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Abstract 

We present an alternative int’erpretation of de- 
faults which draws on probability theory and no- 
tions of relevance. The result is a syst,em made up 
of a body of six rules which appears t’o overcome 
some of the weaknesses of other non-monotonic 
logics proposed in AI. We also analyze several ex- 
amples and discuss some of the issues t#hat require 
further research. 

1 Introduction 
A main feature exhibited by commonsense reasoning is the 
ability to jump to conclusions which additional informat,ion 
might later defeat. The limitation of classical logic to han- 
dle this kind of reasoning, has in recent years prompted the 
development of non-monotonic logics: logics in which the 
addition of new axioms might render old theorems invalid 
(see [Ginsberg, 871). 

The usual approach for defining these logics has been t,o 
extend classical first order logic by appealing to notions 
such as consistency [McDermott and Doyle. 80; Reiter, SO] 
or minimal models [McCarthy, SO;SS]. More recent,ly how- 
ever, these logics have become subject of closer scrut,iny 
and some of their weaknesses have become more appar- 
ent (see e.g. [Reiter and Criscuolo Sl; Hanks and McDcr- 
mott, 86; Morris, 871). These analyses have revealed that 
the interpretation of defa.ults provided by t,hese formalisms 
is weaker than what appears t,o be the int8el&d inlerpre- 
tation. Conclusions that appf2a.r to be implicit in a give11 
set of defaults fail to be sanctioned and, furthermore, as 
no semantic account of defaults themselves is provided, it, 
is usually not clear where the source of the clifflculties lie. 

We argue here that there is more to default rcar;oning 
than non-monotonicity. We sa.y tl1a.t defalllts represent 
hard, context-dependent constraints among beliefs and, as 
such, obey certain laws. Our approach is t.o uncover such 
laws and incorporate them into t,he logic. For t,hat pur- 
pose, and following [Geffner and Pearl, 871, we advocate 
an interpretation of defaults which draws on probabili t,y 
theory and notions of relevance. We show that not only 
does the resulting system of defeasible inference usua.lly 
exhibits the intended preferences when dealing wit,h intcr- 
acting defaults, but that it also provides a perspective from 
which such preferences can be understood. 

The proposed scheme is present,ecl in section 3.1 In the 
rest of section 2 we analyze several examples and introduce 
some refinements. In sect,ion 3 we discuss sonic issues t,hat, 
require further research. 

2 A Logic of Defeasible Inference 

2.1 Preliminary Definitions 
Conventions. 1lr, use roman capital letters A, B, . . . as 
syntactic variables standing for first order wffs, and cap- 
it,al it,alic letters I’, K, E, . . . for sets of closed wffs or 
sentences. Object level formulas are typed in typewriter 
st,yle, e.g. gx.block(x). Tuples of variables are represented 
by x, y, . . . while a, b, . . . stand for tuples of ground 
terms. The symbols ‘I-’ and ‘f’ stand for provability and 
non-provability in first order logic with equality, respec- 
tively. Matserial implication is represented by the symbol 
‘3.‘ For a set S of formulas, we use d(S) to refer to the 
formula obtained by conjoining the formulas in S. When 
no confusion arises, we omit the #(.) operator and write, 
for instance, I- YS, as a shorthand for I- ‘d(S). 

The logic we shall present will be referred as L and will 
be characterized by a body of six rules of inference. The 
goal of L is to sanction as theorems the highly likely conse- 
quences that follow from a given context. A context Efc is 
built from two sets of wffs: a set I{ of sentences presumed 
to be true in every conceivable situation, called the back- 
ground contest, and a set of E of facts which characterize 
a particular situation and referred here as the evidential 
set. 

Defaults are represented in I< by sentences of the form 
Vx.A(x) A labi =+ B(x), where A and B are wffs with 

free variables among those of x = (~1, . ..) z,}, and with 
abi playing the role of McCarthy’s abnormal predicate. 
As we assunle different defaults to involve different abnor- 
malit,y predicates, we shall sometimes abbreviate such de- 
faults as Ai( For a particular tuple a of ground terms, 
the formula A(a) A labi =+ B(a) represents a particu- 
lar default, instance, sometimes abbrevia.ted as Ai( 

Abnormality predicates abi receive a special treatment 
in L. For a tuple of ground terms a, sentences of the 
form labi are regarded as candidate assumptions, i.e. 
they may be assumed to hold in certain contexts. When 
the assumption Tabi holds, we also say that the de- 
fault, instance Ai holds, and viceversa. A candidate 
assumption sel; simply refers to a finite set of candidate 
assumptions. 

\1’e say that. a candidate assumption set AS is consistent 
in context I’, if I-‘&AS. A formula H derivable from a 
cont,ext r augmented by a consistent candidate assumption 
set. .-1S, will be said to be arguable in such a context, and 
wc‘ shall refer to such a derivation as an argument for II in 
I’, and to -AS as the support of the argument,. 

L defines an irrelevance predicate I(.), which is used 
t.o certify whether it is legitimate to jump to a defeasible 

Ciefher fM@ 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



conclusion in a given context. Roughly, the idea is that if 
H represents an assumption believed in context I’, and E’ 
represents an additional body of evidence, then belief in 
H is .authorized to persist as long as E’ does not provide 
additional support for H’s negation, or, as we shall say, 
when E’ is irrelevant to -H in context I’. This is captured 
by the following definition: 

Definition. A set of sentences E’ is said to be 
irrelevant to a sentence H in context I’, written 
I(H; E’lr), iff f or any candidate assumption set 
AS, such that E’, X’)LyAS and E’, I’, AS I- H, we 
also have that I’, AS I- H. 

This definition of irrelevance possesses a convenient 
graphical interpretation we shall often exploit. For in- 
stance, fig. 1, depicts a background context K with for- 
mulas: 

(1) Vx.B(x) A labi + F(x) 

(2) Vx.P(x) A labs(x) j -F(x) 

(3) Vx.P(x) =S- B(x) 

(4) vx.CB(x) 3 B(x) 

CB P 

Figure 1: B separates CB from F, i.e. I(F(t); CB(t)lIc, B(t)) 

Paths in this type of graphs’ correspond to arguments 
and, irrelevance, to a form of graph separation.2 For in- 
stance, the path CB 3 B + F suggests that for any partic- 
ular individual t, F(t) is derivable from CB(t), K, and any 
support including the assumption labi( Notice that 
provided any such support, it is easy to verify that F(t) 
can be also derived from B(t) and Ii, what amounts t,o 
say, considering that there are no more pat.hs from CB to 
F, that CB(t) is irrelevant to F(t) in context {B(t))rc, i.e. 
I@(t); CB(t)lK, B(t)). 

Usually we will show a set of sentences E’ to be irrele- 
vant to a sentence H in a context EK, by showing tl1a.t in 
the corresponding graph, all the relevant paths that con- 
nect nodes corresponding to formulas in E’ to the node 
that corresponds to H, are mediated by E. Clearly in such 
situations, if from a given support, H is not derivable from 
E and K, H will be certainly not derivable from E, I< 
and E’. We should keep in mind, however, that links ‘con- 
trapose’. So, a path from P to 1F not only represents an 
argument for -F(t) given P(t), but also an argument for 
-P(t) given F(t). Th e reader might verify for instance, in 

‘In these graphs, we usually label the link tha.t corre- 
sponds to default Ai with the index i, in order to facilitate 
reference. 

2A similar corr es p ondence between graph separation and 
conditional independence has been extensively exploited by 
Judea Pearl in the context of probabilistic networks (see for 
instance [Pearl and Verma, 871) We borrow here some of his 
terminology. 

the example above, that, by virtue of the different ‘signs’ 
of the links converging to F, B(t) is relevant to -P(t) in Ii. 

As for the most part the background context will remain 
fixed, we will find useful to abbreviate I(H; E’JI?), with 
I? = EK , as 1~ (H; E’ 1 E). We also say that E’ is relevant 
to H in context I’, whenever I(H; E/II’) does not hold. 

2.2 The Rules of Inference 

The core of L is given by two sets of inference rules. We 
write I’ k H to denote that sentence H is derivable from 
context I’. Likewise, I’, E’ b H states that H is derivable 
from the context that results from augmenting r with E’. 
Notice that the provability relation associated with the 
symbol ‘ b ’ is not monotonic: I?, E’ b H does not always 
follow from I’ b H. 

The first set of rules is given by [Geffner and Pearl, 871: 

Rule 1 (Logic Theorems) 
If r I- H then I? b H 

Rule 2 (Triangularity) 
IfI’bH’andI’t-HthenI?,H’bII 

Rule 3 (Bayes) 
If r t- H’ and r, H’ I- H then I’ b H 

Rule 4 (Disjunction) 
If I’,H’bH and l?,H”i-H then I’,H’vH”kH 

It can be shown [Pearl and Geffner, $81 that the con- 
sequences of each rule are guaranteed to be highly likely 
whenever its premises are. Similar rules were proposed by 
Adams in his logic of conditionals [Adams, 661. 

Hereafter, considering that the background context re- 
mains fixed for the most part, we will find useful to abbre- 
viate K, E k H as E k H. 

Rules l-4 express how conclusions that hold in one con- 
text can be carried to a slightly different context provided 
certain conditions are satisfied. They do not specify how- 
ever, the contexts under which candidate assumptions in 
K, i.e. defa,ults, can be assumed to hold. In particular, 
they do not authorize to infer that Tweety flies for in- 
stance, given that Tweety is a bird and that typically birds 
fly. This issue is addressed by another pair of rules, the 
first of which, specifies the initial context in which a given 
candidate assumption might be assumed to hold, while the 
second one uses such assumption to ‘jump’ to conclusions 
not refuted by the evidence. 

Clearly, if Vx.A(x) A labi + B(x) is a default in I(, 
then for a tuple of ground terms a, it is reasonable to as- 
sume labi to hold when A(a) is all that is believed. 
Each default, however, is a belief in itself, not formed in 
vacuum, but on top of other relevant and irrelevant be- 
liefs. Here we assume Ii to partially model such set of 
beliefs for every default in it, thus, authorizing for a de- 
fault Vx.A(x) A labi Y?- B(x), the following inference 
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rule:34 
Rule 5 (Assumptions) 

If A(a), K )L abi(a) then A(a), Ii’ k labi 
As we shall see, such assumption turns out to be quite rear 
sonable provided we restrict K to contain only statements 
whose truth does not depend on the particu1a.r context (e.g. 
“penguins are birds”), leaving in E, the context dependent 
information available (e.g. “Tweety flies99).5 

Still, the rules above are not sufficient for maintaining 
derived conclusions in the presence of additional, but irrel- 
evant information. For instance, while rules l-5 authorize 
to conclude that Tweety flies, given that it is a bird and 
that birds typically fly, they fail to preserve such conclusion 
upon learning, say, Tweety’s color. This issue is addressed 
by an additional rule which appeals to the notion of ir- 
relevance introduced above. The idea essentially is that 
a default Vx.A(x) h Tabi =+ B(x) permits ‘jumping’, 
say, from A(a) to B(a), whenever we know the relevant 
assumption labi to hold, a,nd the new evidence does 
not provide an argument supporting its negation. More 
precisely: 

Rule 6 (Irrelevance) 
If F, A(a) k labi and I(abi(a); E’ll?, A(a)), 

then I?, E’, A(a) iu B(a) 
We argue below that what matters when testing the le- 
gitimacy of inferring B(a) from A(a) in context I? when 
coming to know E’, is not the existence of arguments in 
support of abi(a) but, more accurately, the existence of ar- 
guments for abi(a) in which the new information E’ plays 
a role. These are precisely the arguments which sa.nction 
the relevance of E’ to abi(a). 

In order to illustrate this last point, consider for instance 
a candidate assumption labi believed in context I’. 
Usually, in such context there would be different sets of 
assumptions ASi logically inconsistent with labi( For 
instance, in a context including information about the fly- 
ing abilities of penguins and birds, the assumption that, 
corresponds to the default instance “if Tweety is a penguin 
then it does not fly,” will be logically inconsistent with the 
assumption that corresponds to the default instance “if 
Tweety is a bird then it flies,” whenever Tweety is known 
to be a penguin. In such cases, independently of the new 
information E’, any argument whose support includes any 
of the sets of assumptions ASi inconsistent with labi 
in I’, will automatically constitute an argument for abi(a) 
in the context {I’, E’). What the definition of irrelevance 
above simply does, is not to take those arguments into a.c- 
count: for E’ to be relevant to abi(a) in I’, there has to 

3Note that rule 5 permits deriving B(a) from A(a), but, 
not lA(a) from -B(a). What amounts to say that the two 
logically equivalent sentences Vx.A(x) A yabi(x) + B(x) and 
VX.TB(X) A Tabi j -A(X) are interpreted by L as encod- 

ing two different defaults. More about default contraposition 
in sections 3 and 4. 

4Tlze consistency test is for discarding from I< some of t.he 
default instances otherwise implicit in the default, ‘schemas’ in 
K, and its role should not be confused with the role consis- 
tency plays in other formalisms (e.g. [Reit,er, 80; McDermott. 
and Doyle, SO]). That convention allows us to write a ‘unique- 
name hypothesis’ , for instance, as: vx.vy.labi(x, y) 3 x # y, 
without implying those default instances in which x = y. 

‘More about this distinction in section 3. 

be an argument for abi(a) with a support AS’, logically 
consistent with labi in r. 

Note that in particular, if Tabi represents an as- 
sumption believed in lr and ‘ah(b) represents an as- 
sumption logically inconsistent with labi in I’, i.e. 
r, labi l- abk(b), not only does L authorizes to ‘ignore’ 
the default instance Ak(b) corresponding to labk(b) as 
long as labi(a) is believed 6, but to ignore such default 
instance even in order to evaluate the relevance of new in- 
formation to abi(a). We say in thoses cases that labi 
dominates the assumption la&(b) in I’, and thus, the 
default instance Ak(b). 

Finally, we summarize a couple of meta-theorems that 
follow from the rules above, we shall later appeal to:7 
Theorem 1 (Logical Closure) 

If E k H, E k H’, and H, H’ I- H”, then E h H”. 

Theorem 2 (Except ions) 
If E k H and E, H’ Ir, 1H then E k 1H’. 

2.3 Examples 
Example 1 O Let us first consider a background context 
Ii in which it is known that both penguins (P) and circus- 
birds (CB) are birds (B), and that most birds fly (F), though 
most penguins do not (Fig. 1): 

Vx.B(x) A labi + F(x) 
Vx.P(x) A labs(x) j lF(x) 
Vx.P(x) j B(x) 
Vx.CB(x) =3 B(x) 

Let us now say we learn about a penguin called Tim. We 
can then conclude by means of rule 5 that Tabz(Tim) holds 
in context {P(Tim)}K, i.e. P(Tim) k labs(Tim). Likewise, 
being E closed under logical implication (Theorem l), we 
can further conclude P(Tim) rY, yF(Tim). 

Note that extending the context {P(Tim)}K to include 
B(Tim), does not affect either conclusion since, by means 
of rule 2 and the fact that P(Tim) k B(Tim) follows (rule 
l), formulas that hold in context {P(Tim))K, can also be 
shown to hold in the enhanced context {P(Tim), B(Tim)}K. 
III particular thus, we obtain 

P(Tim), B(Tim) k lF(Tim). 
L does not authorize reasoning in the opposite direc- 

tion though. While B(Tim) k labi(Tim) and, as a con- 
sequence, B(Tim) k F(Tim) can be derived, the conclusion 
B(Tim), P(Tim) k F(T ’ ) lm cannot. Nor is P(Tim) irrelevant 
to abl(Tim) in context {B(Tim))K, as the presence of an 
argument for abi(Tim) in {B(Tim), P(Tim)}K with sup- 
port {labz(Tim)} suggests, nor is P(Tim) a consequence 
of B(Tim). 

Interestingly, we also have that, in context {P(Tim)}K, 
the assumption lab1 (Tim) is dominated by the assumption 
--labs(Tim). That is, we have both 

P(Tim) k labz(Tim) 
and 

P(Tim),-abz(Tim),K I- abi(Tim). 

‘Since, in such case, we can show r I- abk(b) by means of 
rules 1 and 3. 

7See [Geffner and Pearl, 871 for proofs. 
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Rule 6, as we discussed above, can t,hen he lmderstood as 
asserting that the default instance Al(Tim) can be ignored 
in order to evaluate whether it is legitimate t.o ‘jump from 
P(Tim) to lF(Tim) in the presence of new facts. Or, more 
graphically, that the link connecting B to F, in what Tim is 
concerned, can be ignored as long a.s labz(Tim) is believed. 
In particular then, we have that, CB(Tim) turns out to be 
irrelevant to abs(Tim) in context {P(Tim)}K and, thus, we 
obtain 

P(Tim), CB(Tim) k lF(Tim). 

L might be also regarded as legitimizing a weak form of 
contraposition. For instance, by virtue of Theorem 3 and 
the fact that we can derive both 

B(Tim) k F(Tim) 
and 

B(Tim), P(Tim) k lF(Tim), 
we have that 

B(Tim) h lP(Tim), 
also follows. That is, if we assume a bird to fly, t~hough 
we know that penguin-birds do not fly, we are implicitly 
assuming that the bird is not a penguin. Stronger forms of 
contraposition, as deriving -rB(Tim) from 7F( Tim) however, 
are not sanctioned by L. 

Example 2. Consider the background context I< given 
by the defaults: 

Vx.P(x) A labi + Q(x) 
Vx.Q(x) A labz(x) + R(x) 
Vx.S(x) A labz(x) j IR(x) 

Clearly, for an individual a, we can derive P(a) k labi (a) 
and, thus, P(a) k Q(a). It t urns out however, that the con- 
clusion Q(a) results defeated if +%(a) is learned in such con- 
text. This is due to the fact that, +a) does provide aa ar- 
gument for abl(a) supported by the assumption labs(a), 
and thus, IIc(abl(a); +i(a)JP(a)) does not hold. 

What this indicates is that while L does not consider dc- 
fault contrapositives to be strong enough as to aut,horize 
deriving the negation of the antecedent from the negat,ion 
of the consequent, L does consider default contraposit,ives 
to be strong enough to make the latter relevant to the for- 
mer, and thus precluding certain inferences to take place. 
In terms of Nute [86], contrapositives a.re trea.ted in L only 
as defeaters. 

Indeed, not only does L preclude deriving Q(a) from P(a) 
when +(a) is learned, but even when s(a) is. We find this 
latter type of behavior counterintuitive though.” In the 
next subsection we shall propose a refinement of the deli- 
nition of the irrelevance predicate I(.) given above which 
distinguishes between the two situations. 

2.4 Contrapositives 
The way L handles contraposition of defaults departs from 
other frameworks known to the author. Except for a weak 
form of contraposition, L does not permit. to infer the nega- 
tion of a default antecedent from the negation of its con- 

‘This type of behavior is also exhibited by circumscription 
and by Reiter’s default logic, when defaults are encoded as to 
allow contraposition (see [Morris, 871). 

sequent, though it makes the latter relevant to the former, 
t,hus precluding certain dubious derivations to take place. 

Still, as we discussed above, contrapositives appear 
sometimes to interfere with derivations that appear to be 
intuitively valid. These situations usually arise from the 
conflict of two ‘expectation-evoking’ defaults with incom- 
pat,ible consequents. Here we propose a simple refinement 
of t,he definition of irrelevance given above, which draws on 
the ideas of [Pearl, 88a], and which leaves those derivations 
undisturbed. 

Pearl essentially argues that causality should play a dis- 
tinct,ive role in default reasoning, and that, in particu- 
lar, reasoning chains involving ‘expectation-evoking’ de- 
faults (e.g. “if it rained, the grass is wet”) followed by 
‘esplanation-evoking’ defaults (e.g. “if the grass is wet, 
the sprinkler was on”) should not be authorized. 

In our case, due to the fact that we assume defaults to 
be ‘expectation-evoking,’ and their contrapositives to be 
besplanation-evoking,‘g all we need to do, in order to en- 
force Pearl’s maxim, is to prevent such chains of reasoning 
when computing the irrelevance predicate I(a). 

The definit,ion of 1(e) above, amounts to sanction a set of 
sentences E’ to be relevant to a sentence H in context Erc, 
whenever there is an argument for H in context (E U E’}K 
with support AS, consistent with EK. The extra require- 
ment we add is simply that, whenever Ai and Ak(b) 
represent two ‘expectation-evoking’ default instances with 
consequents inconsistent in K, then AS does not simulta 
neously include the assumpt#ions labi and ‘abk(b). 

This simple proviso significantly improves the original 
account of irrelevance given above, and, in particular, cor- 
rectly accounts for the type of counterintuitive behavior 
ment~ioned above. 

From now on we will use I(.) to stand for this im- 
proved definition and will refer to the pair of conflicting 
‘cspcct,at,ion-evoking defaults as forming a causal fork. 
The new definition can then be understood simply as pre- 
venting relevance to ‘flow’ through causal forks. We will 
also refer t(o the a.ssurnptions that correspond to defaults 
forming a causal fork, as conflicting assumptions. 

We illustrate next how such refinement endows L 
with the ability to properly handle the “Yale Shooting 
Probien~.“lo 

Example 3. We consider next a version of the now famous 
“Yale Shooting Problem,” presented in [Hanks and RlcDer- 
mott, 861 as an example in which both Reiter’s logic and 
circumscription yield weaker conclusions than expected. 

The puzzle says that people alive (A(t)) typically remain 
alive (A(t+ 1)) unless shot (S(t)) with a loaded gun (L(t)). 
Likewise, loaded guns (L(t)) typically remain loaded (L(t + 
l)):ll 

Vt.L(t) A labi + L(t+ 1) 
Vt.A(t) A labz(t) j A(t+ 1) 
Vt.S(t) A L(t) A labs(t) + TA(t+l) 

‘Poole [87] makes a similar assumption. 
“See also [Pearl, 88a]. 

. “For clarity, we do not. follow Hanks’ and McDermott’s use 
of a reified situation calculus. The formulation we use appears 
more comprehensible to us, while still serves to illustrate the 
difficulty ctetect.ecl by Hanks and McDermott in both circum- 
scription and Reitcr’s default logic. 
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vt.S(t) A L(t) 3 ab2(t) 3 Discussion 

A(3) 
Figure 2: A version of the “Ya.le Shooting Problem” 

We want to show that the person in question, called 
Fred, will most likely stop being alive if he is shot at time 
t = 2, with a gun loaded at t = 1, even if he was alive at 
time t = 0, i.e. we want to prove A(O), L(l), S(2) b 7A( 3). 
First notice that by virtue of rule 5, we have 

S(2), L(2) k lab&‘), 
from which we can further infer, by means of rule G 

A@), L( I), S(2), L(2) k 4(3). 
This in turn follows from the fact that 

k&(2); A(O), L(i)lS(% L(2)) 
holds, as a result of the aasumption lab2(2) being tlomi- 
nated by the assumption lab3(2) in context {S(2), L(2)}1,-. 

Similar results would be obtained by circumscription 
and default logic. The behavior of L departs from these 
formalisms however, in which L is ca.pable of further 
establishing12 L(2) from L(l), S(2) and A(O), and, thus, 
by rule 3, the expected conclusion 

A(O),L(l), S(2) k IA(~). 
Notice first that, by means of rule 5, we have t,hat 

L( 1) h labl( 1). 

In order to evaluate whether ~(2) can be concluded upon 
learning both S(2) and A(O), we need to test, whet~her 
IK (abl(l);A(o),s(2>lL(1)) holds. In particular, we need 
to verify whether there is an argument for abl( I) in t,lie 
resulting context whose support does not include conflict,- 
ing assumptions. 

it turns-out that the only argument for abl (I) in cont,est 

- 
-. , 

{L($A(O),S(~))K, d oes appeal to the conflicting assump- 
tions lab2(2) and lab3(2) in its support, and, therefore. 
does not render E’ = {A(O),S(2)} relevant8 to abl( 1) in 
{L( 1))~. It follows then by rule G that, 

A(O),L(l), S(2) k L(2) 
which, together with the previous result, leads by means 
of rule 3, to the expected conclusion 

A(O), L( I), S(2) k +(3). 

Let us finally remark that the derivat,ion presented does 
not rest on a preference for ‘reasoning forward’ in time as 
opposed to ‘reasoning backwards’. 1; particular, had we 
learned in addition that Fred survived the shot, (A(3)), E 
would correctly have failed to authorize the conclusion that 
the gun was loaded at the time of the shoot,ing (~(2)). 

“Thanks to the improved definition of 
would have exhibited the same limit,ation. 

I(*). Otherwise L 

\Ve have presented a system of defea.sible inference mo- 
t,ivat,ed on probabilistic grounds and notions of relevance 
which provides an alternative basis for default reasoning. 
1Ve have illustrated through examples how such an ap- 
proach appears to overcome some of the weaknesses exhib- 
ited by other non-monotonic logics proposed in AI. III this 
section we want to propose some refinements and discuss 
some of the open issues. 

1. Supported Propositions Circumscription and de- 
fault logic appea.l to either minimal models or fixed-point 
constructions in order to chara.cterize the set of defeasible 
conclusions authorized in a given context. In particular, 
formulas that hold in a minimal model or extension of a 
given default theory, represents propositions which enjoy 
certain degree of support, while formulas which hold in 
none, st,ancl for propositions with no support at all. 

The classical example, is the “Nixon diamond:” we know 
quakers to be pacifists, republicans to be non-pacifists and 
Nixon to be both a quaker and a republican. Neither cir- 
cumscription nor default logic expresses in this case any 
preference for believing either that Nixon is a pacifist or 
that he is a non-pacifist. Still, both formalisms distinguish 
between “Nison is a pacifist,” and, say, “Nixon is a soccer 
fan.” The first proposition fails to be sanctioned because 
of conflictCing evidence; bhe second, due to lack of support. 

L does not, appeal to either minimal models or fixed- 
point constructions and, therefore, does not account for 
such a distinction: neither proposition is derivable by its 
rules.13 Still, a simple account for such a distinction can be 
constructed on top of L. Let us say that a proposition II is 
supported in context EK, if there is a candidate assump- 
tion set AS not ruled out by the evidence, i.e. E & TAS, 
such t,ha.t E? AS k H. 

From such a definition it is possible to show that “Nixon 
is a pacifist” is supported, while “Nixon is a soccer fan” is 
not,. More interestingly, it can be shown by means of The- 
orem 2, that if H is derivable from EK, then no proposition 
inconsistent with H in such a context will be regarded as 
supported. 

2. Background and Evidence. E naturally han- 
dles implicit exceptions. We have seen in the example 1 
how subclasses override conflicting superclasses properties, 
witt.hout having explicated the corresponding ‘abnormali- 
ties.’ This results from the probabilistic interpretation of 
defaults embedded in the rules of L, together with the 
dist,inction between the formulas taking part of the back- 
ground K from the formulas taking part of the evidential 
set E. 

The latter distinction is specially important; “pen- 
guins,” for instance, would not have overridden “birds” 
wit,11 respect to “flying” if we had stated the fact that 
“penguins are birds” in E rather than in IL’ (see [Geffner 
and Pearl, 871). A s we pointed out in section 2, I< should 
cont,ain t8hose sentences whose truth does not depend on 
contXext8, and “penguins are birds” is one such sentence.14 

13This point was raised by D. Etherington in relation to 
[Geffner and Pearl, 871. 

‘*There are other frameworks for default reasoning that have 
appealed to distinctions of this sort. Two such examples are 
Poole’s [85] scheme for comparing conflicting default theories 

Geffner 453 



We might also regard K as defining the vocabulary 
which is used in E to characterize a particular context. As 
such, K encodes information about classes with no com- 
mitment at all about what their members are. 

This distinction for instance, in the framework of inher- 
itance networks, amounts to include in K the expressions 
that correspond to links among classes, leaving in E those 
which correspond to links connecting individuals to classes. 

The question that remains to be addressed is whether 
such criterions for distinguishing K from E are sufficient 
for validating rule 5. While a number of examples here 
and in [Geffner and Pearl 871 suggest so, we expect a more 
general answer to evolve. 

3. Soundness. Rules 1-4 represent. the core of L. They 
share the inferential power of a probabilistic sound and 
complete system of rules developed by Adams [GG] for cap- 
turing what he called the probabilistic consequences of a 
set of indicative conditionals. I5 The addition of rules 5 and 
6 amounts to augmenting the probabilistic interpretation 
of defaults embedded in rules 1-4 with a set of conditional 
independence assumptions, drawn on the basis of the syn- 
tactic structure of the knowledge base. 

Other syntactic and non-syntactic means of determining 
reasonable conditional independence assumptions must be 
possible. We have illustrated for instance how a refine- 
ment of the definition of I(.) originally provided, which 
takes into account the nature of the defaults involved, per- 
mitted certain reasonable inferences, otherwise precluded, 
to take place. Further refinements might be needed in or- 
der to capture other subtle aspects associated with causal 
defaults. 

Another aspect, that remains open, is a characteriza- 
tion of the provable consistent theories in the light of L. 
Though we expect such characterization to comprise most 
of the default ‘benchmarks’ reported in the literature, we 
are specially interested in those theories which can be 
mapped to graphs, and in which, reasoning, even in the 
presence of inconsistency, can be done ‘meaningfully’ and 
efficiently. 
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