace the list activity as Fred’s type is main-
tained in the presence of the assertions in Figure 4. This
trace illustrates the points just made.

&. “Fred is Married”
The initial abstraction of Fred is

(defconcept Fred (:and Married :primitive)).
The classifier makes no subsumption tests at all. Thus,

the classifier does not match Fred against the %ole-
bearing” concepts Father and Successful-Father, and

406 Knowledge Representation

hence no questions about role values were posed. The re-
sulting state of Fred is:

TYPE: (Married) HITS: () MISSES: ().

&. “Suzy is Fred’s child”
Fred’s child role has been modified-it is now a set

containing Suzy -but there were still no questions in HITS
and MISSES pertaining to the role child, so Fred’s type
is not recomputed.

fi. “Fred is Male”
The abstraction for Fred now becomes

(defconcept Fred (:and Male Married
:primitive)).

The abstraction is tested against the concept Father;
the classifier asks Fred the question (:at-least i
child), i.e., UDoes Fred have at least one child?” The an-
swer comes back TRUE, the test succeeds, and we test next
against Successful-Father. The classifier asks (:a11
daughter Married). Fred’s child Suzy may or may not
be Female, and may or may not by Married, so the answer
is UNKNOWN. Fred’s state is now:

TYPE: (Father Married)
HITS: ((:at-least 1 child))
MISSES: ((: all daughter Married))

84. %uzy is Female”
Suzy’s type changes from (Person) to (Female). Suzy

notifies all adjacent database objects, including Fred, that
its type has changed. Fred determines that Suzy is now
his daughter as well as his child. However, the answer
to (:a11 daughter Married) is still UNKNOWN, so Fred's
type is not recomputed.

&. "Suzy is Married"
Suzy recomputes its type, and again notifies Fred. This

time the answer to (:a11 daughter Married) is TRUE.
The abstraction

(defconcept Fred (:and Male Married :primitive
(:a11 daughter Married)))

is classified; The resulting state is
TYPE: (Successful-Father Married)
HITS:

((:at-least 1 child) (:a11 daughter
Married))

MISSES: ()

As. Retract "Suzy is Married"
Retracting the assertion (Married Suzy) causes Suzy’s

type to revert back
to Female. Suzy once more notifies Fred that it’s type
changed. Fred checks its HITS and MISSES lists and dis-
covers that (: all daughter Married) is no longer true;
Fred’s type is recomputed from an abstraction built from
those members of HITS which are still true:

(defconcept Fred (:a& Male Married :primitive
(:at-least 1 child)))

Fred’s state now matches the previous state after the as-
sertion A4.

AJ. ‘Fred is a Successful-Father”
Here we see an example of forward

deduction rather than backward deduction: The assertion
(Successful-Father Fred) not only causes Fred to re-
compute its type; Fred broadcasts to all fillers of the
role daughter (in this case Suzy) that they now sat-
isfy the predicate Married. This causes Suzy to revise
its status. Hence, the types for Fred and Suzy now
match the state after the assertion A5. However, because
Successful-Father was asserted directly, and because
Successful-Father implies Father, during this pass the
classifier did not ask Fred any questions about the roles
child and daughter, and hence the HITS list is different
then it was after assertion A5. Fred’s state is now

TYPE: (Successful-Father Married)
HITS: ((: at-least 1 child))
MISSES: ()

A couple of points are worth noting: First, the kind of in-
ference observed after assertion A7 that we have called jor-
ward inference is not performed by most pattern matchers.
To achieve this type of reasoning necessitates (i) that the
pattern-defining language is capable of, i.e., rich-enough,
to express such a logical dependency (most aren’t); and
(ii) that the pattern-matcher exhibit a facility for deduc-
tive inference as well as ordinary matching.

Second, the communication which takes place be-
tween database objects accomplishes the task of truth-
maintenance-this is discussed further in section 7.

5 lications
KL-ONE-style languages draw a distinction between ter-
minoZogica1, or term-defining knowledge, and all other
knowledge (called assertional knowledge, see [Brachman
et al., 19831). A 1 c assifier computes the subsumption re-
lationship between a pair of concepts solely on the basis
of the terminologically-specified definitions of the two con-
cepts. Previous classification-based pattern matchers have
equated the language used to express patterns with the
terminological language used to define concepts. LOOM
breaks this habit by permitting some classes of asser-
tional knowledge to contribute to the pattern-definitions:
implications, covering relationships, and disjointness re-
lationships. Th is section provides an illustration of the
additional deductive power that implications of the form
“Vz.C(s) --) D(x)” bring to our pattern matcher.8

8No collective agreement has been arrived at as to exactly
where the boundary between terminological and assertional
knowledge lies, but there seems to be general agreement that
implications represent assertional knowledge.

Ll . (def concept List : primit ive)
L2. (defconcept Null :primitive (:implies List))
L3. (def concept Cons

(: and :primitive (:exactly f car)
(:exactly f car))>

L4. (def concept Cons-List
(:and Cons (:a11 cdr List))

(:implies List))

Figure 5: A Lisp List

To date, none of the terminological languages imple-
mented for a ML-ONE-style system permit one to de-
fine recursive or self-referential concepts, such as the con-
cept of a Lisp list. LOOM, however, is able to aug-
ment a terminological definition of the concept List with
implications which permit its pattern matcher to recog-
nize a List when one occurs in the database. Figure 5
illustrates how this can be done. The implication in ’
line L2 provides the basis step, Vx. Null(x) -+ List(x).
The implication in line L4 supplies the inductive step,
Vx. (Cons(x) A Vy. (cdr(x, y) 4 List(y))) 4 List(x).

Suppose we assert
(tell (Cons cl) (Cons c2)

(cdr cl c2) (cdr c2 nil) (Null nil))
First, the object nil will classify as an instance of
Null; next the implication L2 will enable the deduc-
tion List (nil), so the type of nil is computed to be
(Null List); next, the type of c2 will be computed as
(Cons-List List), using the implication L4; finally, the
type of cl will become (Cons-List List). Hence, we
have inferred (List cl).

To produce the inferences just illustrated, we added two
extensions to the LOOM classifier. First, for each concept
C in the classification hierarchy, LOOM computes a sec-
ond concept representing the intersection of all concepts
implied by C. The intersection includes concepts found
by inheriting implies relationships from subsumers of 6,
and concepts found by computing the reflexive-transitive-
closure of the implies relationship at C. The second ex-
tension builds on the first-after computing the type of a
database individual, the classifier intersects that type with
all concepts implied by that type, and returns the inter-
section concept as the new type of the individual.

Although the LOOM architecture does not currently pro-
vide a production rule facility, it is designed for that
possibility-[Yen et al., 19881 describes a production-rule
language being built on top of LOOM.

The scheme is straight-forward: Whenever the type of a
database object changes, the old and new types are com-
pared. Each concept missing in the old type but present
in the new type corresponds to a newly-matched pattern.
LOOM instantiates the database object with all production
rules that have that pattern as a pre-condition (left-hand-
side).

MacGregor 407

7 Discussion
In this section, we discuss some of the advantages, and
one disadvantage, of LOOM’s pattern-matching architec-
ture. In particular, we contrast it with OPS5-style [Forgy,
19811 pattern matchers.

Expressiveness of the Pattern Language
LOOM’s pattern language is both more and less expres-

sive than the typical OPS5-style pattern language. The
forte of KL-ONE-based languages is in representing and
reasoning about roles- they provide a rich set of operators
for describing set-valued roles, chains of roles, and relation-
ships between roles. In addition to the subsumption lat-
tice for concepts, they define a separate lattice for record-
ing subsumption relationships between relations, which al-
lows one to state, for example, that the role daughter is
a specialization of the role child. LOOM’s ability to ex-
press implication relationships between concepts permits
the definition of recursive patterns-this was illustrated in

j section 5.
On the other hand, LOOM patterns correspond to log-

ical expressions containing a single free variable, while
OPS patterns can have multiple free variables. This fea-
ture permits the OPS pattern matcher to function as the
sole control-mechanism in an OPS program. The LOOM
matcher is intended to be used in conjunction with a sec-
ond programming language (as in, for example, [Yen et al.,
19881). Th d g e esi n of such a language (we currently use
Lisp) is a topic for future research.

Truth Maintenance
LOOM’s maintenance of types for all database objects ef-

fectively maintains truth-values for all unary predicates ap-
plied to all objects. To achieve this behavior, the pattern-
matcher is augmented by a specialized truth-maintenance
subsystem.

8 Conclusions
We have described the pattern-forming language and dis-
cussed the architecture of a classification-based deductive
pattern matcher, one which performs deductive inferences
during the course of the pattern matching process.

Because in this scheme, patterns are concept-based, they
are not isolated entities; instead, patterns are connected
to other patterns via direct reference, or by implication
or other logical relationships-this results in a very rich
pattern-forming language.

The pattern-matcher designed for the LOOM system rep-
resents an improvement over earlier matchers that have
adopted the abstraction/classification approach. Most im-
portantly, LOOM widens the scope of what kinds of pat-
terns can be matched by (i) incorporating backward chain-
ing into the abstraction/classification strategy, and (ii) in-
ferring additional matches justified by reference to non-
terminological knowledge, e.g., assertions of implications
between concepts. In addition, the LOOM matcher is ex-
pected to be more efficient than previous classification-
based matchers because (i) its strategy of incrementally
building-up an abstraction avoids abstracting features
which won’t be referenced by any patterns, and (ii) it
eliminates the necessity for recomputing the type of a

database individual each time that that individual’s at-
tributes change.

Acknowledgements
In designing the classification and pattern-matching al-

gorithms, I benefited greatly from discussions with Tom
Lipkis, Ray Bates, Bernhard Nebel, Marc Vilain, and Kai
Von Luck. John Yen and Norm Sondheimer made signifi-
cant contributions to the design of the LOOM language. I
would like to thank Stuart Shapiro for his criticisms of an
earlier draft of this paper, and Dave Brill for his help in
preparing this paper.

eferen ces
[Brachman and Schmolze, 19851 R.J. Brachman and J.G.

Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, :171-216,
August 1985.

[Brachman et al., 19831 R onald Brachman, Richard Fikes,
and Hector Levesque. KRYPTON: a functional ap-
proach to knowledge representation. IEEE Computer,
September 1983.

[Forgy, 19811 Charles L. Forgy. OPS5 Users Manual.
Technical Report CMU-CS-81-135, Carnegie Mellon
University, Pittsburg, PA, 1981.

[Luck et al., 19871 K. von Luck, B. Nebel, C. Peltason,
and A. Schmiedel. The Anatomy of the BACK Sys-
tem. Technical Report KIT Report 41, Technische
Universitat Berlin, January 1987.

[MacGregor and Bates, 19871 Robert MacGregor
and Raymond Bates. The LOOM Knowledge Repre-
sentation Language. Technical Report ISI/RS-87-188,
USC/Information Sciences Institute, 1987.

[Moser, 19831 M. G. Moser. An overview of NIKL, the new
implementation of KL-ONE. In Research in Natural
Language Understanding, Bolt, Beranek, and New-
man, Inc., Cambridge, MA, 1983. BBN Technical
Report 5421.

[Nebel and Luck, 19871 B. Nebel and K. von Luck. Issues
of integration and balancing in hybrid knowledge rep-
resentation systems. In K. Morik, editor, G WAI-87,
pages 114-123, Springer, Berlin (Germany), 1987.

[Schmolze and Lipkis, 19831 James Schmolze and Thomas
Lipkis. Classification in the KL-ONE knowledge rep-
resentation system. In Proceedings of the Eighth
International Joint Conference on Artificial InteZZi-
gence, IJCAI, 1983.

[Vilain, 19851 Marc Vilain. The restricted language archi-
tecture of a hybrid representation system. In Pro-
ceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 547-551, Los Angeles,
CA, August 1985.

[Yen et a%., 19881 John Yen, Robert Neches, and Robert
MacGregor. Classification- based Programming: A
Deep Integration of Frames and Rules. Technical Re-
port ISI/RR-88-213, USC/Information Sciences Insti-
tute, March 1988.

408 Knowledge Representation

