
eyornd HSA: Structures for PBausible antic Networks 

Paul R. Cohen and Cynthia L. Eoiselle 
Experimental Knowledge Systems Labora.tory 

Depaztment of computer and Information Science 
University of Massachusetts 

Amherst, Massachusetts 

Abstract 

We present a method for automatically deriving 
plausible inference rules from relations in a knowl- 
edge base. We describe two empirical studies of 
these rules. First, we derived approximately 300 
plausible inference rules, generated over 3000 spe- 
cific inferences, and presented them to human sub- 
jects to discover which rules were plausible. The 
second study tested the hypothesis that the plau- 
sibility of these rules can be predicted by whether 
they obey a kind of transitivity. The paper dis- 
cusses four sources of variance in subjects’ judg- 
ments, and concludes that relatively little knowl- 
edge is needed to achieve moderately accurate pre- 
dictions of these judgments. 

1 Introduction 
Can cough syrup make people drunk? Our favorite brand can, 
because it contains alcohol. If you didn’t already know that 
cough syrup is intoxicating, you could infer it from two spe- 
cific propositions-cough syrup contains alcohol and alcohol is 
intoxicating-and from a general plausible inference rule: 

Rule P 
X CONTAINS y, 

Y CAUSES z 

2 CAUSES t 

and 

Other familiar rules of plausible inference include property in- 
heritance (e.g., cats have five toes, Ginger is a cat, so Ginger 
has five toes) and causal abduction (e.g., fires cause smoke, so 
if you see smoke, look for a fire). 

Rules like these have two roles that we expect to become 
increasingly important in coming years. First, they support 
gracehE degradation of performance at the boundaries of our 
knowledge. A brittle knowledge system that doesn’t know ex- 
plicitly whether cough syrup makes you drunk won’t offer a 
plausible answer-it simply won’t answer the question [Lenat 
et al., 1986; Lenat and Feigenbaum, 1987; Collins et al., 19751. 

Graceful degradation depends on general knowledge, which we 
formulate as as plausible inference rules such as Rule 1, to make 
up for a lack of specific knowledge. Second, we expect plausible 
inference to reduce the effort of building knowledge bases, be- 
cause knowledge engineers needn’t state explicitly those propo- 
sitions that can be plausibly inferred. Property inheritance, for 

*We are indebted to Carole Beal, David Day, and Adele 
Howe for their comments on drafts of this paper, to Carole 
Beal for her help with the statistical analysis, and Evan Smith 
for his assistance with this project. 

‘This research is funded by the Office of Naval Research, un- 
der a University Research Initiative Grant, Contract #N00014- 
86-K-0764 and by a gift from Tektronix. 

example, relieves us from having to state explicitly that each 
member of a class has each property of that class [Brachman, 
19851. Rules like property inheritance and Rule 1 obviously 
are needed to build “mega-frame” knowledge bases [Lenat and 
Feigenbaum, 19871. 

Rule 1 has the same structure as property inheritance over 
ISA links, and can serve the same purposes, that is, support- 
ing graceful degradation and knowledge engineering. We have 
developed a simple method for deriving such rules from the 
relations in a knowledge base, and we have shown how to dif- 
ferentiate plausible ones from implausible ones based on their 
underlying “deep structure.” 

This paper describes two empirical studies of these rules. 
Both depend on a moderately large knowledge base that we de- 
veloped for the GRANT project [Cohen et al., 1985; Cohen and 
Kjeldsen, 19871. The GRANT KB contains roughly 4500 nodes 
linked by 9 relations and their inverses. In the first study we 
derived approximately 300 plausible inference rules from these 
relations. Then we generated over 3000 specific inferences by re- 
placing the variables in the rules with concepts from the GRANT 
KB, and presented them to human subjects to discover which 
syntactically permissible rules were plausible (Sec. 2). The sec- 
ond study tested the hypothesis that the plausibility of these 
rules can be predicted by whether they obey a kind of transitiv- 
ity (Sec. 3). We will begin by describing these studies, hypothe- 
ses, and results. Then we will discuss the role of knowledge in 
assessing the plausibility of inferences. 

2 periment I: Identifying 

In this section we describe how to use the structure of property 
inheritance to produce many other plausible inference 
and how we determined the plausibility of these rules. 

2.1 Background 

Property inheritance over ISA links can be written 

ISA n2, 

n2 R n3 

n1 R 723 

rules, 

and 

where the relation R between n2 and n3 is viewed as a prop- 
erty of n2. For example, if a canary is a bird and bird 
HAS-COMPONENT wings, then canary HAS-COMPONENT wings 
(Fig. 1.a). Here, R is HAS-COMPONENT and the inherited prop- 
erty is “HAS-COMPONENT wings.” Many plausible inference 
rules have this structure, but inherit over links other than 
ISA. For example, in the “cough syrup” inference, above, cough 
syrup inherits the “CAUSES intoxication” property over the CON- 

TAINS relation: 
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cough syrup HAS-COMPONENT alcohol, and 
alcohol CAUSES intoxication 
cough syrup CAUSES intoxication 

Figure 1.b shows two other examples. They have the same 
premises but different conclusions. One premise is “storm HAS- 

COMPONENT cloud” (and, equivalently, “cloud COMPONENT-OF 

storm”); the other is “cloud MECHANISM-OF rain” (and, equivn- 
lently, “rain HAS-MECHANISM cloud”). But the conclusions arc 
“storm MECHANISM-OF rain” and “rain COMPONENT-OF storm,” 
respectively. 

2 .- I - 
.---has 

- - * - component 

canary” 

a. Property inheritance over ISA links 

mechanism-of component-of 
cloud - rain cloud &storm 

: “component 
: 

: of 

storm .- rain * 

b. Inferences that have the structure of 
property inheritance 

Figure 1: Inheritance and structurally-identical rules 

This illustrates that each pair of relations can produce two 
plausible inference rules that have the same structure as prop- 
erty inheritance over ISA links. For relations ~1, Rz these rules 
are: 

nl Rl ?xz, tllld 

Rule 2 n2 ~2 nn 
n1 R2 n3 

and 

m R2-INV R~, a11 d 
Rule 3 nz RI-INV n1 

n3 RI-INV nj 

Figure 1.b shows these alternatives for ~1 = HAS-COMPONENT, 

R2 = MECHANISM-OF, n1 = storm, n2 = cloud, and n3 = rain. 
Figure 1 introduces the notation we will nse throughout. 

Rules are represented as triangles formed from three concepts 
and three relations. The legs of the triangle represent premises, 
and are always drawn as solid lines. The hypotenuse represents 
the conclusion and is always drawn as a dashed line. 

Rules can be chained by letting the conclusion of one serve as 
a premise for another. Figure 2 shows how the conclusion of a 
+first genernfion inference, “storm MECHANISM-OF rain,” serves 
as the premise of a. second generation inference, which has the 
conclusion “storm HAS-PRODUCT runoff.” 

cloud mechanism-of erain rain has-product * runoff 

.fl .-- 
. .-- 

.- 

-* 
.---has 

.- product .- 

.- 
storm. storm 

First generation Second generation 

inference inference 

Figure 2: Second-generation inference 

Since each pair of relations produces two rules, a knowledge 
base constructed from N relations will produce (N2 + N)/2 
pairs of relations (including relations paired with themselves) 
and an equal number of rules. The GRANT KB is constructed 
from nine relations and their inverses, so (18’ + 18)/2 = 342 
were generated. 

Experiment 1 had two goals. One was to generate all pos- 
sible rules for the GRANT KB and to determine which of them 
produce plausible conclusions. The other was to find out how 
the plausibility of conclusions is affected by chaining these rules. 
Applying roughly 300 rules to the GRANT KB (as we describe 
below), produced thousands of first generation inferences and 
over 200,000 second-generation inferences. We expected very 
few of these to be plausible; but, if we could discover or predict 
the plausible ones, then we would have a powerful method to 
reduce the effort of constructing large knowledge bases. 

2.2 Design 

To determine whether the rules produce plausible conclusions, 
we first instantiate them with specific concepts, then present 
them to human subjects to judge. 

We derived 315 rules from the GRANT KB.’ For each we pro- 
duced 10 test items (five first generation items and five second 
generation items) by the following method: 

Each rule is based on two relations. For each pair, say HAS- 

COMPONENT and MECHANISM-OF, we search the GRANT KB for 
triples of nodes nl,n2,n3 that are connected by these relations 
(i.e., nr is connected to n2 by HAS-COMPONENT, and n2 is con- 
nected to n3 by MECHANISM-OF). Each triple represents a pair 
of premises from which tvro inferences can be drawn (see Rules 2 
and 3, above). For instance, storm, cloud, and rain instantiate 
nl, n2, and n3, respectively in Figure l.b, yielding the conclu- 
siolls “storm MECHANISM-OF rain” and “rain COMPONENT-OF 

storm.” 
Most pairs of relations in the GRANT KB yield dozens of 

n1 ,n,z,nn triples. We randomly select five, and their conclu- 
sions, to be first generation test items. However, we add the 
conclusions of al! the triples to the GRANT KB. 

This procedure is repeated to generate second generation 
test items, with the added condition that one premise of each 
second generation item must be a conclusion that was produced 
during the previous search (though not necessarily the conclu- 
sion of a first generation test item). 

In all, the 315 rules yield a data set of 3116 test items, of 
which roughly half are first generation and half are second gen- 
eration items.2 

2.3 Procedure 

Items in the data set were presented to human subjects by 
a computer program. Subjects were asked first to indicate 
whether both premises were acceptable, one or both were un- 
acceptable, or they did not understand one or both premises. 
Next, the conclusion was shown and subjects were asked to 
judge whether it followed or did not follow from the premises, 
or else to indicate that they did not understand the conclusion. 
Each item was seen by two subjects. Following a practice ses- 
sion with 20 items (none of which was in the data set), each 
subject judged approximately 700 items from the data set. This 

‘Pruning duplicates reduces the original 342 rules to 315. 
2We don’t have 3150 items because, for some rules, the 

GRANT KB yielded fewer than five first generation instances. 
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took about five hours, distributed over three or four self-paced 
sessions. 

2.4 Results 

Since the premises of the test items came from an existing 
knowledge base we expected that most would be .judged accept- 
able. This is in fact the case: 82% percent of first generation 
premises and 63% of second generation premises were judged 
to be acceptable. The following results pertain only to those 
items. 

Each rule is represented in the data set by five first gener- 
ation items and five second generation items, and each item 
was seen by two subjects. Thus, 10 judgments are made of the 
items in each generation of each rule. Two plausibility scores for 
a rule, ranging from 0 to 10, are equal to the sum of t,he number 
of items that subjects judged plausible for each generation of 
each rule. The mean plausibility score, over the 315 rules, for 
first generation items is 4.18 (var. = 6.92), and the correspond- 
ing statistic for second generation items is 3.17 (var. = 4.88). 
Both are significantly different from chance and from each other 
at the p < .Ol level. The fact that both are below chance means 
that most rules are not plausible. Given this, one would expect 
chaining of inferences to produce increasingly-implausible con- 
clusions. This is supported by the evidence that second gen- 
eration inferences are significantly less plausible than first gen- 
eration ones. Subjects judged approximately 50% of the rules 
to have plausibility scores between 3 and 7 (of a possible 10); 
they judged the rest of the rules to be predominantly plausible 
or implausible. 

2.5 Discussion 

While these results indicate that many rules generate predonl- 
inantly plausible conclusions, and many others are predomi. 
nantly implausible, they do not tell us how to predict which 
will be plausible and which will not. We wanted to find a small 
set of common characteristics of rules on which to base these 
predictions. Furthermore, we wanted these characteristics to 
depend only on the relations in the rules, not on the nodes or 
any exogenous factors. 

We discovered two common aspects of relations. Some rela- 
tions, such as HAS-COMPONENT have a hierarchical interpreta- 
tion. Others, such as CAUSES, can be interpreted as temporalre. 
lations. Lastly, relations such as MECHANISM-OF can have both 
hierarchical and temporal interpretations: in “nl MECHANISM- 

OF n2 ," ~2 may be a process that hierarchically subsumes the 
mechanism nr, or nr may be an object or process that exists or 
is required prior to achieving nz. Table 1 lists the deep relationa 

that correspond to all 18 surface relations. Each deep relatiorc 
has a h (hierarchical) or t (temporal) interpretation, or both. 
Expressing rules in terms of these deep relations reduces the 
set of 315 surface rules to 95 unique deep structures. 

More importantly, we identified a characteristic of deep 
structures, called transitivity, that seemed to explain why some 
rules were plausible and others implausible. Figure 3 shows two 
transitive structures and two intransitive ones. The transitive 
deep structures represent the rules: “If n1 CAUSES n2, and nl 
CAUSES TZ~, then nr CAUSES ns,” and “If n1 COMPONENT-OF n!, 

and n2 COMPONENT-OF n3, then nj COMPONENT-OF ~2." \;t'~' 

call these structures transitive because the premises imply an 
ordering between n.1 and n3 that, to be preserved, requires a 
particular ordering between nr and n3 in the conclusion (nr to 

Surface 
relation 

Deep 
structure 

Surface 
relation 

Deep 
structure 

CAUSES 
t 

CAUSED-BY 

COhWONENT-OF * 
h 

HAscoMPoNFiNT h 

h 
FOCUS-OF HAS-FOCUS 

h 

MECHANISM-OF + HAS-MECHANISM -+T 

PRODUCT-OF + 
HAS-PRODUCT 

I +v t 
PURPOSE-OF I ) HAS-PURPOSE 

* t 

SETTING-OF h SETTING h 

SUBJECT-OF 
gh 

SUBJECI- 
h + 

SUBFIELD-OF -4 
h 

HAS-SUBFIELD 
h 

Table 1: Surface relations and corresponding deep relations 

nJ in one rule and n3 to nl in the other). In contrast, the in- 
transitive structures do not require any ordering on nodes in the 
conclusion. In one, the premises indicate no hierarchical order- 
ing between nr and n3, only that n2 is hierarchically-superior 
to both. Similarly, in the other intransitive rule, n1 and no 
are both temporally-prior to 7~2, but no ordering is implied be- 
tween them and, thus, required in the conclusion. The mean 

h 
“2 -“3 

h 1 
.-. 

.- -- : 
.- : 

"1 br-’ 
-- h 

h 1 

.- h .- “1 : 

a. Example transitive b. Example intransitive 
deep structures deep structures 

Figure 3: Transitive and intransitive deep structures 

plausibility score for transitive rules was 8.94 (out of 20; var. 
= 16.83), and for intransitive rules, 5.89 (var. = 14.46). Again, 
the preponderance of these rules are judged implausible, but 
these values are significantly different (p < .Ol), and provide 
strong post-hoc evidence that transitivity is a factor. 

Transitivity is clear when surface relations map to deep re- 
lations whose h and t elements point in just one direction. But 
the surface relations HAS-MECHANISM and PURPOSE-OF have 

deep relations where t and h point in opposite directions. 
Therefore, rules that are transitive under one interpretation 
of these relations are necessarily intransitive under the other. 
For example, the structure in Figure 4.a may be transitive or 
intransitive. We call structures like this ambiguous. 

Although our data suggested that transitivity predicts the 
plausibility of rules with unambiguous structures, the results 
were less clear for ambiguous ones. All ambiguous structures 
have transitive interpretations, but we knew from our data that 
not all the corresponding rules were plausible. We hypothe- 
sized a characteristic of interpretations, called consistency, that 
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t 
n2 - % 

h ..-fl 
.- t .- : 

.- 
t .- .* 

n, -- t 

a. Consistent h b. Consistent t 
interpretation interpretation 

Figure 4: Ambiguous deep structures 

might discriminate plausible ambiguous rules from implausible 
ones. A structure has a consistent interpretation when its deep 
relations all have the same interpretation, either h or t. For 
example, Figure 4.a has a consistent interpretation in which 
all its deep links can be interpreted as h. Moreover, this h 
interpretation is transitive. Figure 4.b has a consistent t inter- 
pretation, but it is intransitive; and the interpretations of the 
deep relations that make Figure 4.b transitive are inconsistent 
(t, t, and h). 

1 I 

Figure 5: Single interpretation deep structures 

predicts the plausibility of these rules. A graph of the means 

60 % - 

3 Experiment 2: Exploring Transitivity 

At the end of Experiment 1, we had formed the hypotheses 
that transitivity predicts plausibility, and that consistency de- 
termines the interpretation (transitive or intransitive) of am- 
biguous structures. Experiment 2 tests these hypotheses. 

3.1 Design 

Experiment 2 focused on ten relations from Experiment 
1: CAUSES, COMPONENT-OF, MECHANISM-OF, PRODUCT-OF, 

PURPOSE-OF and their inverses. (The other relations replicate 
deep relations and occurred relatively infrequently in the knowl- 
edge base.) Since each of these surface relations has a unique 
corresponding deep relation, the 95 rules they generate map to 
95 different deep structures. From these, we chose 56 structures 
(and thus, rules) as a representative sample.3 We generated 10 
first generation test items for each of the 56 rules, just as we 
did in Experiment 1. 

20% - I 

transitive 
items 

ini;ym;tive 

Figure 6: Transitivity x consistency analysis 

(Fig. 6) suggests that we cannot predict the plausibility of rules 
that have no consistent interpretation, because the mean plau- 
sibility score for these rules is roughly five out of 10 (i.e., at 
chance) irrespective of whether the rule is transitive. Figure 7 
compares the mean plausibility scores of transitive, intransitive, 
and inconsistent rules to chance performance; transitive and in- 
transitive inconsistent items are collapsed into one category. 

3.2 Procedure Transitive 

Fourteen subjects each viewed all the test items. Items were 
presented as in Experiment 1. 

3.3 Results 

Our hypothesis is that transitivity, as determined by the consis- 
tent interpretation of the deep structure, predicts plausibility. 
Eight rules are composed of surface relations that have just one 

deep interpretation (CAUSES, CAUSED-BY, HAS-COMPONENT, 

COMPONENT-OF; see Fig. 5). With these we can analyze the ef- 
fects of transitivity and consistency on plausibility in rules with 
single interpretations. A two-way analysis of variance found a 
significant main effect of transitivity (p < .OOl) and a signifi- 
cant transitivity x consistency interaction (p < .OOl), but no 
main effect of consistency (p > .2), confirming that transitivity 

ig 
+20% 

.r .- ul 
6= + 10% 

_m 
8 a Chance 
g 5 (50%) 

$ .+ -10% 
a 

-20% 

-30% 

Figure 7: Scores for rules with single interpretations 

Analyzing all our rules in terms of these categories yields 18 
that have consistent transitive interpretations, 20 consistent in- 
transitive rules, 8 inconsistent rules, and 4 rules that have both 
transitive and intransitive consistent interpretations.4 The his- 
togram for all rules (including the eight analyzed earlier) is 
presented in Figure 8. 

3Rules generated from a single surface relation and its in- 
verse always map to one transitive and two intransitive deep 
structures. Our sample included the transitive structure and 
one of the intransitive structures (chosen randomly). Pairs of 
non-identical relations and their inverses form four transitive 
and four intransitive rules. Our sample included two transitive 
and two intransitive rules from each of these sets. 

Transitive lntransltlve 

inconsistent 

Inconsistent Intransitive 

“Unfortunately, the test items for the other six rules shared 
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lnconslstent lntransltive 
consistent rules rules 

$2 

+30% transitive & 

.e e 
‘Fjz 

+20% 

g = 
mu + 10% 
‘Ea 
8 0” Chance 
lf =r (50%) n 

-10% 

Figure 8: Scores for all rules 

Although less clear-cut, Figure 8 echoes one of our earlier 
results: transitivity predicts the plausibility of rules with con. 
sistent interpretations. However, the mean plausibility score for 
inconsistent rules is higher than chance, and the mean plausibil- 
ity score of consistent intransitive rules is much closer to chance 
than it was in Figure 7. 

3.4 Discussion 

While the predictive power of transitivity is high for rules that 
have only one interpretation, it becomes diluted in rules with 
multiple interpretations. It is not surprising that rules with con- 
sistent transitive und intransitive interpretations have a mean 
plausibility score roughly halfway between the scores for tran- 
sitive and intransitive rules (Fig. 8). However, the mean plau- 
sibility score of inconsistent rules, which we expected to be at 
chance, was higher (61%); and the mean plausibility score of 
rules with consistent intransitive interpretations, which we ex- 
pected to be implausible, was not as low as we expected (43%). 

We hypothesize that both these effects are due to an unan- 
ticipated factor that is raising the plausibility of some but not 
all of these rules. Whereas all our surface rules have the same 
structure as property inheritance over ISA links, some but not all 
of the deep structures of both the intransitive and inconsistent 
rules have this form. For example, the deep structure for the 
rule nl COMPONENT-OF nz, nz HAS-MECHANISM n3 t n1 HAS- 

MECHANISM n3 is intransitive, but its conclusion is often plausi- 
ble, as illustrated in Figure 9. In this instantiation, battle inher- 
its “HAS-MECHANISM weapon” from war over a COMPONENT-OF 

relation. We expect rules with this structure to yield relatively 
high plausibility ratings even if they are intransitive, because 
property inheritance is a common and powerful plausible infer- 
ence rule. 

Generalized property inheritance (GPI) is a characteristic of 
a rule’s deep structure, comparable with transitivity: 

If nl is related to nz by h, and n2 is related to n3 

by any relation i, then it is plausible to infer that 
n1 is related to n3 by i 

This definition does not restrict the direction of h; it can point 
“up” or “down” from n1 to n2, whereas in property inheritance 

many common premises. This was an unavoidable consequence 
of our decision to generate test items randomlv. Four had con- 
sistent transitive interpretations, two had consistent intransi- 
tive interpretations. 

has-mechanism 
war -weapon 

battle . 

a. Surface structure b. Deep structure 

Figure 9: An intransitive but plausible rule 

over ISA links, nr must be a subclass or instance of nr, that is, 
ISA must point “up.” We relax this for GPI because it is often 
plausible to infer that a concept will have properties of those 
concepts hierarchically-inferior to it. 

GPI explains why some intransitive rules have higher-than- 
expected plausibility scores. Since some transitive rules are 
also GPI, we ran a post-hoc transitivity x GPI analysis of vari- 
ance, and found main effects of transitivity (p < .OOl) and 
GPI (p < .05), with no interaction effect. Post-hoc tests on 
the means (Newman-Keuls) found a significant difference be- 
tween GPI intransitive items and non-GPI intransitive items 
(p < .05), which means that among intra.nsitive rules, GPI dif- 
ferentiates two statistically-distinct classes-relatively plausible 
and relatively implausible rules. After removing GPI rules, the 
mean plausibility score of inconsistent rules decreases (Fig. 10). 
Therefore, GPI provides a post-hoc explanation of why intran- 
sitive and inconsistent rules have higher-than-expected plausi- 
bility scores. Among transitive items, GPI had no statistically 
discernible effect. And since there was no interaction between 
transitivity and GPI, we regard them as independent factors. 

Transitive GPI Rules Incon- Intran- 

gii 
d- 

+ 10% 

5& 
2 2 Chance 
al -- (50%) n 

-10% 

Figure 10: Post-hoc revision with GPI of Figure 8 

4 Contributors to Plausibility 
In this section we will discuss the factors that contribute to 
judgments of plausibility. (A more detailed analysis and pre- 
sentation is given in [Cohen and Loiselle, 19881.) Recall that 
our goal is to find plausible inference rules that support graceful 
degradation and help knowledge engineers. Ideally, the agent 
who uses these rules should not need much knowledge to judge 
the plausibility of their conclusions. 
bility of the conclusion of the rule 

For example, the plausi- 

n1 
m 

CAUSES 

CONTAINS 

CAUSES 

n2, 

nl 

n3 

and 

n2 
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seems not to depend on the objects that instantiate ~1, nz, and 
n3. In contrast, to judge the plausibility of a conclusion of the 
rule 

n1 CAUSES m,, and 
n.2 

77, I 

we need knowledge about n1 and ~2 that can tell us how likely 
nl is given n2. 

What knowledge contributes to the plausibility of the con- 
elusions of the rules in Experiments 1 and 21 Said differently, 
what factors account for the total variance in judgments of plau- 

sibility (2’) among our subjects. 7 Wt believe T has four additive 
components: 

subject variance-the proportion of T due only to indivitl- 
ual differences in subjects’ knowledge, experience, moti- 
vation, and so on. 

item variance-the proportion of T due only to differences 
in the concepts that instantiate 7x1, n2, nn in the rule. 

plausibility 77% and 68% of the time. No knowledge is required 
to apply these criteria. Greater accuracy requires more knowl- 
edge, particularly knowledge about the specific rules and the 
concepts that instantiate them; but because we could not accu- 
rately estimate the contribution of individual differences among 
our subjects to T, we do not know the limit on the accuracy of 
our predictions. 

Our experiments relied on the GRANT KB, which was built 
for a different purpose. Although our results are limited to this 
knowledge base, we believe they are more general, because the 
surface relations in the GRANT KB are common, and because h 
and t are general semantic components, and because transitiv- 
ity and GPI are common structural characteristics. But further 
work is required to prove the generality of our results. 

Our goal was to develop methods to support graceful degra- 
dation and knowledge engineering. Clearly, these purposes are 
not met if plausible inference rules require masses of knowledge 
to judge their conclusions. We are very encouraged by the rela- 
tively high accuracy of criteria that require no knowledge, and 
by the fact that our accuracy is higher for plausible rules than 

between-rule variance-the proportion of T due only to 
differences in the surface structures of rules. 

deep structure variance-the proportion of T due onlv to 
whether deep structures are transitive, intransitive, or 
GPI structures. 

Ideally, deep structure variance should account for the 
largest component of T. If 100% of T was due to deep structure 
variance, then transitivity and GPI would be perfect predictors 
of plausibility. In contrast, if a large fraction of T is due to item 
variance, then one needs to know the specific instantiation of a 
rule-the concepts in the test item-to predict its plausibility. 
Similarly, between-rule variance represents the effect of know- 
ing the surface structure of test items on one’s ability to predict 
their plausibility. Subject variance represents the limit of our 
a.bility to predict plausibility. 

For transitive and intransitive rules, and to a lesser extent 
for GPI rules, deep structure variance accounts for a large frac- 
tion of T. For all test items with these structural character- 
istics, our predictions of plausibilitv will be correct for 77? 
of transitive items and 68% of GPT items; and our prediction 
of implausibility will be correct for 62% of intransitive items. 
Since these numbers are not lOO%, the remaining variance in 
T must be due to the rule, item, and subject factors. 

for implausible ones. 
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