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Abstract 
A suggestion by John McCarthy for general 
formulations of multiple defeasible inheritance 
in ordinary nonmonotonic logic is examined 
and found to suffer from a variety of technical 
problems, including 1) its restriction to 
object/class/property networks, 2) unintuitive 
results in “Nixon diamond”-type networks, 3) 
unnecessary closed-world assumptions, and 4) 
susceptibility to unintended models when gen- 
eralized. A family of theories is presented 
that substantially revises McCarthy’s formula- 
tion to avoid these problems and restrictions. 
Finally, an inference control strategy for com- 
puting the theory is identified whose tractabili- 
ty is ensured by a variety of techniques in- 
cluding incremental computation of abnormal- 
ities and truth maintenance. 

Marvin Minsky’s challenge to proponents of logic- 
based reasoning in AI to formalize the inheritance of 
prototypical properties and their exceptions [Minsky, 
19751 has resulted in a whole new field of formalized 
nonmonotonic reasoning including general purpose 
nonmonotonic logics [McCarthy, 1980; Reiter, 1980; 
McDermott and Doyle, 19801, applications of such log- 
its to inheritance hierarchy problems [McCarthy, 1986; 
Etherington, 1987; Sandewall, 19861, and special for- 
malisms just for inheritance reasoning [Touretzky, 
1986; Horty et al., 19871. While these formulations of 
inheritance have demonstrated the adequacy of formal 
systems for such commonsense reasoning problems, 
each suffers from some substantial deficiency, e.g., lack 
of computationally tractable implementation tech- 
niques, absence of any general formalization pro- 
cedure, limited expressive power, or use of non- 
standard formalisms that are difficult to extend or 
modify. In this paper, we develop essential revisions 
to a ‘suggestion by McCarthy [1986], creating a new 
family of logical theories for formalizing general inheri- 
tance reasoning that suffers none of these deficiencies. 

2. ccarthy’s Formulation 

2.1. bjectl Class/ Property 
McCarthy [1986] has developed two fairly general 
methods for representing multiple inheritances with 
exceptions - a technique using prioritized circumscrip- 
tion (pp. 105107) and a “class-level” approach using 
ordinary circumscription that reilies classes and 

properties (pp. 99-100). Our work has focused on the 
latter approach because it has an appealing 
simplicity,and because no general procedure for 
translating inheritance networks into the prioritized 
approach has yet appeared. 

McCarthy reifies “classes”’ and properties of 
objects by assigning first-order variables and constants 
to them. Inheritance relations between classes are 
expressed by wffs of the form cl I c2, stating that 
class cl ordinarily inherits from class c2, while in(x, c) 
asserts that an object x is a member of a class c. 
Default properties are expressed by wffs of the form 
ordinarily(c, p), meaning that objects in class c ordi- 
narily have property p, while ap(P, x) states that a 
predicate P applies to an object X. An abnormality 
predicate ab(aspectl(cl,c2,p)) expresses the abnormality 
of members of class cl with respect to inheriting pro- 
perty p from class c2. D efau It inheritance of properties 
by classes is expressed by: 

Ml. [ordinarily(c2,p) & cl I c2 & 
l ab(aspectl(cl,c2,p))] 1 ordinarily(c1, p). 

Cancellation of such inheritance is formulated by: 
M2. [cl I c2 & c2 I c3 & ordinarily(c2, not(p))] 

1 ab(aspectl(cl,c3,p)). 

Transitivity of inheritance of class membership is 
asserted by: 

M3. [cl 5 c2 & c2 5 c33 3 cl < c3. 

Axiom M3 entails the fundamental limitation of 
McCarthy’s theory: class membership relations are not 
defeasible, i.e., they cannot be cancelled. We refer to 
McCarthy’s approach as an “object/ class/ property 
inheritance system,” adapting Touretzky’s classification 
scheme [Touretzky, 19861. 

While McCarthy’s treatment of inheritance of 
properties by classes provides foundations adequate for 
a broad range of inheritance systems, it cannot 
represent the cancellations of inter-class relations that 
are found in many more general systems (e.g., 
[Touretzky, 1986; Horty et al., 1987]).3 

t He observes that these classes are not extensional. 
We may conceive of them either as intensional classes or as 
names of the predicates which pick out the members of 
these classes (taking a meta-level view). 

2 I thank Jeff Horty for pointing this out to me. 

3 WC should note that McCarthy presented this ap- 
proach merely as a promising possibility, not as a 
comprehensive solulion. 
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2.2. Problems 

2.2.1. A Natural Extension 
The most natural extension of McCarthy’s for- 

malism to handle exceptions to class membership 
inheritance treats them in the same manner that he 
treats exceptions to property inheritance, by replacing 
his axiom M3 as follows: 
M3a. [cl I c2 & c2 5 c3 & --, ab(aspectl(cl,c2,c3>)] 

3 cl 5 c3 

M3b. [cl S c2 & c2 5 c3 & c2 5 not(c4)] 
1 ab(aspectl(cl,c3,c4)) 

This leads to the intended results in simple class inher- 
itance cancellation cases, such as that shown in Figure 
1, although it will admit unintended models in slightly 
more complex networks if we simply minimize abnor- 
malities (as McCarthy does). 

Figure 1. Simple class cancellation 

2.2.2. Unintended Models With Gratuitous Links 
In some inheritance networks, there will be 

models of this extended theory which are minimal in 
abnormalities but achieve that condition by admitting 
entirely new direct links that cancel the inheritance of 
intended abnormalities. For example, the network of 
Figure 2 will have minimal models with a gratuitous 
explicit link A I not(C), which creates the unintended 
abnormality ab(aspectl(A, B, C)) while blocking the 
in tended inheritance of the dual abnormalities 
ab(aspectl(A, D, F)) and ab(aspectl(A, D, E)). Thus, 
simply minimizing abnormalities will block many of the 
intended results (e.g., A 5 C) in such cases. 

This problem is characteristic of the general 
scheme of directly minimizing abnormalities in 
abnormality-based meta-level general inheritance sys- 
tems and is independent of our particular formulation 
of the axioms. When abnormalities can be inherited, 
and that inheritance can be cancelled, there will be 
models of many networks that will have fewer abnor- 
malities if an unexplained cancellation of inheritance 

Figure 2. Unintended models 

holds. Thus, we conclude that simple abnormality 
minimization will not provide the intended results in 
any such theories. 

2.2.3. Excessive Closed-World Assumptions 
McCarthy’s approach of simply minimizing 

abnormalities cannot escape a wide variety of closed- 
world assumptions which violate common sense in 
many cases. Minimizing the abnormalities of indivi- 
dual objects, for example, entails that no objects with 
any abnormalities (e.g., penguins) exist unless they can 
be proven to exist. This pervasive problem arises in 
McCarthy’s object-level theories of inheritance 
[McCarthy, 19861 as well as in his meta-level theories, 
and in all other previous logic-based object-level for- 
mulations (e.g., [Lifschitz, 1985; Etherington, 19871). 

2.2.4. Unintuitive Results In “Nixon Diamonds” 
McCarthy’s theory encounters a variety of 

difficulties when applied to certain kinds of inheritance 
networks which I call “Nixon diamonds,” after the ori- 
ginal example of this type developed by Reiter and 
illustrated by Figure 3. More general “Nixon dia- 
monds” consist of pairs of arbitrary length, multi-link 
paths between two nodes, where the final links are con- 
trary - also referred to as “conflicting multi-link 
paths.” McCarthy’s theory properly handles the origi- 
nal Nixon diamond, in which “Nixon” refers to an 
individual, provided the implicit axiom ap(p,x) 3 7 
ap(not(p),x) is assumed. Difficulties arise, however, in 
“generic Nixon diamonds,” in which the root (Nixon) 
is a class (e.g., Nixon’s family) instead of an indivi- 
dual, and in “extended Nixon diamonds,” where the 
multi-link paths are longer than two links (as in Figure 
4). 

pacifist 

republica 

uaker 

nixon 

I o*zy I 
in * 
Key 

Figure 3. Original Nixon diamond 

pacifist 

Kev 

Figure 4. Extended Nixon diamond 

In extended Nixon diamonds, McCarthy’s theory 
entails that some abnormality holds, blocking one of 
the conflicting paths (as expected), but will be 
indifferent between all the possible link cancellations. 
Commonsense reasoning, however, preferring the least 
disruption to its default beliefs, tends to conclude that 
only the last links in conflicting multi-link paths are 
suspect, allowing the intermediate conclusions to stand. 
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3. Excluding Unintended Models p’s, where x can refer to either an individual (or 
object-level term) or a class (or object-level predicate), 

3.1. Alternative Methods and p refers only to either a class or property. General 

From the problems with unintended models that we 
network relations, both explicit and derived, can be 

identified for the natural extension of McCarthy’s 
represented by isa(x,p). 

theory, it is apparent that common sense does not C, 
A sorted logic is used in which upper case A, B, 

prefer a simple minimization of his abnormalities, but 
D, Al, Bl, . . . are variables referring to individual 

insists that no unexplained abnormalities should be 
objects, while upper case M, N, 0, P, Q, R, S, T, Ml, 

admitted in place of expected ones. Commonsense use 
Nl are variables for classes/ predicates, and upper 

of default relations assumes that there are no abnor- 
cask ietters from the end of the alphabet - u, v, w, 

malities interfering with prima facie default conclusions x, Y, z, Ul, Vl, . . . . are variables ranging over objects 

unless they can be shown to follow from explicitly 
and classes. Corresponding lower case terms are used 

known relations using basic rules of default cancella- 
for constants in the same categories, along with other 

tion. Once this general principle is recognized, its for- mnemonic lower case constant names (e.g., elephant) 

mulation proceeds quite naturally by definition of an whose category should be obvious in context. 

abnormality predicate ab in terms of the rules that gen- To reason about exceptions to default links, we 
erate abnormalities. Then, minimizing the explicit use an abnormality predicate modeled after McCarthy’s 
knowledge (direct links) required by those rules to use of a similar predicate, although our syntax is some- 
generate abnormalities will restrict all such abnormali- what simplified. Where McCarthy uses a predication of 
ties appropriately. This solution comes at the prima the form ab(aspectl(X,P,Q)) [McCarthy, 19861 to 
facie cost of a general closed-world assumption that represent abnormalities, we use ab(X,P,Q) to mean 
entails the falsehood of any general relations that are that object/class X is abnormal with respect to inherit- 
not provable from such theories. We will show, how- ing any existing default relation between P and Q. For 
ever, that such assumptions may be fully relaxed while example, ab(royal-elephant, elephant, gray) asserts that 
retaining their benefits in excluding just the unin- royal-elephants are abnormal with respect to inheriting 
tended abnormalities. any isa relation between elephant and gray, or, less for- 

The other major alternative for avoiding unin- mally, royal-elephants are abnormal elephants with 

tended models within this type of theory involves respect to being gray. While McCarthy uses different 
minimizing what I call “potential abnormalities,” i.e., aspects (aspect1 and aspect2) to distinguish between 

those that would hold if there were no other anormali- particular and generic abnormalities, we allow these 

ties blocking them. We do not present our theory for distinctions to be determined by the sorts of terms 

minimizing potential abnormalities here because it is appearing in ab predications. 

more complex than minimizing direct links, and offers 
no clear advantages for inheritance reasoning. 4.2. Core Inheritance Axioms 

3.2. Comparison to Temporal Reasoning 
The two identified alternatives for eliminating unin- 
tended models of general inheritance theories are 
examples of general techniques of nonmonotonic rea- 
soning that have been applied previously in temporal- 
causal reasoning to exclude unintended models 
identified for temporal persistence theories [Hanks & 
McDermott, 19861. Minimizing types of causal rela- 
tions was used by Lifschitz [Lifschitz, 19871 to elim- 
inate models with unexplained changes, just as minim- 
izing types of explicit inheritance relations here elim- 
inates unexplained inheritance cancellations, Minimiz- 
ing “potential causes” was used by Haugh [Haugh, 
19871 to eliminate spurious particular potential causes 
of change (which would be actual causes if their 
preconditions held), just as minimizing potential abnor- 
malities in inheritance theories will exclude spurious 
inheritance cancellations. Thus, our new results here 
suggest a broad potential for application of these tech- 
niques to other nonmonotonic reasoning issues. 

4. Closed-World Inheritance 

4.1. General Notation 
To enable minimization of explicit relations in our 
closed-world theories, we distinguish them from other, 
derived, relations by representing them with distinctive 
predicates. Explicit default network relations (or links) 
are of the form isa-x(x,p), stating that x’s are normally 

4.2.1. Network Relations 
Using the notation just presented, and axioms for 

generating derived relations from explicitly asserted 
ones, we can formulate a broad range of inheritance 
theories. We identify a general family of theories 
which share three core axioms and a simple minimiza- 
tion technique. The first axiom defines all of the 
default relations derivable from a network as: 

Al. isa(X,Q) = [isa-x(X,Q) v 
(!b3 &G-V) & isa-x(RQ) & 1 WXP,Q)ll 

which states that X’s are (normally) Q’s if and only if 
either there is an explicit network link asserting this, or 
there is an intermediate node P in the network such 
that X’s are (normally) P’s, there is an explicit link 
asserting P’s to be Q’s (normally), and X’s are not 
abnormal with respect to P’s being Q’s. The abnormal- 
ities referred to are restricted to four primitive types: 

A2. ab(X,P,Q) = [ab-d(X,P,Q) v ab-i(X,P,Q) v 
ab-G,RQ) v ab-x(X,RQ)l. 

Explicit abnormalities (ab-x) are a type of cancellation 
link that are explicitly asserted, while the other abnor- 
malities are derived from conflicting isa x relations. 

4.2.2. Direct Abnormalities 
Direct abnormalities are created by the direct 

override by a single explicit link of a prima facie 
multi-link path in a network. The example network of 
Figure 1 illustrates the direct abnormality created by 
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the cancellation of the path from penguin through bird 
to pyer by the direct contrary link from penguin to 
not(j7yer) .4 

Our third core axiom characterizes the general 
conditions under which direct abnormalities arise as: 

A3. ab d(X,P,Q) = 
-[isa( X,P) & isa-x( P,Q) & isa-x( X,not( Q))]. 

4.2.3. Inherited Abnormalities 
Our other types of abnormalities admit of a broad 

range of alternative interpretations, none of which has 
achieved any consensus as yet. Here, we present the 
simplest version of inherited abnormalities. It allows 
what Toure tzky calls “off-path preemptions” 
[Touretzky et al., 19871, in accord with the theories in 
[Sandewall, 19861 and [Horty et al., 19871, and is for- 
mulated as: 

A4. ab-i(X,Q,R) = (gP)[isa(X,P) & 
[abeW,Q,R) v ab-W,Q,W v ab-x(RQ,R)ll. 

Such inherited abnormalities exist for every descendant 
X of a node P that has some direct or conflicting abnor- 
mality (e.g., ab-d(P,Q,R )). An example is illustrated 
by Figure 1, wherein opus inherits an abnormality with 
respect to birds being flyers from penguin. 

Under this conception of inherited abnormality, 
an abnormality requires only a path (isa(X,P)) from the 
inheriting node (X) to the original abnormality node 
(P) to be inherited. One plausible variation of this 
would require every inherited abnormality ab-i(X,Q,R) 
to have a path (path(X,P,Q)) all the way from the 
inheriting node X, through the original abnormality 
node P, to the base node Q of the conflict link. This 
stricter conception could be expressed by only a minor 
variation of our axiom A4: 
A4’. ab-i(X,Q,R) = (&)[path(X,P,Q) & 

(aQ(P,Q,R) v ab-c(RQ,W v ab-W,Q,W 
where 
A4”. path(X,P,Q) = [isa(X,P) & 

[[isa-x(P,Q) & 1 aW,P,Q)l v 
(~RHpatW,P,W & isa-x(R,Q) & 1 aWW,QHll. 

This variation appears to correspond to the treatment 
in [Horty et al., 19871 when combined with ambiguity- 
blocking skepticism in conflicting paths as described 
below. Our intuitions in discriminating examples 
examined thus far favor our initial formulation, 
although further investigations are indicated before this 
issue can be considered settled. 

4.2.4. Conflicting Path Abnormalities 
A variety of incompatible alternatives for han- 

dling conflicting multi-link paths {or Nixon diamonds) 
have been proposed in the literature, e.g., [Touretzky 
et al., 1987; Horty et al., 19871. Approaches have 

4 Note that all the directed arcs of our illustrations 
correspond to isa-?- links in our theories, while a slash 
through arcs represents relations to the complement class of 
the destination node, as isa x(penguin, not(jiyer)) is 
represented in Figure 1. Narrow line links correspond to 
isa x links from individual objects, as isa-x(opus, penguin) is 
represented in Figure 1. 

been categorized as either “skentical” or “credulous” 
with regarYd to their willingness *to draw conclusions in 
these &es. Credulous th;ories insist that one of the 
two conflicting terminal links must apply to the root 
node in such cases (e.g., isa(nixon, pacifist), isa(nixon, 
not(pac@st)) for Figures 3 and 4), while skeptical 
theories support no such conclusions (i.e., the 
conflictin g links cannot be used to make any conclu- 
sions about the base node). 

4.2.4.1. Skeptical Theories 

et al 
Skeptical approach es, as distinguished in [Horty 

-, 19871, possess the considerable computational 
advantage of having unique extensions, which obviates 
any need to examine -alternative extensions during 
derivations. Skeptical theories can be formalized 
within abnormality theories such as ours by asserting 
the root of a general diamond to be abnormal with 
respect to both of the final links to its top, i.e., 
Ambiguity-Blocking Abnormality: 
A5 ab-c(X,P,Q) 5 

(sR)[isa( X,P) & isa-x(P,Q) & 
isa(X,R) & isa-x(R,not(Q)) & 

where 
1 ab-dix( X,P,Q) & 1 ab-dix(X,R,not(Q))] 

86. ab dix(X,P,Q) = 
bb~d(X,RQ) v ab-x(X,RQ) v 
<!$>[isa(XS) & bb-d(W,Q) v ab_x(W,Q)lLs 

This first set of conflicting-path abnormality 
axioms accords with Horty’s interesting results for 
“nested Nixon diamonds,” as illustrated by Figure 5. 
In this example, these theories block any conclusions 
about the relations between X and R in the nested dia- 
mond, thereby blocking any positive path from X to Q 
in the larger diamond, leaving the path from X through 
P to not(Q) unopposed. 

lated 
The “ambiguity-blocking” skepticism just formu- 
may be considered unin tu itive becau se the posi- 

Figure 5. Nested diamonds 

tive path through a nested diamond (e.g., X --> F --> 
R --> Q in Figure 5) seems to remain a possible 
conflicting path to its contrary alternative in the larger 
diamond (e.g., X --> P -/-> Q in Figure S), as dis- 
cussed in [Touretzky et al., 19871. Thus, it may seem 
that a reasonable skentic should not conclude 
isa(X,not(Q)) in our example, and should propagate the 
uncertaintv of the nested diamond to the larger dia- 
mond. Previous attemnts to formulate- such 
“ambiguity-propagating” ikepticism have not been 
successful, although it is quite straightforward within 

’ Note that our stricter notion of abnormality inheri- 
tance would require a path(X,S,P) instead of the simple 
isa(X,S) in this axiom. 
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our abnormality theories, using the following axioms: abnormality ab(a,q,r) as itself. 

Ambiguity-Propagating Abnormality: 
A5’. ab-c(X,P,Q) = 

(SR) [isag(X,P) & isa-x(P,Q) & 
isag( X,R) & isa-x( R,not( Q) ) & 
7 ab-dix( X,P,Q) & I ab-dix(X,R,not(Q))] 

where 
A7. isag(X,R) E [isa-x(X,R) v 

(gT)[isag(X,T) & isa-x(T,R) 
& I ab-dix(X,T,R)]]. 

These axioms function by defining potential isa rela- 
tions between nodes (e.g., isag(X,R) in Figure 5) that 
will be genuine relations if theyH;;c;ot cancelled *by a 
conflicting multi-link path. these axroms 
enable cancellation of all paths from’ roots to tips in 
embedded Nixon diamonds, and yield complete skepti- 
cism about all such relations (e.g., between X and R 
and between X and Q in Figure 5). 

4.2.4.2. Credulous Theories 
Less skeptical theories are possible if we require 

only that one or the other of two conflicting paths is 
blocked, as formalized in [Haugh, 19881. 

4.3. erforming the inimizations 
Minimization of explicit relations can be conveniently 
performed by parallel circumscription of our explicit 
link predicates isu x and ab-x. Alternatively, for non- 
disjunctive theories, we may define a single explicit 
link predicate in terms of them and circumscribe it, 
e.g.: 
link(X,P,Q) E [ab-x(X,P,Q) v 

(isa-x( X,P) & Q = isa# )] 

where isa# is a reserved constant that simply restricts 
the range of the extra variable. We can achieve the 
same effect as circumscription of link in a default logic 
[Reiter, 19801 with the single normal default rule: 

: I link( al,c2,c3) 
-, link(al,c2,c3) 

which asserts that whenever it is consistent for no 
explicit link to exist between nodes, we may infer that 
there is none. 

4.4. Fulli Object-Level Interpretations 
It is possible to translate all of our meta-level default 
relations into object-level axioms using ordinary predi- 
cates. These translations, however, cannot occur in iso- 
lation, since all the relevant abnormalities can be deter- 
mined only from the structure of the network as a 
whole. Thus, if we wish an object-level translation, we 
must determine the relevant abnormalities based upon 
the structure of the whole net, using our meta-level 
axioms above, and combine these derived abnormali- 
ties with the individual translations of each link. 

After all the provable abnormalities are deter- 
mined from a meta-level theory, translation should 
proceed as follows: 

2) 

3) 

4) 

5) 

Translate every isa-x(a,p), where a is an indivi- 
z;y;;astant, as p(a), and every isa-x(a. not(p)) 

. 
Translate every explicit default relation isa-x(p,q) 
as ttp(W & - aW,p,q)l 3 4(X)1. 
Translate every explicit abnormality ab-x(X,p,q) 
as ab(X,p,q). 
Minimize specific abnormalities (ab(X,P,Q)) in 
the new theory. 

5.1. Ill al redicate Glasses 

5.1.1. MetsLevel Theories 
Our closed-world theories yield just the right 

results regarding abnormalities, but make more 
assumptions than necessary about what isn’t provable. 
Ideally, we would like to keep the abnormality results, 
yet no longer insist that all the excluded primitive links 
are false. This can be accomplished by dividing our 
predicates into two parallel classes, one in which the 
closed-world minimizations are performed, and 
another, general all-inclusive class, in which there are 
no explicit minimizations, but only some restrictions to 
prevent interference with the results of the closed- 
world minimizations. 

In particular, let us create new predicates by 
appending a “*” to all of our previous predicate 
names, e.g., isa x* instead of isa-x, and ab x* instead 
of ab-x. Then, we may rewrite our axiom< using the 
new predicates, creating a new theory H* whose gen- 
eral axioms correspond to to the old theory H. All of 
the links of particular inheritance theories will be 
expressed in H*, and will be minimized as above. But, 
now our minimized H* theory is only a subset of a 
larger theory H** which includes H and H*, wherein 
the predicates of H* are considered as instances of 
those of H, formalized: 

isa*(X,P) 2 isa( X,P) 
ab*(X,P,Q) z, ab(X,P,Q), etc. 

Thus, the minimizations of H* will no longer 
entail closed world assumptions with respect to H**, 
since explicit links that are absent from H* may still 
appear in H. Finally, H** will need one more axiom to 
exclude any new relations in H that could otherwise 
cancel conclusions of the closed-world theory H*. 

[isa*(X, Q) & I isa-x*(X, not(Q))] 
2 I isa(X, not(Q)). 

This asserts that no unopposed network relation of the 
original closed-world theory H* is ever opposed by a 
contrary relation in the larger theory. This excludes 
unwanted models while allowing any other relations 
that don’t conflict with the original theory. We might 
also wish to restore the law of the excluded middle to 
our meta-level theory for properties of individual 
objects, i.e., 

isa(A,P) 1 l isa(A,not(P)). 
1) Translate each general abnormality abtp,q,r) as 

MW = ab(X,q,r)] and each particular With this formalization of open-world inheri- 
tance, we may selectively specify any degree of closure 
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assumptions we like for particular predicates. 

5.1.2. Object-Level Interpretations 
Object-level predicates would also come in pairs, 

and network relations would be translated into starred 
predicates (e.g., isa-x*(p,q) translates into [[p*(x) & l 
ab*(x,p,q)] =I q*(x)]). The additional axioms relating 
starred and unstarred predicates would also be required 
(e.g., [C;r “(x) 3 Cl(x)]) for all object-level predi- 
cates. After translation, object-level open-world 
theories would proceed to minimize the provable direct 
abnormalities (ab*), thereby permitting any other 
abnormalities that did not disagree with the positive 
conclusions of the closed-world theories. Additional 
closed-world assumptions may also be added for partic- 
ular classes, as desired, providing the fullest flexibility 
in specifying the intended assumptions. 

5.2. Auto-Epidemic Interpretations 
Our use of dual predicates in open-world theories is 
highly suggestive of an interpretation in auto-epistemic 
theories. Our starred explicit relations are quite clearly 
just those that can be proven to hold, i.e., those that 
are “known” by the system. Thus, it would be natural 
to translate the entire theory into an au to-epistemic 
logic in which the starred relations are translated into 
statements of knowledge, according to the following 
type of schema: 

isa-x*( X,P) = > Knows isa-x(X,P) 
ab-x*( X,P) = > Knows ab-x(X,P) 

Object-level translations 
semantically revealing: 

would be analogous, and 

isa-x*(P,Q) = > 
[[Knows P(x) & I Knows ab( x,P,Q)] 

3 Knows Q(x)] 
Thus, a default relation between P and Q can be inter- 
preted as asserting that if something is known to be P 
and is not known to be abnormal with respect to being 
Q, then it is known to be Q. 

Although more work is required on the formal 
details of such auto-epistemic versions of our theories, 
they offer considerable promise in providing deeper 
semantic foundations and more coherent integration 
with general theories of an agent’s knowledge and 
self-reflection. 

careful incremental derivation of abnormalities, truth 
maintenance on them, 
tailored to query types. 

and inference algorithms 
This scheme and its imple- 

mentation in Prolog is described in depth in a longer 
report [Haugh, 19881. 

A key technique in computing the consequences 
of our theories is an initial determination of abnormali- 
ties which avoids their repeated computation on every 
query. Truth maintenance is performed on all derived 
abnormalities, since subsequent changes may under- 
mine the justifications for current abnormalities. With 
all the current abnormalities kept updated, queries are 
processed very efficiently by tracing the unblocked 
paths through a network. 
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