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Abstract 

In spite of the existence of a close relationship 
between logic programming and non-monotonic 
reasoning, iu the past the two research areas have 
progressed largely independently of each other. 
Recently, however, a uew declarative semantics 
of logic programs has been proposed and it has 
been shown to be equivalent to suitable forms 
of four major non-monotonic formalisms: MC- 
Carthy’s circumscription, Reiter’s closed world 
assumption, Moore’s autoepistemic logic and Re- 
iter’s default logic. 
The importance of these results stems not ouly 
from the fact that they shed new light on the 
relationship between logic programming and uou- 
monotonic reasoning, but also from the fact that 
they establish a close relationship between four 
m8jor forma&&ions of non-monotouic reasoning 
for au importaut class of theories. 

Non-monotonic reaaoaing and logic pro~?~~~‘~g are areas 
of crucial and growing significance to Artificial Intelligence 
and to the whole field of computer science. It is therefore 
important to achieve a better understauding of the rele 
tiouship existing between these two fields. 

Non-monotonic reasoning and logic programming are 
closely related. The importance of logic programming to 
the area of non-monotonic reasouiug follows from the fact 
that, as observed by several researchers ( e.g. (Reiter 86)), 
the non-monotonic character of procedural uegatiou used 
in logic programming often makes it possible to efllcieutly 
implement other non-monotonic formalisms in Prolog or 
iu other logic programming languages. Logic programming 
cau also be used to provide formalizations for special forms 
of non-monotonic reasoning. For example, the calculus of 
events described in (Kowalski aud Sergot $61 uses Prolog’s 
negation as failure operator to formalize the temporal per- 
sistence problem in AL 

The importance of the field of non-monotonic reasou- 
iug to logic programming is even more apparent. Logic 
programming is based on the idea of declarative program- 
ming stemming from Kowalski’s principle of separation of 
logic and control. Ideally, a programmer should be only 
concerned with the declarative meaning of his program, 
while the procedural aspects of the program’s execution 

*The full version of this article will appear in “Handbook on 
Formal Foundations of AI”, D.Partridge and U.Wilks (editors). 

are handled automatically. Unfortunately, this ideal has 
not yet been ffilfilled. One of the reasous is the lack of 
clarity as to what should be the proper declarative semau- 
tics of logic programs and, in particular, what should be 
the meaning of negation in logic programming. Logic pro- 
grams do not use logical negation, but instead rely ou a 
non-monotonic operator - ofieu referred to as negation uu 
juih? - which represents a procedural form of negation. 
Without proper declarative semantics the user needs au 
intimate knowledge of procedural aspects iu order to write 
correct programs. The problem of finding suitable declar- 
ative semautics for logic programs can therefore be viewed 
as the problem of finding a suitable formalization of the 
type of non-monotonic reasouiug used iu logic program- 
ming. 

In spite of this close relationship betweeu non-monotonic 
reasoning and logic programming, the two research areas 
are developiug largely in parallel rather th in taudem 
aud there is not as much interaction between the two fields 
as one would expect. One possible explanation of this phe- 
nomenon is the fact that, traditionally, the declarative se- 
mantics of logic programmiug has been based on the uou- 
monotonic formalism, developed in 
Clark’s predicate completiou (see 1 

Clark 781, and called 
[L oyd 

malism is based on a very intuitive and 
84 ). Clark’s for- 

us a ul idea of cou- 
structiug the completion of a program P by essentially re- 
placing the ‘if’ statements iu P by suitable ‘ifl” statements. 
Unfortunately, Clark’s formalism is not suflfcieutly general 
to be applied beyond the realm of logic programmiug and 
therefore does not play a major role iu formalizing general 
non-monotonic reasoning in AI. In addition, Clark’s ap- 
proach has some other serious drawbacks often discussed 
iu the literature (see e.g. [ Shepherdson 861). 

Recently, however, a new approach to the problem of 
declarative semautics of logic programs has been proposed 
and elegant and easily intelligible semautics for such pro- 
grams has been developed Apt, Blair and Walker 88; Vau 
Gelder 88; T. Przymusins k i 87) It has been shown that 
the proposed semantics is equivalent to suitable forms of 
four major non-monotonic formalisms: McCarthy’s cir- 
cumscription, Reiter’s closed world assumption, Moore’s 
autoepistemic logic aud Reiter’s default logic. 

The importance of these results is at least twofold. 
Firstly, they shed new light on the relationship between 
logic programming and non-monotonic reasouiug. Sec- 
ondly, they establish a close relationship between the four 
major formalizatious of non-monotonic reasoning for an 
importaut class of theories. They may also contribute to a 
better understanding of relations existing between various 
forms of nou-monotonic reasoning and to the eventual dis- 
covery of deeper underlying principles of non-monotonic 
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reasoning. The aim of this paper 
of these recent developments. 

is to present au accost 

In [Apt, Blair and Walker 881 and [Van Gelder 88 au im- 
portaut class of ~~~t~~~ Z&c p~~~rn~ ww intro d uced, a 
unique ‘natural’ minimal Werbrand model Mp of a strati- 
fied logic program was defined aud it was argned that this 
model may be taken to represent the declarative semautics 
of such programs. 

In [T. Przymusinski 881 aud [T. Przymus~s~ 87 the 
class of perfect model8 of a logic program was define d! aud 
it was shown that every stratifled logic program h 
actly oue perfect Herbmad model which coincides wi 
model 131~. The perfect model sematatice of logic 
is the semautics determined by the class PERF P) of all P 

rograms 

ecessarily Herbrand) perfect models of a program 
first introduce the Ieperu%ency graph G of the pro- 

gram P whose vertices are predicate symbols occurriug in 
P. If A and B are predicate symbols, then there is a di- 
rected edge iu G from B to A if and only i a 
clause iu P such that A occurs iu its head and of 
its premises. If this premise is negative, then is 
called nqatiate. For any two predicate symbols iu P we say 
that B bat lower priority thar% A (briefly, B < A if there 
is a directed path in 6: leading from I3 to A an d passing 
through at least one negative edge. We call the relatiou 
defined above the priority teMon IT. Przymusiuski $71. 

e now deflue the notiou of a perfect model. It is our 
god to ti92Mze eztendonrr of low priority predicates a8 
march a8 podble, and we are willing to do that even at 
the cost of enlarging extensions of predicates with higher 
priority. Consequently, if M is a model of P and if a new 
model N is obtained from M by changing exteusious of 
some predicates in M, then we will consider the uew model 
N to be referable to M if aud only if additiou of some new 
element Q s) to the extension of a higher priority predicate 
A is always g’ustti/ied by the simultaneous removal 
elements from the extension of a lo 
i.e. such that B < A. A model M w 
if there are no models preferable to 1 

M 
Definition. [T. Przymusiuski 87) Suppose that 

N are two distinct models of a general program P, 
with the same universe aud the same interpretation of fuuc- 
tious (and cons 
the extensions i 

s) and denote by EM A) aud EN(A) 
c aud N, respectively, o a predicate A. 

We say that N ejerable to M briefl , 
every predicate A for which the set !E 3 N(A 

EB 4 Ad), if for 
-.&(A) is non- 

empty there is a predicate symbol B < A such that 
&@)-.&(B is non-empty. We say that a mod 
P is perfect if t h ere are no models preferable to M. 
the relation 4 the preference relation between models aud 

FN, if M=N or M 4 N. 
Theorem. [T. Przymusinski 871 Every perfect 

For positive1 logic programs the converse is true. 
[T. Przymusiuski 871 If M is a model 

“A progmm is positive if it does not have negative 

every clause 

in P, where A’s, ‘s and C are atoms, we 
(i) for every i, stratum(A() 5 stratum(@), 

(ii) for every j, stratum&) < stratum(C), 
where stratum(A)=i, if the predicate symbol of A be- 

longs to Si. Any particular decomposition (Si , . . . , $1 
of S satisfying the above couditious is c ed a ~t~~~~~t~o~ 

. 

a unique perfect Berbrand model which coiucides with the 
model A&. 

Now we define the perfect model semantics of a logic 
program. 

mini& model semanticg i.e. to the semautics iuduced by 
the class MN P 

Id 
of all - not necessarily Merbraud - min- 

imal models o . The perfect model semanticr in ho 
than the semantice defined by Chrk’~ completion co 
of the program P i.e. for auy sentence F, if comp(P 
then PERF(P) b F. Nowever, as the following example 
indicates, the perfect model semantics eliminates some of 
the uniutuitive features of Clark’s semautics. 
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wanted 
le. 

to describe 
(Van Gelder). Suppose, that we 

which vertices in a graph are reach- 
able from a given vertex a. We could write 

edge(a, b) f&h+, 4 fG$.k 4 
redzub~e(ca) 

reackubZe(X) t recschab~e( Y ) , e&e( Y, X) 
unreuchubb(X) c- preachable. 

This seems to be a very reasonable program and we cer- 
tainly can expect vertices c and d to be unreachable from a. 
Rowever, Clark’s completion of P lacks the power to derive 
these conclusions [T. Przymusiuski 871. On the other Baud, 
it is easy to verify that the program is stratified by a strat- 
iflcatiou S~=(reachable, edge} and Ss=(unreachable) and 
that the perfect model semautics provides the correct au- 
swers. 

In T. Przymusinshi 871 SLS-tesodcrtion (Linear terrolrtiora 
I wit Selection jmctiow jot Stratified p~grarnu) wm de- 

fined and it was shown that SLS-resolution is souud and 
complete (for non-flouuderiug queries2) w.r.t. the per- 
fect model sexnadics and therefore provides a procedural 
mechanism for the proposed semantics. SLS-resolution is 
a natural generulkdion of SLD-resolution (Linear resolu- 
tion with Selection function for Definite programs 

1 
from 

the class of positive (definite) programs onto the c ass of 
stratifled programs. SLS-resolution differs from SLDNF- 
resolution primarily by not relying on finite failure trees. 

3. Theorem. (Soundness of $LS-~3olMt~on) 
Suppose that P is a stratified program aud G =+ Ff’ is a 
goal. Then 
(i) If 8 is any SLS-auswer-substitution, then 

PERF(P) + we 
(ii) If SLS-tree for G is frailed, then PERF(P) + +V . 

2.10. Theorem. (Completeness of SLS- 
resolution) Suppose that P is a stratified program, G =+ 
W is a non-floundered goal and 0 is a substitution. Then 
(i) PERF(P) b WO iff there exists au SLS-auswer- 

substitution more general than 8; 
(ii) PERF(P) k 4V iff SLS-tree for G is failed. 

In the special case when P is a positive program, SLS- 
resolution reduces to the staudard SLD-resolution. The- 
orem 2.10 therefore implies au important result showiug 
that for positive goals SLD-retoltltioa i8 80tltaa and com- 
plete w.t.t. the minimal m0dei semantic8. 

In this section we show that the perfect model seman- 
tics for logic programs described in the previous section 
is (semantically) equivalent to suitable forms of four major 
non-monotonic formalisms: (1) circumscription, (2) closed 

‘See [Lloyd 841. 
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world assumption, (3) autoepistemic logic and (4) default 
logic. 

These results provide a further argument iu favor of 
the perfect model semantics and underscore the relatiou- 
ship between logic programming and non-monotonic rea- 
soning. They should also contribute to a better under- 
standing of the relation existiug between various forms of 
non-monotonic reasoning. 

One of the most powerful formalizations of non-monotonic 
riptiou, was introduced iu [MC- 

The following theorem estab- 
eeu the perfect model semautics 

of logic programs and the semantics of prioritized circum- 
scription. A similar result for poiutwise circumscription 
was obtained in 
tained earlier in 1 

Lifschitz EM] and related results were ob- 
Reiter $21. 

.1. Theorem. (T. Przymusiuski 871 Suppose that P 
is a stratified program and Sl,...,& is a stratification of 
P. A model of P is perfect if and only if it is a model of 
prioritized circumscription CIRC(P;Sl > . . . > Sn . Con- 
sequently, the perfect model semantics of P d coinci es with 
the semautics of prioritized circumscription of P, i.e. for 
any sentence F 

PERF(P) b F a cmcp; Sl > . . . > SR) /= F. 

The above theorem has two interesting cousequences: 
Siuce SLDNF-resolution used iu Prolog is sound w.r.t. 
the perfect model semautics it is also sound w.r.t. 
to the semantics of prioritized circumscription. This 
means that SLDNF-resolution can be used as a sound 
iufereuce engine for some types of circumscriptiona. 

rms Reiter’s comment that ‘partly 
because it is a non-monotonic operator, procedural 
negation cau often be used to implement other forms 
of non-monotonic reasoning [Reiter $61. 
In general, it is not clear how to instautiate the cir- 
cumscription axiom in order to derive the desired con- 
sequences of a circumscribed theory. The equivalence 
between the perfect model semantics aud prioritized 
circumscription shows that iu the case of stratifled 
logic programs such au instautiatiou cau be generated 
automatically based on the syntactic form of the pro- 
gram* 

(a88 ptim 
An alternative way to formalize non-monotonic reasoniug 
is to use some form of the closed world assumption. The 
first step in this direction was made by Reiter, who dellned 
the so called n&e cfooare CWA(P) of a theory P: 

3.3. efln1t10n. (Reiter 78) The n&e closarre 
CWA(P) of P is defined as follows: 

OVA(B) = P u (1~: p is a ground atom and P p p>. 

Reiter’s CWA(P), although suitable for positive pro- 
grams, is usually inconsistent for programs with negative 

aA query answering algorithm for general circumscriptive 
theories has been described in IT. PrzynuGnski 8’?a]. 



premises. FOP example, if P is p + lq, then CWA(P) 
implies lp and lq and is inconsistent. 

Stimulated by Reiter’s work, several researchers pro- 
posed more sophisticated forms of the closed world as- 
sumption, namely the Generalized Closed World Assump- 
tion [Minker $21, the Extended Closed World Assump- 
tion (Gelfond, II. Przymusinska and T. Przymusinski Ma; 
Yahya asd Hewchen SS] and - the most general of them 

Iterated Closed World Assumption ( 
Przymusinska and T. Przymusinski 
simplified definition of ICWA, whit 

for logic programs. 

ICWA(F$; 27,) = CWA(P~); 

ICWA(Pn+I;Sl > . . . > Sn+l) = 

= CWA(P,,, + ICWA(P,; Sl > .s. > Sn)), for ra > 0, 

ICWA(P;&. > e.. > Sk) = ICWA(Bk;Sl > . . . > Sk). 

following theorem shows that the semabntics of 
I > Sk) is equivalent to the perfect model 
S 

Theomm (Gelfond, . Przymusinska and T. 
mu&&i %a] Assume the domain closure axiom and sup- 
pose that P is a stratifled logic program aud S1,...,Sk is 
a stratification of P. The theory ICWA(P;Sl > . . . > Sk) 
has exactly one model and this model is the unique perfect 
model of P. 

The above theorem provides a syntactic description of 
the perfect model semantics in the form of a first order 
theory. It generalizes an earlier result obtained for positive 
programs and minimal models (Lifschitz 851. 

in Moore 801 pro- 
83 0 I! non-monotonic 

reasoning. Moore uses modal logic to form 
oniug about his knowledge or bellieffi. 

oore and consider here propositional th 
I3y an autoepistemic theory T we mean a set of formu- 

lae in the lmguage of propositional calculus augmented by 
a belief operator L, where, for any formula F, LF is in- 
terpreted as ‘I? is believed’. The set of all propositional 
consequences of T will be denoted by Th(T). 

The centraJ role in Moore’s formalization is p 
the notion of a stable autoepistemic expansion of 
intuitively represents a possible set of beliefs of an ideally 
rational age&. The agent is ideaIly rational in the sense 
that he believes in all and only those facts which he can 
conclude from T and from his other beliefs. If this expan- 
sion is unique then it can be viewed as the set of theorems 
which follow from T in the abutoepi&eHlraic bgic. 

.a. ~@~~I~~o~. [Moore 801 A set of formulae E(T) 
is a odeMe at&egi&emic ezpamuoo;r of T if it satisfies the 
following fixed point condition: 

E(T) = Th(Tu (Lp : p E E(T)} u (l&p : p 

where p is a propositional formula. 
To establish a relationship between perfect model spa 

mantics and autoepistemic logic we have to define an in- 
terpretation of propositional formulae in terms of autoepis- 
temic beliefs. 

ia 
nMon. 

fo 
[Gelfond 781 For any propositiond 

e interpretation I(F) of F is obtaimd by re- 
placing every occurrence of a negative literal -p h F by the 

l literal -&p. For a logic pro 
set Of al1 autoepistemic 

e following theorem shows that - under the above 
interpretation - autoepistemic logic is semantic 
alent to the perfect model semantics. It has been shown 

orem underscores an important feature 
of autoepidemic logic, namely the fact that in order to 
obtain equivalence with the perfect model semantics, it is 
raot necessary to introduce the concept of prioritization into 
autoepistemic logic as it was the case with circumscription 
and the closed world assumption. In a seuse, ~rio~tizatio~ 
is already built iuto autoepistemic logic. 

circumscription, the above theorem 
esolution can be used as a sound 
r a class of autoepistemic theories. 

w of the fact that autoepi 
non-constructively and no psoc 

to derive its theorems. 

Another approach to the formalization of non-monotonic 
reasoning was proposed iu 
logic. Its d~tin~ish~g fe 
fault statements which functiou as addI 
fereuce rather than formulae iu some theory. 

A (closed) ~efu~2~ fde R is a rule of the form 

Q : Mbl, . ..) Mb, 
c 
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5.9. DefInitfon [Reiter 801 Suppose that < D, T > is a 
default theory. For any set S of first order sentences define 
G S) to be the smallest set (it always exists!) with the 
fo 6 owing properties: 

(i) T is contained in G(S); 
(ii) G(S) is closed under logical consequence; 

[Gelfond, H. Przymnsinska and T. Przymusinshi SSa] 
Gelfond, hf., Przymusinska, H. and Przymusinskr, T., ‘On 
the Relationship between Circumscription and Negation as 
Failure’, ArtificiaI Intelligence, to appear. 

[Konoiidge 87) Konoiige, K., ‘On the relation between default 
theories and autoepistemic logic’, SRI International, 1987, 
draft paper. 

(iii) if B is a rule from D 
and if a is in G(S) 

of the above described form) 
an 

then c is in G(S). 
, for every i, + is not in S, 

Any set of first order sentences E satisfying E=G(E) is 
called an ezfekon of < D, T >, i.e. extensions are fixed 
points of the operator G. 

A default theory < D, T > may have none, one, or more 
than one extension. Any such extension is a possible set of 
beliefs for an agent. If the theory has exactly one extension 
E, then E can be considered as the set of theorems of < 
D,T >. 

In [Bidoit and Froidevaux 861 it was shown that the 
perfect model semantics of a stratified logic program P 
is equivalent to a suitable default theory generated by P. 
Suppose that P is a logic program. Denote by T the set 
of all positive clauses of P and by D the set of defaults 
obtained as follows: for any clause 

C + Al, . . ..Am. lB1, . . . . lB,, 
in P such that ~a > 0, include in D the default rule: 

A1 A 1.. A A, : MIB1, . . . . MlB, 
C 

and call the resulting default theory < D, T > the defotat 
tbeot# aeroci~bed widft the program P. 

3.10. Theorem, Bidoit and Froidevaux 86 Suppose 
that P is a strattied I ogic program and < D, Ir > is the 
associated default theory. The theory < D,T > has ex- 
actly one extension E and the unique minimal model of E 
is the unique perfect model of P. 

The above approach is similar to that used in the case of 
autoepistemic logic, which is not surprising in view of the 
close relationship existing between default and autoepis- 
temic logics [Konolidge 871. 

References 
[Apt, BIair and WaIker 88 Apt, K., Blair, H. and WaIker, A., 

‘Towards a Theory of d eclarative Knowledge’, in: Founda- 
tions of Deductive Databases and Logic Programming, (ed. 
J.Miuker), Morgan Kaufmaun 1988,890148. 

[Bidoit and I%oidevaux 86) Bidoit, N. and Froidevaux, Cl., 
%Iinimalism Subsumes Default Logic and Circumscription 
in Stratified Logic Programming’, preprint, 1986. 

[Bossu and Siegel 851 Bossu, G. and Siegel, P., ‘Saturation, 
Nonmonotonic Reasoning and the Closed World Assnmp 
tion’, Artificial InteIIigence 25( 1985), 13-03. 

[Clark 78 Clark, K.L., ‘Negation as F&lure’, in: Logic and 
Data El ases (H.GaIlaire and J.Minker, Eds.), Plenum Press, 
New York 1978, 293-322. 

[Geifond 78) Geifond, M., On Stratified Autoepistemic Theo- 
ries, Proceedings AAAE87. 

[GeIfond and H. Przymusinska 861 Gelfond, M. and Przymu- 
sinslra, H., ‘Negation as Failure: Careful Closure Procedure’, 
Artificial Intelligence 30( 1986), 273-287. 

[Kowaiski and Sergot 861 Kowalski, R. and Sergot, M., ‘A 
Logic-based Calculus of Events’, New Generation Compat- 
hg 4(1986), 67-95. 

(Lifschite 851 Liischita, V., ‘Closed World Data Bases and Cir- 
cumscription’, Artificial Intelligence 27( 1985), 229235. 

[L&chits 881 Lifschitz, V., ‘On the Declarative Semantics of 
Logic Programs with Negation’, in: Foandations of De- 
ductive Databases and Logic Programming, (ed. J.Minker), 
Morgan Kaufmaun 1988, 177-192. 

[Lloyd 841 Lloyd, J.W., Foundations of Logic Programming, 
Springer-Veriag 1984. 

[McCarthy 801 McCarthy, J,, ‘Circumscription - a Form of 
Non-Monotonic Reasoning’, Artificial InteUigence 13(1980), 
27-39. 

/McCarthy 861 McCarthy, J., ‘Applications of Circumscription 
to Formalizing Common Sense Knowledge’, J. Artificial In- 
telligence 28(1986), 89-116. 

pinker 82 
a 

Minker, J., ‘On Indefinite Data Bases and the 
Closed orId Assumption’, Proc. 6-th Conference on Au- 
tomated Deduction, Springer Verlag, 1982,292-308. 

[Moore 801 Moore, ICC., ‘Semantic Considerations on Non- 
monotonic Logic’, Artificial Intelligence 25( 1985), 75-94. 

[H. Przymusinska 871 Przymusinska, H., ‘ On the Relation- 
ship between Autoepistemic Logic and Circumscription for 
Stratified Deductive Databases’, Proceedings of the Interna- 
tional Symposium on Methodologies for IntelIigent Systems, 
Knoxville 1987. 

[T. Przymusinski 871 Przymusinski, T., ‘On the Declarative 
and Procedural Semantics of Logic Programs’, to appear. 

[T. Przymusinski 87a] Przymusinski, T., ‘An Algorithm to 
Compute Circumscription’, A&&I Intelligence, to appear. 

[T. Przymusinski 881 Przymusinski, T., ‘On the Declarative 
Semantics of Stratified Deductive Databases and Logic Pro- 
grams’, in: Foundations of Deductive Databases and Logic 
Programming (ed. J.Miuker), Morgan Kaufmann 1988, 193- 
216. 

[Reiter 781 Reiter, R., ‘On Closed-World Data Bases’, in: Logic 
and Data Bases (H.GaBaire and JMinker, Eds.), Plenum 
Press, New York 1978, 55-76. 

[Reiter 80) Reiter, R., ‘A Logic for Default Theory’, ArtificiaI 
InteIIigence 13(1980), 81-132. 

[Reiter 821 Reiter, R., ‘Circumscription implies Predicate 
Completion (sometimes)‘, Proc. AAAI-82, 1982, 418-420. 

[Reiter 861 Reiter, R., ‘N onmonotonic Reasoning’, Annual Re- 
views of Computer Science, to appear. 

[Shepherdson 861 Shepherdson, J., ‘Negation in Logic Pro- 
gramming’, J. Logic Programming, to appear. 

pan Gelder 881 Van Gelder, A., ‘Negation as Failure Using 
Tight Derivations for General Logic Programs’, in: Founda- 
tions of Deductive Databases and Logic Programming, (ed. 
J.Miuker), Morgan Kaufmann 1988, 149-176. 

[Yahya and Henschen 85) Yahya, A. and Henschen, L., ‘Deduc- 
tion in Non-Horn Databases’, Journal of Automated Reason- 
ing 1(2)(1985),141-160. 

448 Knowledge Representation 


