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Abstract 

We study the possibility of reducing some special 
cases of circumscription to logic programming. 
The description of a given circumscriptive theory 
T can be sometimes transformed into a logic pro- 
gram II, so that, by running II, we can determine 
whether a given ground literal is provable in T. 
The method is applicable, in particular, to some 
formalizations of tree-structured inheritance sys- 
tems with exceptions. 

I ntroduction 
Circumscription was introduced by John McCarthy [1980; 
19861 as a tool for formalizing the nonmonotonic aspects of 
commonsense knowledge and reasoning. A formula F fol- 
lows from axioms A by circumscription if F is true in all 
models of A that are “minimal” in a certain sense. There 
may be several different minimality conditions that can be 
applied in conjunction with a given axiom set, and, accord- 
ingly, there may be several different “circumscription poli- 
cies” (forms of circumscription) C that can be applied to 
given axioms. To select a circumscription policy, we should 
specify which of the predicates available in the language 
are circumscribed (minimized) and which of the remaining 
predicates are varied in the process of minimization; also, 
priorities can be assigned to the circumscribed predicates. 

Given a circumscriptive theory (A, C) and a formula F, 
we may wish to know whether F is a theorem of (A, C), 
that is, whether F follows from the axioms A by the cir- 
cumscription represented by C. There is no general al- 
gorithm for this problem, and several authors have pro- 
posed computational methods for some special cases that 
are important for applications to AI. Many of these meth- 
ods [Bossu and Siegel, 1985; Gelfond and Przymusinska, 
1986; Przymusinski, 1986; Ginsberg, 19881 are, in essence, 
extensions of the query evaluation procedures used in logic 
programming. 

In this paper we explore another approach to the use of 
logic programming for the automation of circumscription: 
compiling circumscriptive theories in to logic programs.’ 
We may be able to transform the given circumscriptive 
theory (A, C) and the goal formula F into a logic program 
II and a query W, so that the output produced by II for 
the query W will show whether F is a theorem of (A, C). 

*This research was partially supported by DARPA under 
Contract N0039-82-C-0250. 
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The rules of the program II will be essentially the axioms 
A, sometimes modified to reflect the circumscription pol- 
icy C. In the simplest case, W will coincide with the goal 
F, and the answer yes will be interpreted as the conclusion 
that F is a theorem. In general, W will be obtained from 
F by a simple syntactic transformation. 

We have to make rather strong assumptions about the 
form of the given circumscriptive theory and about the 
goal formula. Nevertheless, the method is applicable to a 
number of interesting examples, including, notably, some 
formalizations of tree-structured (i.e., not multiple) inher- 
itance systems with exceptions. 

The idea of reducing special cases of circumscription 
to logic programming is suggested by the well-known fact 
that minimization plays a fundamental role in the seman- 
tics of logic programs. The semantics of Horn clause pro- 
gramming defined by van Emden and Kowalski [1976] uses 
minimization of the same sort as in the definition of cir- 
cumscription. The semantics of stratified programs with 
negation [Apt et al., 1988; Van Gelder, 1988) is closely re- 
lated to the use of priorities [Lifschitz, 1988; Przymusinski, 
1988a; Przymusinski, 1988b]. 

The main differences between circumscription and the 
declarative semantics of logic programming can be sum- 
marized as follows. 

1. In logic programming, different ground terms are as- 
sumed to represent different elements of the universe. 
There is no corresponding assumption in the definition 
of circumscription. 

2. In logic programming, every predicate is minimized. 
In the definition of circumscription, some predicates 
are minimized, and others are not. 

3. In logic programming, each given clause should be 
written as a “rule”, with one of the atoms designated 
as the “head”, and the rest included in the “body”. 
Deciding whether a given predicate should be placed 
in the head or, negated, in the body, significantly af- 
fects the meaning of the program, because in the latter 
case the minimization of that predicate will be given a 
higher priority. The definition of circumscription, on 
the contra.ry, is invariant with respect to replacing ax- 
ioms by logically equivalent formulas; the assignment 
of priorities is explicitly described by the circumscrip- 
tion policy. 

In view of these differences, it is usually impossible to 
simply view the axioms of a circumscriptive theory as the 
rules of the corresponding logic program, and a compila- 
tion process is required. 

In Section 2, we review some terminology and notation 
related to circumscription and logic programs. In Section 
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3, a series of examples is given in which circumscriptive 
theories are translated into logic programs. In Section 4 
we state a theorem that demonstrates the correctness of 
the method used in these examples. The full paper will 
contain the proof of the theorem and some extensions. 

2 Terminology and Notation 
We start with a fixed first-order language with a finite 
number of object, function and predicate constants. In 
this preliminary report we assume that there are no func- 
tions in the language, so that its only ground terms are 
object constants Cl, C2, , . . . In this case we call the for- 
mulas Ci $1 Cj (i < j) the uniqueness of names axioms for 
this language. 

An atom is an atomic formula not containing equality. 
A literal is an atom (positive literal) or a negated atom 
(negative literal). A clause is a disjunction of literals. A 
clause is negative if each of its literals is negative, and 
definite if it has exactly one positive literal. A rule is a 
formula of the form 

L1 A... AL,>A, 

where L1,...,Lnz (m 10) are literals (they form the body 
of the rule), and A is an atom (the head). A clause that has 
I, positive literals can be written as a rule in Ic essentially 
different ways, because any of the i% positive literals can be 
placed in the head. In particular, a negative clause cannot 
be written as a rule, and a definite clause corresponds to 
a. single rule. 

A program is a finite set of rules. We identify a program 
with the conjunction of its rules. The definition of a pred- 
icate P in a program II is the subset of II consisting of all 
rules that contain P in the head. A stratification2 of II is 
a partition of its predicates into disjoint parts 

Pl;. . .; Pk 

such that, for every predicate P from Pi (1 5 ?: < L), (a) 
all predicates that occur in the definition of P belong to 
PI,... , Pi, and (b) all predicates that occur in the defini- 
tion of P under 1 belong to PI, . . . , Pi-l. It is convenient 
to allow some of the parts Pi to be empty. A program is 
stratified if it has a stratification. 

If A is a sentence, and P, 2 are disjoint lists of pred- 
icates, then Circum(A; P; 2) stands for the result of cir- 
cumscribing the predicates in P relative to A, with the 
predicates in 2 allowed to va.ry [Lifschitz, 19851. If P is 
broken into parts P’, . . . , P”, then the circumscription as- 
signing a higher priority to the members of Pi than to the 
members of Pj for i < j is denoted by 

Circum(A; P1 > . . . > P”; 2). 

The last argument 2 will be omitted if it is empty. No- 
tice that we use semicolons to separate the arguments of 
Circum from each other, whereas commas are used to sep- 
arate predicates inside each of the lists P’, . . . , Pk, 2. 

If II is a stratified program without functions then, ac- 
cording to [Przymusinski, 1988b], its semantics can be 
characterized as follows: a sentence F in the language of 

“This is essentially the definition from [Apt et al., 19881, 
except tha.t we stratify predicates, rather than rules. 

n is true relative t,o II if, in the presence of the uniqueness 
of names axioms, it follows from the circumscription 

Circum($TI; P1 > . . . > P”), 

where \;, denotes universal closure, and PI; . . . ; P” is a 
stratification of II. Denote this circumscription by II’. 

Given a stratified program II and a ground atom W, a 
logic programming interpreter is supposed to answer yes if 
W is true relative to II, and no if 1W is true. Accordingly, 
we define: 

{ 

yes, ifUAII’bW; 
Ans(II, W) = no, ifUAII’+=W; 

undefined, otherwise, 

where U is the conjunction of the uniqueness of names ax- 
ioms. The third case corresponds to the situation when 
neither W nor lT/v follows from the circumscription. Ac- 
cording to [Przymusinski, 198Sb], this is only possible for 
floundered queries. 

This semantics differs from the iterated fixed point se- 
mantics [Apt et al., 19S8; Van Gelder, 19SS] in that the 
latter takes into account Herbrand models only. 

If W is a. ground atom whose predicate does not belong 
to the language of II then we set Ans(II, T/v) = no. 

3 Examples 
Example 1. Consider the circumscriptive theory with the 
a.xioms: 

John # Jack, John # Jim, Jack # Jim, (1) 

f ather( John, Jack), (2) 
father(Jack, Jim), (3) 

father(x, y) A father(y, z) 3 grandfathe?(x, z), (4) 

with both predicates fatlzer and g~ancl~athev minimized. 
How can we use logic programming to determine whether 
a given ground literal in the language of this t,heory is a 
theorem? Consider the logic program II whose rules are 
(a), (3) and (4). If the goal formula is a ground a.tom TV 
then W follows from axioms (l)-(4) by circumscription 
iff Ans(II, TW) = yes. If the goal formula, is a negated 
ground atom, then let T/lr be the goal formula with the 
negation sign removed; lT/lr follows from the axioms by 
circumscription iff Ans(II, W) = no. 

The translation process used in Example 1 is extremely 
simple: II is obtained from the axiom set A by dropping 
some axioms, and W is obtained from the goal formula 
by dropping the negation sign, if there was one. The main 
reason why translating was so easy is that the circumscrip- 
tion policy in this example is the standard circumscription 
policy of Horn clause logic programming - minimizing all 
predicates. 

Remark 1. It is essential that the uniqueness of na.mes ax- 
ioms (1) were initially included in the axiom set. Without 
them, it would be impossible to prove any negated ground 
atom, and such formulas as fathe?a( John, John) would be 
undecidable.3 At the same time, it is essential that these 

3To see why, consider a model of axioms (2)-(4) in which 
the universe is a singleton. The extents of all predicates in this 
model are minimal. 
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axioms were deleted in the process of compilation: Syn- 
tactically, they are not rules and cannot be included in a 
program. 

Remark 2. If axiom (4) were written as a clause 

7father(x, y) V 7father(y, z) V grandfather(z, z), (4’) 

then an additional step would be required: replacing this 
clause by the corresponding rule (4). Notice that clause 
(4’) is definite, so that it can be written as a rule in only 
one way. 

In applications to formalizing commonsense reasoning, 
circumscription is often used to minimize “abnormality” 
[McCarthy, 19861. I n such cases, the language contains 
one or more abnormality predicates ub, ubl, ub2, . . . . These 
predicates express that their arguments are exceptional rel- 
ative to some “default principles”. 

Example 2. The axioms are: 

Tweety # Opus, Tweety # Joe, Opus # Joe, (5) 

bird(x) A hub > flies(x), (6) 
bird(Tweet y) , (7) 

bird( Opus), (8) 
ub(Opus). (9) 

Axiom (6) p ex resses that normally birds can fly. The pred- 
icates czb and bird are minimized; flies is varied.4 

We compile the given axiom set into a logic progra.m II in 
the same way as above, i.e., simply delete the uniqueness 
of names axioms (5). The answer given by a logic pro- 
gramming system to a query P(c), where P is one of the 
predicates ub, bz’~*cZ and flies, and c is one of the constants 
Tweety, Opu.s, a.nd Joe, is interpreted a.s follows: 

1. If Ans(II, P(c)) = yes tl ien the given circumscription 
implies P(c). In this wa.y we conclude that the cir- 
cumscription implies 

ub(Opus), bird(Tweety), bird(Opus), fZies(Tweety). 

2. If An@, P(c)) = no and P is one of the circum- 
scribed predicates ub and bird, then the circumscrip- 
tion implies lP(c). I n tl iis wa.y we get the conclusions 

-ub( Joe), lub(Tweety), Gird( Joe). 

3. If Ans(II,P(c)) = no and P is the varied predicate 
flies, then P(c) is undecidable: The circumscription 
implies neither P(c) nor lP(c). We conclude that the 
formulas fZies(Opus) and fZies(Joe) ca.n be neither 
proved nor refuted on the basis of the given axioms 
eveii using circumscription. 

Remark 3. The program constructed in Example 2 is 
stratified. For instance, we can place bird and ab in P’, 
and flies in P2. 

Remark 4. If axiom (6) were written as a cla.use 

Third(x) V cd(z) V fZies( x), 

*Another reasonable circumscription policy is to leave bird 
fixed. Unfortunately, onr method is not applicable to circum- 
scriptions witch fixed predicates. 

then we would have 
it as a rule: (6) and 

a between two ways of writing 

bird(x) A lfZies(x) > ub(x). (6’) 

The second possibility would lead to a stratified program 
also (place bird and flies in P1 and ub in P2). But that 
program would not be satisfactory for our purposes: It 
answers no to the query fZies(Tweety), even though this 
query follows from the axioms by circumscription. We will 
see in Section 4 that the main result justifying the correct- 
ness of our method distinguishes between (6) and (6’) by 
demanding that, in the absence of priorities, the circum- 
scribed predicates belong to the first stratum PI. 

Example 3. Replace axioms 
example by the axioms 

(8) and (9) in the previous 

penguin(Opus), (10) 

penguin(x) II bird(x), (11) 
penguin(x) 3 Iflies( (12) 

lfZies( Joe). (13) 
Thus the new axiom set is (5)-( 7)) ( lo)---( 13). We mini- 
mize ub, bird and penguin, and vary flies. The transfor- 
mation used in Exa.mples 1 and 2 (dropping the uniqueness 
of names axioms) is not sufficient in this case for produc- 
ing a program, beca.use some of the remaining axioms, (12) 
and (13)) are not rules. In fact, (13) is a. negative clause, 
and (12)) written as a clause, is negative a.lso, so l,hat it is 
impossible to write either as a rule. Some addit,ional work 
is needed. 

The key observation is that the remaining formulas (6)) 
(7), (lo)-( 13) will b ecome a program if we replace all 
occurrences of TfZies by a new preclicate,” flies. The 
rules of this program are (6)) (7), (lo), (ll), 

penguin(x) 3 flies(x) (12’) 

and 
fZies( Joe). (13’) 

This program, however, is not satisfactory for our pur- 
pose, because it treats flies and flies as unrelat,ed pred- 
icates. The information that they represent each other’s 
negation is lost here. This can be fixed in the following 
way. Let us go back to the axiom set (6)) (7)) (lo)-(13) 
and find all pairs of axioms that, writ.ten as clauses, can 
be resolved upon f dies. There are 2 such pairs: (6)) (12) 
and (6)) (13). Th e resolvent of the first pair is the definite 
clause 

4kd(x) V U/I(X) V lpenguin(x); 

written as a rule, it becomes6 

bird(x) A penguin (xc> > ub( x). (14) 

The resolvent of the second pair is the definite clause 

4ird( Joe) V ub( Joe); 

written as a rule, it becomes 

bird( Joe) > ub( Joe). (15) 

5Similar transformations were used by several authors, be- 
ginning with Meltzer [1966]. 

61n view of asiom (ll), the literal bird(z) in t,his rule ca.n be 
dropped. We will ignore “optimization? of this kind. 
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We add the resolvents (14), (15) to the program that was 
obtained by introducing flies. The result is the program: 

bird(x) A -d(x) > flies(x), (6) 

bird(Tweety), (7) 
penguin(Opus), (10) 

penguin(x) > bird(x), (11) 

penguin(x) 3 fZies(x), (12’) 

fZies(Joe), (13’) 
bird(x) A penguin(x) >~ub(x), (14) 

bird( Joe) 3 ab( Joe). (15) 
If the goal literal F does not have the form TfZies(c) 

then the program is used for resolving F in the same way 
as before. We conclude that these facts follow from the 
axioms by circumscription: 

xb(Tweety), ab(Opus), lab(Joe), 

bird(Tweet y), bird(Opus), +ird( Joe), 

lpenguin(Tweety), penguin(Opus), Ipenguin(Joe), 

fZies(Tweet y). 

About the formulas fZies(Opus) and fZies(Joe) we con- 
clude that they do not follow from the axioms by circum- 
scription. If W is lfZies(c) then we look at the answer 
to the query flies(c). If the answer is yes then W follows 
from the axioms by circumscription; if no then it does not. 
In our example, we get lfZies(Opus) and lfZies(Joe). 

Finally, we will show that prioritized circumscription can 
be sometimes compiled into a logic program in essentially 
the same way. 

Example 4. Let 
and replace it by 

us make axiom (12) in Example 3 weaker 

pengu.in(x) A labl(x) > Iflies (120) 

(normally, penguins cannot fly). The new abnormality 
predicate ubl will be circumscribed at a higher priority 
than ab, in accordance with the familiar principle that 
more specific information in an inheritance system should 
be given a higher priority. Thus we give priority 1 to mini- 
mizing ubl, Bird and penguin, and priority 2 to minimizing 
ab; as before, flies is varied. Replacing lflies by flies 
gives 

penguin(x) A l&l(x) > flies(x). Pb) 
The first of the two resolvents computed 
compilation will get an additional term: 

in the process of 

4&-d(x) V c&(x) V lpenguin(x) V &l(x). (16) 

This clause has 2 positive literals, ah(x) and &l(x), so 
that we have to decide which of them should be placed in 
the head. We choose the form 

bird(x) A penguin(x) A ~~bl(x) > d(x), W-d 

because the given circumscription policy assigns to ubl a 
higher priority than to u.b. Generally, we will require that 
the resulting program have a stratification with the higher 
priority predicates placed in the lower strata. This require- 
ment determines how the assignment of priorities affects 
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the result of compilation. The result of compilation is the 
program 

bird(x) A Y&(X) > flies(x), (6) 
bird(Tweety), (7) 

penguin(Opus), (10) 
penguin(x) r> bird(x), (11) 

penguin(x) A -&l(x) > flies(x), tw 
fZies(Joe), (13’) 

bird(x) A penguin(x) A l&l(x) > ub(x), WJ) 
bird( Joe) II ub( Joe). (15) 

Its answers are interpreted in the same way as in Ex- 
a.mple 3. If the predicate in the goal literal is ub, bird, 
penguin or flies, then the result of computation is the 
same as before. To each query of the form &l(c) the pro- 
gram answers no, which shows that all these formulas can 
be refuted in the given circumscriptive theory. 

4 Main Theorem 
Let A be (the conjunction of) a set of clauses without func- 
tion symbols. These clauses, along with the uniqueness of 
names axioms, will constitute the axiom set of the cir- 
cumscriptive theory that we want to compile into a logic 
program. The circumscription policy of the theory will 
be determined by k disjoint lists of predicates P’, . . . , Pk’ 
(k 1 1) occurring in A. These predicates will be min- 
imized: Those included in P1 with the highest priority, 
those in P’ with the lowest. Let 2 be the list of pred- 
icates 21, . . . , 21 that occur in A but are not included in 
Pl,... , P”. These predicates will be allowed to vary. Sym- 
bolically, the circumscription under consideration is 

Circum(‘dA A U; P1 > . . . > P’; Z), 

where U is the conjunction of the uniqueness of names 
axioms. We will denote this formula by Circum. 

We assume that every clause in A contains at most one 
literal whose predicate symbol belongs to 2. 

We have seen that the process of compilation may in- 
clude the replacement of some negated predicates by new 
predicate symbols, and also deriving new axioms by res- 
olution. To describe these processes in the general form, 
assume that for each i (,l 5 i 5 Z) a new predicate zi is 
selected_, of the same arity as Zi. The list of new pred- 
icates 21, . . . , zl will be denoted by z. By Replace(A) 
we denote the result of replacing each 1Zi in A by zi. 
Let Resolve(A) be (th e conjunction of) the set of clauses 
that can be obtained by resolving a pair of clauses from 
A upon an atom whose predicate symbol belongs to 2. 
Since every clause in A contains at most one literal whose 
predicate belongs to 2, the formula Resolve(A) does not 
contain predicates from 2. 

Theorem 1. Let II be a program obtained from 
Replace(A) U Resolve(A) by writing each clause as a rule, 
so that the partition 

Pl; . . . . P”; 2,-z (17) 

is a stratification of II. Then, for any 
whose predicate symbol occurs in A, 

ground atom W 



1. Circum j= W iff Ans(II, W) = yes; 

2. If the predicate symbol of W belongs to P’, . . . , P”, 
then 

Circum b TW iff Ans(lI, W) = no; 

3. If the predicate symbol of W belongs to 2, then 

Circum /= 1W iff Ans(II,RepZuce(~W)) = yes. 

It is easy to see that the conclusions made in Examples 
l-4 above can be justified on the basis of Theorem 1. In 
Example 2, the predicate flies does not belong to the lan- 
guage of the program obtained as the result of compilation; 
this fact justifies our conclusion that no literal of the form 
lflies(c) is a theorem. 

Remark 5. There is no guarantee, of course, that each 
clause in Replace(A) U ResoZve(A) can be written as a 
rule stratified by (17). But there is a simple algorithm 
that transforms a given clause X into a rule stratified by 
(17) or determines that this is impossible. If X is nega- 
tive, then the task is impossible. Otherwise, find the last 
among the groups (17) that contain a predicate occurring 
in X positively. If X has only one positive literal whose 
predicate is in that group, then make this literal the head 
of the rule. Otherwise the task is impossible. 

An important class of examples in which some clauses 
cannot be stratified by (17) * g IS iven by multiple inheritance 
systems. 

Example 5. The system formalized in Example 4 will be- 
come a multiple inheritance system if we disregard the fact 
that penguins are a subclass of birds, and treat penguin 
and bird as two partially overlapping classes. Formally, we 
consider the circumscriptive theory with the axioms (5)- 
(7), (lo), (120) (13) and with the same priority assigned 
to the minimized predicates ub, ubl. Now both positive 
predicates in clause (16), obtained by resolving (6) against 
(120), belong to P i. Hence there is no way to write that 
clause as a rule stratified by (17). 

Remark 6. If A consists of n clauses, then RepZuce(A) 
consists of n clauses too, and the number of clauses in 
Resolve(A) is at most (n2 - n)/2. Hence the number of 
rules in II is at most (n2 + n)/2. 
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