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Abstract: Commonsense or expert knowledge of any 
rich domain involves an intricate mixture of strict and 
defeasible information. The importance of represent- 
ing defeasible information in an inheritance system has 
been widely recognized, but it is not enough for a sys- 
tem to represent only defeasible information: without 
the ability to represent strict information as well, the 
system cannot represent definitional relations among 
concepts. As a response to this difficulty, we present a 
well-defined and intuitively attractive theory of inher- 
itance for IS-A hierarchies containing strict and defea- 
sible links types mixed together. 

1 Introduction 

It is apparent that commonsense or expert knowledge of 
any reasonably rich domain has to involve an intricate 
mixture of strict and defeasible information. The impor- 
tance of representing defeasible information in a knowl- 
edge base-particularly, in a frame- or network-based in- 
heritance reasoner-has been widely recognized. Although 
several early systems designed to allow defeasible inher- 
itance reasoning were subject to semantic difficulties in 
their treatment of cancellation, these problems by now 
are essentially solved; there exist today a number of well- 
defined and intuitively attractive theories of defeasible in- 
heritance. It has been argued, however, by Brachman [2] 
and Israel [6], that this intense concern with defeasible in- 
heritance has obscured some of the more general problems 
exhibited by network formalisms capable of representing 
only defeasible information: without the ability to repre- 
sent strict information as well, an inheritance system can- 
not express the important analytic or definitional relations 
among concepts. 

One way of responding to these difficulties, exempli- 
fied by work in the KL-ONE tradition [3], is to abandon 
the project of encoding defeasible information in an in- 
heritance reasoner, concentrating instead on definitional 
relations among richly structured concepts. As an alter- 
native strategy, we are exploring ways in which strict and 
defeasible taxonomic information can be combined in a sin- 
gle inheritance network. This paper presents a first step: 
a well-defined and intuitively attractive theory of inheri- 
tance for IS-A hierarchies containing strict and defeasible 
link types mixed together. The analysis of mixed inher- 
itance described here is itself a mixture, combining the 

theory of strict inheritance from Thomason et al. [7] with 
the theory of defeasible inheritance provided by Horty et 
al. [5]. 

2 asic concepts 

Letters from the beginning of the alphabet (a through d) 
refer only to objects or individuals; letters from the middle 
of the alphabet (m through t) refer only to properties or 
kinds. Letters from the end of the alphabet (u through Z) 
range over both objects and properties. 

Where y is a property, the link types x + y and x Q$ y 
represent positive and negative strict relations. If z is 
itself a property, these positive and negative strict links are 
equivalent to certain quantified conditionals: the link p 3 
Q represents a statement of the form ‘Every P is a Q’; the 
link p +$ Q represents a statement of the form ‘No P is a 
Q’. If x is an object, these positive and negative strict links 
are equivalent to atomic and neg-atomic statements from 
ordinary logic: a a p and a + p represent the statements 
Pa and ~Pct. 

Where both x and y are properties, the link types 
2 + y and x j+ y represent defeasibde relations. These 
positive and negative defeasible links are equivalent to or- 
dinary generic statements: p --) Q and r ft Q, for example, 
might represent the statements ‘Birds fly’ and ‘Mammals 
don’t fly’. There is nothing in classical logic very close in 
meaning to generic statements like these. In particular, 
‘Birds fly’ doesn’t mean that all birds fly, since it is true 
even in the presence of exceptions. Instead, it seems to 
mean that “typical birds” fly. Likewise, ‘Mammals don’t 
fly’ does not mean that no mammals fly, but only that 
“typical mammals” don’t. 

Capital Greek letters represent networks-finite graphs, 
with nodes and link types as described. Networks are 
themselves classified as strict if they contain only strict 
links, or defeasibde if they contain no strict links emanat- 
ing from property nodes. Mized networks can contain both 
strict and defeasible links emanating from property nodes. 

Lower case Greek letters refer to paths-special se- 
quences of links. Often, it is convenient to refer to an 
arbitrary path in a way that displays some of the nodes it 
passes through without displaying the particular link types 
connecting those nodes. For this purpose, we adopt a no- 
tation according to which ‘~(z, u, y)’ refers to an arbitrary 
positive path, and ‘F(x, u, y)’ likewise to an arbitrary 
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negative path, from x through CT to y. As a convention gov- 
erning this n-notation, we assume that adjacency of node 
symbols entails adjacency of nodes on the paths symbol- 
ized. Thus, for example, ‘?(x, u, (T, y)’ refers to a negative 
path beginning with a direct link of any type from x to u, 
and then moving through Q to y. 

Paths are classified as simple or compound, strict or 
defeasible, positive or negative. The simple paths are just 
the direct links-classified as strict or defeasible, posi- 
tive or negative, along with the links themselves. Com- 
pound paths are defined inductively, as follows. (1) If 
r(x,a,p) is a strict positive path, then: ~(x, c,p) 3 q 
is a strict positive path; ~(2, a,p) + q is a strict neg- 
ative path; ~(x, 0, p) --f q is a defeasible positive path; 
and ~(2, a,p) f, q is a defeasible negative path. (2) If 
$x:, a,p) is a strict negative path, then: ~(2, a,p) + q is 
a strict negative path. (3) If ~(x, a,p) is a defeasible posi- 
tive path, then: ~(x, a,p) 3 q is a defeasible positive path; 
x(x, a,p) + q is a defeasible negative path; r(x,g, p) + q 
is a defeasible positive path; and ~(2, a,p) f+ q is a defea- 
sible negative path. (4) If -( 7r x, a,p) is a defeasible negative 
path, then: I(Z, a,p) + q is a defeasible negative path. 

It follows from this definition than an individual can 
occur in a path only as its initial node. Let us define 
a negative segment as a strict or defeasible negative link, 
possibly followed by a reverse positive strict path-that is, 
as a link sequence either of the form x1 + 22 c e . . (I Z, 
or of the form xi +$ x2 e . . . e xn. Then it follows from 
this definition also that if a negative segment occurs in a 
path, it can occur only at the very end. 

Intuitively, paths represent arguments, which enable 
certain statements as their conclusions. A positive path 
of the form ~~(Iu,u,Y) enables the statement II: + y if it is 
strict or x is an individual, and the statement x --f y if 
it is defeasible and x is a kind; likewise, a nega.tive path 
of the form ?i’(x, Q, y) enables x + y if it is strict or x 
is an individual, and x ft y if it is defeasible and x is a 
kind. Given a network l?, the purpose of an inheritance 
theory is to specify the set of statements supported by I-- 
that is, the set of statements we can reasonably conclude 
from the statements contained in I. We arrive at this 
specification in a roundabout way, defining a statement as 
supported by l? just in case it is enabled by a path that I’ 
permits. It remains only to define the paths permitted by 
I-intuitively, the arguments sanctioned in the context of 
r. 

3 Motivation 

Since our approach to mixed inheritance combines the the- 
ory of strict inheritance from [7] with the theory of defea- 
sible inheritance from [5], we first summarize these two 
theories, and then explain how they fit together. 

For strict networks, our definition of permitted paths 
is very simple. According to the theory of [7], a strict net- 
work I’ permits exactly the paths it contains-that is, I’ 
permits CT iff a is a path entirely composed of links con- 
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Figure 1: l?r Figure 2: I’2 

tained in I. In the case of Ii (Figure l), for example, the 
permitted paths include a a s 3 r and p =+ q + r G s. 
Suppose we interpret the nodes in this net so that p = star- 
lings, q = birds, r = mammals, s = dogs, and a = Rover. 
Then the first of these paths shows us how I1 supports the 
conclusion that Rover is a mammal (a 3 r); the second 
shows how it supports the conclusion that no starlings are 
dogs (p + s). Th e net does not permit, for example, the 
path p 3 s a T, since the link p 3 s is not contained in 
rl. 

It is important to note that this analysis of strict inher- 
itance is not the standard view. Strict networks contain 
only strict links, each of which is equivalent to a formula of 
classical logic. It may seem natural, then, to use classical 
logic itself to provide a semantics for such a network-by 
identifying the network with the set of formulas that trans- 
late its links, and then defining a statement as supported 
by the network just in case it belongs to the deductive clo- 
sure of that set. This idea, which we take to be the stan- 
dard view, is due originally to Hayes [4]. To see that it is 
different from the theory of [7], consider, for example, the 
net I’2 (Figure 2). This network would be translated into 
the set {Pa, 1 Pa,lQa}. Since the set is inconsistent, any 
statement at all belongs to its classical deductive closure; 
so according to the standard view, I’2 should be taken to 
support every statement-including, say, &a. According 
to the analysis of [7], 1 iowever, I’2 does not support &a, 
since it permits no positive path from a to q, and in fact 
provides uncontested evidence that l&a. 

It is, in some ways, a delicate matter to decide between 
the analysis of strict inheritance provided by [7] and the 
traditional analysis of [4]. One is always free to regard a 
strict network simply as a notational variant of some clas- 
sical theory, so that the analysis of [4] would be appropri- 
ate. Still, there seems to be some value in taking seriously 
the graph-based nature of inheritance reasoners, which de- 
rive conclusions corresponding only to actual paths. The 
problem is then to see whether we can make logical sense 
of such a reasoner by designing an appropriate logic, rather 
than by forcing the reasoner to conform to the standards 
of an already-existing logic. This task is carried out for 
strict networks in [7], which provides both a Gentzen-style 
proof theory for path-based inheritance reasoning and an 
interpretation of the resulting logic in a four-valued model 
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Figure 3: l?a Figure 4: I4 

based on that of Belnap [ 11. 
Defeasible inheritance is more complicated than strict 

inheritance, primarily because defeasible networks, unlike 
their strict counterparts, do not permit all the paths they 
contain. The distinction derives from the different role 
played in the two kinds of networks by conflicting paths. 
Any strict network containing conflicting paths is incon- 
sistent, though-as the theory of [7] shows-the effects of 
the inconsistency can be localized. But defeasible networks 
can contain conflicting paths without even local inconsis- 
tency. Consider, for example, Ia (Figure 3). Although this 
net contains conflicting paths, it is not inconsistent: it ad- 
mits interpretations under which all of its links represent 
true statements-including the well-known interpretation 
with a = Nixon, q = Quakers, r = Republicans, and p = 
pacifists. Since the net is consistent, no reasonable theory 
of defeasible inheritance would say that it permits both 
of the conflicting paths a a q - p and a 3 r ++ p at 
once. Any such theory would allow us to draw inconsis- 
tent conclusions-for example, that Nixon both is a paci- 
fist (a 3 p) and that he isn’t (a + p)-from consistent 
information. 

Theories of defeasible inheritance differ among them- 
selves in their treatment of conflicting paths. One kind of 
theory associates with each network containing conflicting 
paths a number of different extensions, corresponding to 
different resolutions of the conflicts. Because each exten- 
sion supports a maximal set of conclusions (subject to cer- 
tain constraints) we describe these theories as credulous; 
an example is the theory of Touretzky [8]. The present pa- 
per is based on an alternative approach to defeasible inher- 
itance, developed in [5], which has the advantage of associ- 
ating with any given network only a single extension. We 
describe this alternative as a skeptical approach-since it 
embodies the broadly skeptical idea that conflicting argu- 
ments, represented in networks by conflicting paths, tend 
to neutralize each other. Applied to I’s, for example, the 
skeptical approach tells us that neither of the conflicting 
paths should be permitted. 

In fact, the theory of [5] is not thoroughly skeptical: 
its skepticism is restricted to compound paths, and even 
compound paths can be neutralized only by those conflict- 
ing paths that are not themselves, as we say, preempted. 
The first of these restrictions has the effect that, even in 

the face of conflicts, any non-compound path contained 
in a network-that is, any direct link-will be permit- 
ted by that network. As explained in [5], this principle 
is well-motivated, particularly against the background of 
the four-valued logic; but it is not a crucial feature of the 
theory. 

The second restriction, however, is crucial. Preemption 
is the mechanism by which, in case of conflicts, arguments 
based on more specific information are allowed to override 
arguments based on less specific information. For exam- 
ple, consider I4 (Figure 4)-with, say, a = Tweety, p = 
penguins, q = birds, and P = flying things. Since this 
net contains the two conflicting paths a a p - q - r 
and a + p ++ r, an unrestricted skepticism would permit 
neither. However, it seems in this case that the latter of 
these paths should be permitted, because it represents an 
argument based on more specific information. The sec- 
ond restriction above reflects this intuition. We say that 
a path of the form T(X,T, v) - y is preempted in a net 
I’ just in case there is a node z such that (i) I? permits 
a path ST(X, 71, Z, 72, v), so that z provides “more specific” 
information than ZI about x, and (ii) z + y E I’, so that 
2 gives us “direct” information contrary to that provided 
by v. (The definition of preemption for negative paths is 
symmetrical.) According to the theory of [5], even a con- 
flicted path will be permitted if the only paths with which 
it conflicts are themselves preempted; so, for example, 
a =+ p ft r will be permitted by I’J, since a +- p - q - r 
is preempted. 

The theory of [7] tells us, then, that a strict network 
permits exactly the paths it contains; the theory of [5] tells 
us that a defeasible network permits a path it contains just 
in case that path is either a direct link, or any other path 
with which it conflicts is itself preempted. Now, to com- 
bine these two theories into an account of inheritance for 
mixed networks, we first carry over entirely the analysis of 
strict inheritance from [7], and then modify the analysis of 
defeasible inheritance from [5] to accommodate the pres- 
ence of strict links. Since it incorporates the analysis of [7], 
the resulting theory tells us that a mixed network permits 
exactly the strict paths it contains. Likewise, since it is 
based on the analysis of [5], the resulting theory also em- 
bodies the skeptical idea that a compound defeasible path 
is neutralized by any conflicting path that is not itself pre- 
empted. However, in order to develop this idea in a mixed 
context, we need to modify slightly our conception of the 
kind of paths that represent conflicts, as well as our un- 
derstanding of the preemption relation among conflicting 
paths. 

In defeasible networks, all conflicts share a simple form: 
they involve paths with identical initial nodes, identical 
end nodes, and opposite polarity. But the presence of strict 
links introduces the possibility of less direct conflicts, even 
among defeasible paths. As an illustration, consider I’s 
(Figure 5). Here it seems reasonable, in light of the strict 
segment r 3 s + t, to regard p ---f q + 1’ and p - u - 
u j t themselves as conflicting paths, even though they 
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do not share an end node. Imagine, for example, that T = 
dogs, s = mammals, and t = animals, so that the strict 
segment tells us that all dogs are animals. In the context 
of F5, then, the path p --f- g ---) P, which represents an 
argument to the effect that p’s are dogs, carries with equal 
force the conclusion that p’s are animals; so it conflicts 
with p ---f u -+ v + t, which represents an argument that 
p’s are not animals. 

What this example shows is that two defeasible paths 
can represent conflicting arguments, even if they have dif- 
ferent end nodes, when one of the paths clashes with a 
strict consequence of the other. Of course, such strict 
consequences can themselves be classified as positive or 
negative. Let us define /Q(Z) = {z) U {y : I? contains a 
strict positive path from IZ: to y) and ~Q(x) = {y : I? con- 
tains a strict negative path from z to y}, so that #r(z) 
and ET(Z) represent the positive and negative strict con- 
sequences attributed to z by F-the set of properties that 
x must possess, according to I’, and the set of proper- 
ties that it: cannot possess. It is then natural to extend 
our conception of conflicting defeasible paths so that, in 
addition to the ordinary kinds of clashes, a path of the 
form 7r(d, a, u) --j y will be said to conflict in a net I’ with 
any path of the form r(z,~, v) f, m where m E Q(Y), 
and also with any path of the form K(S,T, V) 3 m where 
m E i+(y). Our general skeptical attitude regarding con- 
flicting paths will then have to apply to these new kinds of 
conflicts as well. In Is, for instance, neither p - q - r nor 
p + u + v f, t will be permitted, since each is neutralized 
by its conflict with the other. 

Just as the presence of strict links allows for the possi- 
bility of new kinds of conflicts, however, it provides also for 
the possibility of new relations of preemption. To see this, 
consider the network I’s (Figure S), supplied with an in- 
terpretation under which a = Hermann, p = persons born 
in America, q = native speakers of German, r = persons 
born in Pennsylvania, and s = native speakers of Pennsyl- 
vania Dutch. Under this interpretation, Is tells us is that 
Hermann is a particular speaker of Pennsylvania Dutch, 
that every speaker of Pennsylvania Dutch speaks German 
(since Pennsylvania Dutch is a dialect of German), that 
German speakers tend not to be born in America, that 
speakers of Pennsylvania Dutch tend to be born in Penn- 
sylvania, and that everyone born in Pennsylvania is born 

in America. 
According to our new, extended conception, the paths 

a 3 s -+ r and a + s 3 q ft p now represent con- 
flicting arguments in the context of Ps, since p E Ky,(r). 
Of course, we would not want to remain skeptical in this 
case. The path a a s + q + p, representing the argu- 
ment that Hermann was not born in America since he is a 
native speaker of German, should be preempted in Fs: the 
fact that his dialect is Pennsylvania Dutch provides a more 
specific argument to the contrary. Without modification, 
however, the treatment of preemption from [5] does not 
give us this result. A path can be preempted only if there 
is more specific and direct information to the contrary; 
and, although s does provide “more specific” information 
than q, the path s + r + p does not represent “direct” 
information to the contrary-at least, not according to the 
standards of [5], which holds that direct information can 
be carried only by direct links. 

Evidently, it is this last requirement concerning the 
nature of direct information that needs to be modified in 
the present context. In the context of defeasible networks, 
it makes good sense to say that direct information can be 
carried only by direct links: any compound path represents 
an argument that can itself be undermined. In the context 
of mixed nets, however, certain kinds of compound paths 
can legitimately be thought to carry direct information- 
namely, compound paths consisting of a single defeasible 
link followed by a strict end segment, of any length. In 
Is, for example, the path s ---f r 3 p should be thought of 
as telling us directly that speakers of Pennsylvania Dutch 
are born in America: for even by the standards of [5], 
s --f r counts as a direct statement of the fact that speakers 
of Pennsylvania Dutch are born in Pennsylvania, and the 
strict extension r + p simply tells us that everyone born 
in Pennsylvania is born in America. 

Adjusting our definition of preemption to account for 
this new notion of direct information, we say now that a 
negative path ~(z, r, v) + m is preempted in a mixed net- 
work I? if there exist nodes z and n such that I’ permits 
a path r(z, ~i,z, 72, v) with z ---) n E P and m E Kr(n). 
This new definition allows us to conclude, as it should, that 
a =$= s +- q ft p is preempted in I& so the net does end 
up supporting the conclusion that Hermann was born in 
America. It is a bit more complicated to formulate mixed 
preemption for positive paths, although no new ideas are 
involved, simply because direct information to the con- 
trary can now take the form either of a positive defeasible 
link followed by a negative strict extension, or of a negative 
defeasible link followed by a reverse positive strict exten- 
sion. Formally, we say that a positive path R(Z, 7, v) ---f m 
is preempted in a mixed network I if there exist nodes 
z and n such that I permits a path 7r(z,~i, z, 72, v) with 
either (i) z + n E I’ and m E zr(n) or (ii) z ft n E r and 
n E m(m). 
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4 The definition 

In this section, we assemble our motivational ideas into 
a definition of the permission relation for mixed networks; 
we use the symbol ‘ p’ to stand for the permission relation, 
so that ‘I’ p CT’ means that the net I’ permits the path 6. 
Like that of [5], the present definition is inductive. Our 
first step, then, is to assign a measure of “complexity” to 
each path Q in a net I’ in such a way that it can be decided 
whether I pa once it is known whether I’ ba’ for each path 
cr’ less complex in I’ than CT itself. 

In order to arrive at the appropriate notion of path 
complexity, we proceed through a number of auxiliary 
ideas. As we recall, a path is a joined sequence of links 
containing a negative segment, if at all, only at the very 
end. Let us say, then, that a generalized path is a sequence 
of links joined like an ordinary path, except that it can 
contain negative segments anywhere, and perhaps more 
than one. (Example: p ft q + r f+ s + t is a general- 
ized path, but it is not a path, since its negative segment 
p + q e r is not an end segment.) Next, let us define 
the defeasible length of a generalized path as follows: if 
the generalized path does not contain a strict initial seg- 
ment, then its defeasible length is simply the number of 
defeasible links in the path; if the generalized path does 
contain a strict initial segment, then its defeasible length 
is the number of defeasible links in the path augmented by 
one. (Example: the generalized path r -+ s a t ---f u has 
a defeasible length of two, since it contains two defeasible 
links and no strict initial segment; the generalized path 
p a q + r -P s + t + u is three, since it contains a strict 
initial segment along with two defeasible links.) 

Using these ideas, we can now define the degree of a 
path u in a net I-written, degr(a)-as the greatest de- 
feasible length of any acyclic generalized path in I from 
the initial node of CT to its end node. (Example: degr, (p + 
q-+r)= 3, since the acyclic generalized path from p to 
r in I’5 whose defeasible length is greatest is p + u -+ 
v j-+ t tz s -+ r, with a defeasible length of 3.) In order 
to insure that the assignment of degree to the paths in 
a network has the appropriate properties, we need to re- 
strict the application of our theory, as in [5], to paths free 
from certain kinds of defeasible cycles (a defeasible cycle 
is a cyclic generalized path containing at least one defeasi- 
ble link); for the present, we limit will our attention, even 
more severely than necessary, to networks which are either 
entirely acyclic, or which contain only strict cycles. 

The notion of degree defined here is a straightforward 
generalization of the notion defined in [5]. However, it is 
not quite appropriate as a measure of path complexity for 
an inductive definition of the permission relation; in the 
present context, the measure of complexity needs to carry 
just a bit more information. Basically, we want our mea- 
sure of a path’s complexity to tell us, in addition its degree, 
whether or not the path possesses a strict end segment. 
Therefore, we define the mixed degree of a path cr in a net 
I’ as a pair (n, V) . The first component of the pair tells us 
the degree of u in I’: n = degr(a). The second component 

tells us, simply, whether or not c possesses a strict end 
segment: by convention, we let v = 0 if u does not possess 
a strict end segment, and v = 1 if it does. We define a 
lexical ordering on the mixed degrees by giving priority to 
the first component: (n, v) < (n’, v’) iff either n < n’ or 
n = n’ and v < v’. The idea behind this ordering is that 
degree is the primary measure of path complexity-but of 
two paths identical in degree, one with and one without a 
strict end segment, the path lacking the strict end segment 
is classified as less complex. 

Our definition of the permission relation has the overall 
structure of a definition by cases. Any path Q from a mixed 
network can be divided into the subpaths p(u) and 6(u), 
where p(u) is the maximal strict end segment of u, and 
&(a) is the result of truncating ~(a) from u. (Example: 
if u is z + y -+ p +S r (I s, then p(u) is p +b r + s 
and 6(u) is z + y + p.) Using this notation, then, we 
specify the conditions under which I’ bu in three separate 
cases, depending on the form of Q. Our first case deals 
with defeasible paths possessing strict end segments. 

Case A: u # 6(u) and u # ~(a). Then I pa iff I’ p S(u) 
and I bp(u). 

The next case deals with strict paths, 

Case B: u = ~(a). Then I’bg iff each link in c is contained 
in r. 

Finally, we deal with the case of paths ending in defeasi- 
ble links-which itself divides into subcases, as such paths 
may be simple or compound. 

Case C-I: u = 6(u) and u is a direct link. Then I p u iff 
u E r. 

Case C-II: u = 6(a) and (T is a compound path. Two 
subcases to consider. 

1. u is a positive path, of the form X(X, ui, u) + y. 
Then I? pa iff 

(a> r P 4x, ~1~4; 
(b) u + y E r; 
(c) Form E Q(Y), z ft m @ I and m $7+(z); 

(d) For m E %T(Y>, x -+ m @ l? and m @ Q(Z); 
(e) For all v, m, r such that I’ pr(x,r,v) with 

v j+ m E I and m E Q(Y), there exist Z, 
n, 71, r2 such that I’p74~,7r,2,7~,2)) with 
z --+ n E I’ and m E “r(n); 

(f) For all v, m, r such that I’ br(x, r, v) with 
v + m E I? and m E &(y), there exist Z, 
n, rl, r2 such that r pr(x, 71, Z, r2, v) with 
either (i) z + n E I and m E Kr(n) or (ii) 
zf+nEI’andnEK:r(m). 

2. u is a negative path, of the form ~(2, ui, u) + y. 
Then I ba iff 
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(a) r b +, ~1, u); 
(b) u % Y E r; 
(c) For m such that y E q(m), x ---+ m $?! I? 

and m @ “r(z); 

(d) For all v, m, 7, such that I? pa(z, r, v) with 
v 3 m E I? and y E tcr(m), there exist z, 
n, rl, r2 such that I’ pr(x,~r, 2,5,v) with 
either (i) z + n E I and m E iZr(n) or (ii) 
z + n E I’ and n E sr(m). 

It should be clear that this definition, although struc- 
tured as a definition by cases, is properly an induction on 
mixed degree. Case A defines permission for a path u of 
mixed degree (n, 1) in terms of the path S(u) of mixed 
degree (n, 0) and the path ~(a) of mixed degree (l,l)- 
both inductively simpler. Cases B and C-I are basis cases, 
defining permission respectively for paths of mixed degree 
(1,1) and (l,O). F inally, Case C-II defines permission for 
paths of mixed degree (n, 0) with n > 1 in terms of paths 
of mixed degree (n’, v’)-where v’ may be either 0 or 1, 
but n’ < n so that the overall measure of mixed degree is 
simpler. 

5 Conclusion 

By combining the analysis of strict inheritance from [7] 
with the skeptical analysis of defeasible inheritance from 
[5], we have developed a well-defined and intuitively at- 
tractive theory of inheritance for semantic networks con- 
taining both strict and defeasible links. At this point, two 
topics stand out as the most important areas for further 
research. 

The first concerns the treatment of cyclic networks. 
A central advantage of the theories of defeasible inheri- 
tance presented in both [5] and [S] is the ease with which 
they handle relations of preemption among conflicting ar- 
guments, naturally preferring those arguments based on 
more specific information. Part of what makes this possi- 
ble is the restriction of these theories to acyclic networks, 
which allows us to define a partial ordering of “specificity” 
among the various argument paths. In the purely defea- 
sible case, it is not terribly unnatural to restrict ourselves 
to acyclic networks; however, it is almost impossible to 
introduce strict links into a network without also intro- 
ducing cyclic generalized paths. This paper limits itself 
to networks whose only cycles are entirely strict, but that 
limitation seems excessive. We need to discover the extent 
to which cyclic paths can be admitted into inheritance 
networks without destroying the partial ordering of speci- 
ficity among arguments that makes a natural treatment of 
preemption possible. 

The second research topic concerns the application of 
this work to the representation of complex concepts, such 
as Brachman’s “yellow elephant” or the traditional “un- 
married man.” In order to represent such concepts along 
with defeasible information in a taxonomic reasoner, it is 
necessary, first, to develop a theory of inheritance allowing 

for the expression of both strict and defeasible relations. 
The present paper presents such a theory-but it does not 
address the problem of handling complex concepts within 
the framework it sets out. A central accomplishment of 
the KL-ONE tradition has been the design and analysis of 
algorithms for handling complex defined concepts in an 
strict inheritance network. It is important, now, to begin 
exploring the degree to which this accomplishment can be 
duplicated in the context of a mixed inheritance reasoner. 
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