From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

On the Relationship Between
Logic Programming and Non-monotonic Reasoning*

Teodor C. Przymusinski
Department of Mathematics
University of Texas
El Paso, TX 79968
< ft00Q@utep.bitnet >

Abstract

In spite of the existence of a close relationship
between logic programming and non-monotonic
reasoning, in the past the two research areas have
progressed largely independently of each other.
Recently, however, a new declarative semantics
of logic programs has been proposed and it has
been shown to be equivalent to suitable forms
of four major non-monotonic formalisms: Mc-
Carthy’s circumscription, Reiter’s closed world
assumption, Moore’s autoepistemic logic and Re-
iter’s default logic.

The importance of these results stems not only
from the fact that they shed new light on the
relationship between logic programming and non-
monotonic reasoning, but also from the fact that
they establish a close relationship between four
major formalizations of non-monotonic reasoning
for an important class of theories.

1 Introduction

Non-monotonic reasoning and logic programming are areas
of crucial and growing significance to Artificial Intelligence
and to the whole field of computer science. It is therefore
important to achieve a better understanding of the rela-
tionship existing between these two fields.

Non-monotonic reasoning and logic programming are
closely related. The importance of logic programming to
the area of non-monotonic reasoning follows from the fact
that, as observed by several researchers { e.g. [Reiter 86]),
the non-monotonic character of procedural negation used
in logic programming often makes it possible to efficiently
implement other non-monotonic formalisms in Prolog or
in other logic programming languages. Logic programming
can also be used to provide formalizations for special forms
of non-monotonic reasoning. For example, the calculus of
events described in [Kowalski and Sergot 86] uses Prolog’s
negation as failure operator to formalize the temporal per-
sistence problem in Al

The importance of the field of non-monotonic reason-
ing to logic programming is even more apparent. Logic
programming is based on the idea of declarative program-
ming stemming from Kowalski’s principle of separation of
logic and control. Ideally, a programmer should be only
concerned with the declarative meaning of his program,
while the procedural aspects of the program’s execution

*The full version of this article will appear in “Handbook on
Formal Foundations of AI", D .Partridge and Y.Wilks {editors).

444 Knowledge Representation

are handled automatically. Unfortunately, this ideal has
not yet been fulfilled. One of the reasons is the lack of
clarity as to what should be the proper declarative seman-
tics of logic programs and, in particular, what should be
the meaning of negation in logic programming. Logic pro-
grams do not use logical negation, but instead rely on a
non-monotonic operator — often referred to as negation as
faslure — which represents a procedural form of negation.
Without proper declarative semantics the user needs an
intimate knowledge of procedural aspects in order to write
correct programs. The problem of finding suitable declar-
ative semantics for logic programs can therefore be viewed
as the problem of finding a suitable formalization of the
type of non-monotonic reasoning used in logic program-
ming.

In spite of this close relationship between non-monotonic
reasoning and logic programming, the two research areas
are developing largely in parallel rather than in tandem
and there is not as much interaction between the two fields
as one would expect. One possible explanation of this phe-
nomenon is the fact that, traditionally, the declarative se-
mantics of logic programming has been based on the non-
monotonic formalism, developed in [Clark 78], and called
Clark’s predicate completion (see [Lloyd 84]). Clark’s for-
malism is based on a very intuitive and useful idea of con-
structing the completion of a program P by essentially re-
placing the ‘if’ statements in P by suitable ‘iff’ statements.
Unfortunately, Clark’s formalism is not sufficiently general
to be applied beyond the realm of logic programming and
therefore does not play a major role in formalizing general
non-monotonic reasoning in Al. In addition, Clark’s ap-
proach has some other serious drawbacks often discussed
in the literature (see e.g. [Shepherdson 86}).

Recently, however, a new approach to the problem of
declarative semantics of logic programs has been proposed
and elegant and easily intelligible semantics for such pro-
grams has been developed [Apt, Blair and Walker 88; Van
Gelder 88; T. Przymusinski 87] It has been shown that
the proposed semantics is equivalent to suitable forms of
four major non-monotonic formalisms: McCarthy’s cir-
cumscription, Reiter’s closed world assumption, Moore’s
autoepistemic logic and Reiter’s default logic.

The importance of these results is at least twofold.
Firstly, they shed new light on the relationship between
logic programming and non-monotonic reasoning. Sec-
ondly, they establish a close relationship between the four
major formalizations of non-monotonic reasoning for an
important class of theories. They may also contribute to a
better understanding of relations existing between various
forms of non-monotonic reasoning and to the eventual dis-
covery of deeper underlying principles of non-monotonic

reasoning. The aim of this paper is to present an account
of these recent developments.

2 Perfect Model Semantics for
Logic Programs

In [Apt, Blair and Walker 88] and [Van Gelder 88] an im-
portant class of stratified logic programs was introduced, a
unique ‘natural’ minimal Herbrand model Mp of a strati-
fied logic program was defined and it was argued that this
model may be taken to represent the declarative semantics
of such programs.

In [T. Preymusinski 88] and [T. Przymusinski 87] the
class of perfect models of a logic program was defined and
it was shown that every stratified logic program has ex-
actly one perfect Herbrand model which coincides with the
model Mp. The perfect model semantics of logic programs
is the semantics determined by the class PERF?P) of all
(not necessarily Herbrand) perfect models of a program P.

We first introduce the dependency graph G of the pro-
gram P whose vertices are predicate symbols occurring in
P. If A and B are predicate symbols, then there is a di-
rected edge in G from B to A if and only if there is a
clause in P such that A occurs in its head and B in one of
its premises. If this premise is negative, then the edge is
called negative. For any two predicate symbols in P we say
that B has lower priority than A (briefly, B < A) if there
is a directed path in G leading from B to A and passing
through at least one negative edge. We call the relation
defined above the priority relation |T. Przymusinski 87).

We now define the notion of a perfect model. It is our
goal to minimize eztensions of low priority predicates as
much a3 possible, and we are willing to do that even at
the cost of enlarging extensions of predicates with higher
priority. Consequently, if M is a model of P and if a new
model N is obtained from M by changing extensions of
some predicates in M, then we will consider the new model
. N to be preferable to M if and only if addition of some new
element(s) to the extension of a higher priority predicate
A is always justified by the simultaneous removal of some
elements from the extension of a lower priority predicate B,
i.e. such that B < A. A model M will be considered perfect
if there are no models preferable to it. More formally:

2.1. Definition. [T. Przymusinski 87] Suppose that
M and N are two distinct models of a general program P,
with the same universe and the same interpretation of func-
tions (and constants) and denote by EMSA) and Ey(A)
the extensions in M and N, respectively, of a predicate A.
We say that N is preferable to M (briefly, N < M), if for
every predicate A for which the set Ex(A)—Ep(A) is non-
empty there is a predicate symbol B < A such that the set
Enm(B)-En({B) is non-empty. We say that a model M of
P is perfect if there are no models preferable to M. We call
the relation < the preference relation between models and
we write M<N, if M=N or M < N,

2.2. Theorem. [T. Przymusinski 87] Every perfect
model is minimal.
For positive! logic programs the converse is true,

2.3. Theorem. [T. Przymusinski 87) If M is a model

1A program is positive if it does not have negative premises.

of a positive logic program then M is minimal if and only
if M is perfect.

2.4. Example. Not every logic program has a perfect
model. The program {p « —¢, ¢ « -p} has only two
minimal Herbrand models M;={p} and M3={q} and since
p < g and ¢ < p we have My < M, and My < M,, thus
none of these models is perfect.

The cause of this peculiarity is quite clear: our seman-
tics is based on relative priorities between predicate sym-
bols and therefore we have to be consistent when assign-
ing those priorities to avoid priorsty conflicts, which — in
the dependency graph G — correspond to cycles passing
through negative edges. This leads to the following defini-
tion:

2.5. Definition. [Apt, Blair and Walker 88; Van
Gelder 88] A logic program P is stratified if its dependency
graph does mot comtain cycles passing through negative
edges. Equivalently, a logic program P is stratified if and
only if it is possible to decompose the set S of all predicates
of P into disjoint sets Sy , ... , Sy, called strata, so that for
every clause

C + Al, ...,Am, “Bl, ceey "LB,;

in P, where A’s, B’s and C are atoms, we have that:
(i) for every i, stratum(A4;) < stratum(C),
(ii) for every j, stratum(B;) < stratum(C),

where stratum(A)=i, if the predicate symbol of A be-
longs to S;. Any particular decomposition {S; , ... , S}
o} SP satisfying the above conditions is called a stratsfication
of P.

In the above definition, stratification determines priority
levels (gstrata.) of S, corresponding to the priority relation
defined before. The following basic result states that every
model of a stratified program P is ‘subsumed’ by a perfect
model. This property is exactly analogous to the well-
known property of minimal models [Bossu and Siegel 85].

2.8. Theorem. |T. Przymusinski 87] For every model
N of a stratified program P there exists a perfect model M
such that M < N. Moreover, every stratified program has
a unique perfect Herbrand model which coincides with the
model Mp.

Now we define the perfect model semantics of a logic
program.

2.7. Definition. [T. Przymusinski 87] Let P be a logic
program and let PERF P) be the set of all perfect models
of P. By the perfect model semantics of P we mean the se-
mantics induced by the set PERF(P). Under this semantics
a sentence F is considered to be true iff F is satisfied in all
perfect models of P. In this case we write PERF(P) = F.

Theorem 2.3 implies that for positive logic programs,
the perfect model semantics is in fact equivalent to the
minsmal model semantics, i.e. to the semantics induced by
the class MIN‘P of all - not necessarily Herbrand — min-
imal models of P. The perfect model semantics is stronger
than the semantics defined by Clark’s completion comp(gl;)
of the program P, i.e. for any sentence F, if comp(P) = F,
then PERF(P) ‘= F. However, as the following example
indicates, the perfect model semantics eliminates some of
the unintuitive features of Clark's semantics.

Przymusinski 445

2.8. Example. LVan Gelder). Suppose, that we
wanted to describe which vertices in a graph are reach-
able from a given vertex a. We could write

s eod =~ LY 53

edgeia, b edgel{c,d) ed
reachable(a)
reachable(X) « reachable(Y), edge(Y, X)

\CRELY
unreachable(X) « -wreachable(X).

.
Thig asamae ta ha o vary rasaonahla nragrem and wa sar.
A B0 GUUAAD VU UT & TULY AVOGOVMGUIL PLUBLGII Gl WL LUL

tainly can expect vertices ¢ and d to be unreachable from a.
However, Clark’s completion of P lacks the power to derive
these conclusions [T. Przymusinski 87]. On the other hand,
it is easy to verify that the program is stratified by a strat-
ification Sy ={reachable, edge} and Sy={unreachable} and
that the perfect model semantics provides the correct an-
SWers.

U o RS \
c{a, C

2.1 Procedural semantics:
SLS-resolution

In [T. Przymusinski 87] SLS-resolution (Linear resolution
with Selection function for Stratified programs) was de-
fined and it was shown that SLS-resolution is sound and
complete (for non-floundering queries?) w.r.t. the per-
fect model semantics and therefore provides a procedural
mechanism for the proposed semantics. SLS-resolution is
a natural generalizatton of SLD-resolution (Linear resolu-
tion with Selection function for Definite programs{ from
the class of positive (definite) programs onto the class of
stratified programs. SLS-resolution differs from SLDNF-
resolution primarily by not relying on finite failure trees.
2.9. Theorem. (Soundness of SLS-resolution)
Suppose that P is a stratified program and G =~ W is a
goal. Then
I 0 is any
PERF(P) =W
(ii) If SLS-tree for G is failed, then PERF(P) | -W .

2.10. Theorem. (Completeness of SLS-
resolution) Suppose that P is a stratified program, G =«
W is a non-floundered goal and & is a substitution. Then

(i) PERF(P) = W0 iff there exists an SLS-answer-
substitution more general than g,

(i) PERF(P) |= -W iff SLS-tree for G is failed.

In the special case when P is a positive program, SLS-
resolution reduces to the standard SLD-resolution. The-
orem 2.10 therefore implies an important result showing
that for positive goals SLD-resolution 8 sound and com-
plete w.r.t. the minimal model semantics.

SLS-answer-substitution, then

3 Equivalence to Non-monotonic

Formalisms
In this section we show that the perfect model seman-
tics for logic programs described in the previous section

is (semantically) equivalent to suitable forms of four major
non-monotonic formalisms: (1) circumscription, (2) closed

%See [Lloyd 84].

446 Knowledge Representation

;vo;ld assumption, (3) autoepistemic logic and (4) default
ogic.

These results provide a further argument in favor of
the perfect model semantics and underscore the relation-
ship between logic programming and non-monotonic rea-
soning. They should also contribute to a beiter under-
standing of the relation existing between various forms of
non-monotonic reasoning.

3.1 Circumscription

One of the most powerful formalizations of non-monotonic
reasoning called circumscription, was introduced in [Me-
Carthy 80; McCarthy 86]. The following theorem estab-
lishes the equivalence between the perfect model semantics
of logic programs and the semantics of prioritized circum-
scription. A similar result for pointwise circumscription
was obtained in [Lifschitz 88] and related results were ob-
tained earlier in [Reiter 82].

8.1. Theorem. [T. Przymusinski 87] Suppose that P
is a stratified program and S,,...,S, is a stratification of
P. A model of P is perfect if and only if it is a model of
prioritized circumscription CIRC(P;S; > ... > S,). Con-
sequently, the perfect model semantics of P coincides with
the semantics of prioritized circumscription of P, i.e. for
any sentence F

PERF(P) |z F <= CIRC(P; S, >...> S;) E F.

The above theorem has two interesting consequences:

e Since SLDNF-resolution used in Prolog is sound w.r.t.

@ 2AALC QAL 4TIV TV WIS aal 2 VAV olluas

the perfect model semantics it is also sound w.r.t.
to the semantics of prioritized circumscription. This
means that SLDNF-resolution can be used as a sound
inference engine for some types of circumscription3.
This formally confirms Reiter’s comment that ‘partly
because it is a non-monotonic operator, procedural
negation can often be used to implement other forms

of non-monotonic reasoning’ [Reiter 86]. ‘

e In general, it is not clear how to instantiate the cir-
cumscription axiom in order to derive the desired con-
sequences of a circumscribed theory. The equivalence
between the perfect model semantics and prioritized
circumscription shows that in the case of stratified
logic programs such an instantiation can be generated
automatically based on the syntactic form of the pro-
gram.,

3.2 Closed world assamption

An alternative way to formalize non-monotonic reasoning
is to use some form of the closed world assumption. The
first step in this direction was made by Reiter, who defined
the so called naive closure CWA(P) of a theory P:

3.3. Definition. [Reiter 78] The naive closure
CWA(P) of P is defined as follows:

CWA(P)=Pu{-p: pisa ground atom and P }~ p}.

Reiter's CWA(P), although suitable for positive pro-
grams, is usually inconsistent for programs with negative

2A query answering algorithm for general circumscriptive
theories has been described in [T. Przymusinski 87a).

premises. For example, if P is p « -¢, then CWA(P)
implies -p and —q¢ and is inconsistent.

Stimulated by Reiter’s work, several researchers pro-
posed more sophisticated forms of the closed world as-
sumption, namely the Generalized Closed World Assump-
tion [Minker 82|, the Extended Closed World Assump-
tion [Gelfond, H. Przymusinska and T. Przymusinski 86a;
Yahya and Henschen 85| and - the most general of them
all - the Iterated Closed World Assumption (I()WA{3 [Gel-
fond, H. Przymusinska and T. Przymusinski 86a). Below,
we give & simplified definition of ICWA, which is adequate
for logic programs.

Let P be a stratified logic program with a stratification
51, o ,Sk;. For every n, let Q,, = UiSj : j < n}and let
» be the logic program consisting of all clauses from P

whose heads involve predicates from @,. Clearly, P=F;.

8.4. Definition. [Gelfond, H. Przymusinska and T.
Praymusinski 86a] The Iterated Closed World Assumption
applied to P is defined as the closure ICWA(P; S, > ... >
Si) of P obtained by iteration of the appropriate CWA’s:

ICW A(Py;5,) = CWA(P,);
ICW A(Po1; 81 > ... > Sp1) =
= CW A(Pa41+ ICWA(Py; Sy > ... > Sa)), for n >0,
ICWA(P; Sy > ... > S¢) = ICWA(Pi; $1 > ... > Sk).

The following theorem shows that the semantics of
ICWA(P;S; > ... > Si) is equivalent to the perfect model
semantics of P:

8.5. Theorem [Gelfond, H. Przymusinska and T. Przy-
musinski 86a] Assume the domain closure axiom and sup-
pose that P is a stratified logic program and S,,...,S is
a stratification of P. The theory ICWA(P;S; > ... > Si)
has exactly one model and this model is the unique perfect
model of P.

The above theorem provides a syntactic description of
the perfect model semantics in the form of a first order
theory. It generalizes au earlier result obtained for positive
programs and minimal models [Lifschitz 85).

3.3 Anutoepistemic logic

Autoepistemic logic (AEL) proposed in fjMoore 80| pro-
vides another interesting formalization of non-monotonic
reasoning. Moore uses modal logic to formalize an agent’s
reasoning about his knowledge or beliefs. We will follow
Moore and consider here propositional theories only.

By an autoepistemic theory T we mean a set of formu-
lae in the language of propositional calculus angmented by
a belief operator L, where, for any formula F, LF is in-
terpreted as ‘F is believed’. The set of all propositional
consequences of T will be denoted by Th(T).

The central role in Moore’s formalization is played by
the notion of a stable autoepistemic expansion of T which
intuitively represents a possible set of beliefs of an ideally
rational agent. The agent is ideally rational in the sense
that he believes in all and only those facts which he can
conclude from T and from his other beliefs. If this expan-
sion is unique then it can be viewed as the set of theorems
which follow from T in the autoepistemic logic.

8.6. Definition. [Moore 80} A set of formulae E(T)
is a slable autoepistemic expansson of T if it satisfies the
following fixed point condition:

E(T)=Th(Tu{Lp:pe E(T)}u{-Lp: p¢ E(T)}),

where p is a propositional formula.

To establish a relationship between perfect model se-
mantics and autoepistemic logic we have to define an in-
terpretation of propositional formulae in terms of autoepis-
temic beliefs.

8.7. Definition. |Gelfond 78] For any propositional
formula F the interpretation I(F) of F is obtained by re-
placing every occurrence of a negative literal ~p in F by the
negative autoepistemic literal ~Lp. For a logic program P,
by I{P) we denote the set of all autoepistemic formulae
I{F'), where I is a clanse from P.

he following theorem shows that — under the above
interpretation — autoepistemic logic is semantically equiv-
alent to the perfect model semantics. It has been shown
that this equivalence holds precisely for the class of strat-
ified logic programs [H. Przymusinska 87).

3.8. Theorem. |[Gelfond 78] i P is a stratified
logic program, then autoepistemic logic and perfect model
semantics are I-equivalent. More precisely, the theory
I(Pd) has a unique stable autoepistemic expansion E(I}P}&
and for every formula F, we have: PERF(P) E F i
E%(P)) = I(F).

he above theorem underscores an important feature
of autoepistemic logic, namely the fact that in order to
obtain egnivalence with the perfect model semantics, it is
not necessary to introduce the concept of prioritization into
autoepistemic logic as it was the case with circumsecription
and the closed world assumption. In a sense, prioritization
is already built into autoepistemic logic.

As it was the case for circumscription, the above theorem
implies that SLDNF-resclution can be used as a sound
deductive mechanism for a class of autoepistemic theories.
This can be useful in view of the fact that autoepistemic
logic was presented non-constructively and no procedural
mechanism was provided to derive its theorems.

3.4 Default logic

Another approach to the formalization of non-monoctonic
reasoning was proposed in [Reiter 80] and called default
logic. Its distinguishing feature is the introduction of de-
fault statements which function as additional rules of in-
ference rather than formulae in some theory.

A (closed) default rule R is a rule of the form

a: Mb,,..., Mb,
[

where a, b;’s and ¢ are closed first order formulae and the
intuitive meaning of R is that ‘if a holds and if each one of
bi’s can be consistently assumed, then ¢ can be inferred’.

A defeult theory is a pair < D, T >, where D is a set of
default rules and T is a set of closed first order formulae. T
describes facts which are known to be true and the default
rules enable us to derive from them additional information
which, together with T itself, constitutes a more complete
extension of the theory. The extensions are defined using
the fixed point construction:

Przymusinski 447

3.9. Definition [Reiter 80| Suppose that < D,T > isa
default theory. For any set S of first order sentences define
G(S) to be the smallest set (it always exists!) with the
following properties:

(i) T is contained in G(S);
(ii) G(S) is closed under logical consequence;

(iii) if R is a rule from D (of the above described form)
and if a is in G(S) and, for every i, -b; is not in S,
then c is in G(S).

Any set of first order sentences E satisfying E=G(E) is

called an eztension of < D, T >, i.e. extensions are fixed

points of the operator G.

A default theory < D, T > may have none, one, or more
than one extension. Any such extension is a possible set of
beliefs for an agent. If the theory has exactly one extension
% glen E can be considered as the set of theorems of <

T >,

In [Bidoit and Froidevaux 86] it was shown that the
perfect model semantics of a stratified logic program P
i8 equivalent to a suitable default theory generated by P.
Suppose that P is a logic program. Denote by T the set
of all positive clauses of P and by D the set of defaults
obtained as follows: for any clause

C«— AyyyAp, By, ..., "By,
in P such that n > 0, include in D the default rule:
Al A . AAp : M-By,...,M-B,
[¢]
and call the resulting default theory < D, T > the default
theory associated with the program P.

8.10. Theorem. lBidoit and Froidevaux 86] Suppose
that P is a stratified logic program and < D,T > is the
associated default theory. The theory < D,T > has ex-
actly one extension E and the unique minimal model of E
is the unique perfect model of P.

The above approach is similar to that used in the case of
autoepistemic logic, which is not surprising in view of the
close relationship existing between default and autoepis-
temic logics [Konolidge 87].

References

[Apt, Blair and Walker 88} Apt, K., Blair, H. and Walker, A.,
‘Towards a Theory of Declarative Knowledge’, in: Founda-
tions of Deductive Databases and Logic Programming, (ed.
J Minker), Morgan Kaufmann 1988, 89-148.

|Bidoit and Froidevaunx 86) Bidoit, N. and Froidevaux, C.,
‘Minimalism Subsumes Defanlt Logic and Circumscription
in Stratified Logic Programming’, preprint, 1986.

|Bossu and Siegel 85] Bossu, G. and Siegel, P., ‘Saturation,
Nonmonotonic Reasoning and the Closed World Assump-
tion’, Artificial Intelligence 25(1985), 13-63.

[Clark 78] Clark, K.L., ‘Negation as Failure’, in: Logic and
Data Bases (H.Gallaire and JMinker, Eds.), Plenum Press,
New York 1978, 293-322.

|Gelfond 78] Gelfond, M., On Stratified Autoepistemic Theo-
ties, Proceedings AAAI-87.

|Gelfond and H. Przymusinska 86] Gelfond, M. and Przymu-
sinska, H., ‘Negation as Failure: Careful Closure Procedure’,
Artificial Intelligence 30(1986), 273-287.

448 Knowledge Representation

[Gelfond, H. Przymusinska and T. Przymusinski 86a]
Gelfond, M., Przymusinska, H. and Przymusinski, T., ‘On
the Relationship between Circumscription and Negation as
Failure’, Artificial Intelligence, to appear.

[Konolidge 87] Konolige, K., ‘On the relation between default
theories and autoepistemic logic’, SRI International, 1987,
draft paper.

[Kowalski and Sergot 86] Kowalski, R. and Sergot, M., ‘A
Logic-based Calculus of Events’, New Generation Comput-
ing 4(1986), 67-95.

|Lifschitz 85] Lifschitz, V., ‘Closed World Data Bases and Cir-
cumscription’, Artificial Intelligence 27(1985), 229-235.

[Lifschitz 88] Lifschitz, V., ‘On the Declarative Semantics of
Logic Programs with Negation’, in: Foundations of De-
ductive Databases and Logic Programming, (ed. J.Minker),
Morgan Kaufmann 1988, 177-192.

[Lloyd 84] Lioyd, J.W., Foundations of Logic Programming,
Springer-Verlag 1984.
[McCarthy 80] McCarthy, J., ‘Circumscription ~ a Form of

Non-Monotonic Reasoning’, Artificial Intelligence 13(1980),
27-39.

[McCarthy 86] McCarthy, J., ‘Applications of Circumscription
to Formalizing Common Sense Knowledge’, J. Artificial In-
telligence 28(1986), 89-118.

[Minker 82] Minker, J., ‘On Indefinite Data Bases and the
Closed World Assumption’, Proc. 6-th Conference on Au-
tomated Deduction, Springer Verlag, 1982, 292-308.

[Moore 80] Moore, R.C., ‘Semantic Considerations on Non-
monotonic Logic’, Artificial Intelligence 25(1985), 75-94.

|H. Przymusinska 87] Przymusinska, H., * On the Relation-
ship between Autoepistemic Logic and Circumscription for
Stratified Deductive Databases’, Proceedings of the Interna-
tional Symposium on Methodologies for Intelligent Systems,
Knoxville 1987.

|T. Przymusinski 87] Przymusinski, T., ‘On the Declarative
and Procedural Semantics of Logic Programs’, to appear.

[T. Przymusinski 87a] Przymusinski, T. ‘An Algorithm to
Compute Circumscription’, Artificial Intelligence, to appear.

[T. Przymusinski 88] Przymusinski, T., ‘On the Declarative
Semantics of Stratified Deductive Databases and Logic Pro-
grams’, in: Foundations of Deductive Databases and Logic
Programming (ed. J.Minker), Morgan Kaufmann 1988, 193-
216.

[Reiter 78] Reiter, R., ‘On Closed-World Data Bases’, in: Logic
and Data Bases (H.Gallaire and JMinker, Eds.), Plenum
Press, New York 1978, 55-76.

[Reiter 80] Reiter, R., ‘A Logic for Default Theory’, Artificial
Intelligence 13(1980), 81-132.

[Reiter 82] Reiter, R., ‘Circumscription implies Predicate
Completion (sometimes)’, Proc. AAAI-82, 1982, 418-420.
[Reiter 86] Reiter, R., ‘Nonmonotonic Reasoning’, Annual Re-

views of Computer Science, to appear.

{Shepherdson 86] Shepherdson, J., ‘Negation in Logic Pro-
gramming’, J. Logic Programming, to appear.

[Van Gelder 88] Van Gelder, A., ‘Negation as Failure Using
Tight Derivations for General Logic Programs’, in: Founda-
tions of Deductive Databases and Logic Programming, (ed.
J Minker), Morgan Kaufmann 1988, 149-176.

{Yahya and Henschen 85] Yahya, A.and Henschen, L., ‘Deduc-

tion in Non-Horn Databases’, Journal of Automated Reason-
ing 1(2){1985),141-160.

