
Compiling Circumscriptive Theories into Logic Programs:
Preliminary Report*

Michael Gelfond
Department of Computer Science

University of Texas at El Paso
El Paso, TX 79968

Abstract

We study the possibility of reducing some special
cases of circumscription to logic programming.
The description of a given circumscriptive theory
T can be sometimes transformed into a logic pro-
gram II, so that, by running II, we can determine
whether a given ground literal is provable in T.
The method is applicable, in particular, to some
formalizations of tree-structured inheritance sys-
tems with exceptions.

I ntroduction
Circumscription was introduced by John McCarthy [1980;
19861 as a tool for formalizing the nonmonotonic aspects of
commonsense knowledge and reasoning. A formula F fol-
lows from axioms A by circumscription if F is true in all
models of A that are “minimal” in a certain sense. There
may be several different minimality conditions that can be
applied in conjunction with a given axiom set, and, accord-
ingly, there may be several different “circumscription poli-
cies” (forms of circumscription) C that can be applied to
given axioms. To select a circumscription policy, we should
specify which of the predicates available in the language
are circumscribed (minimized) and which of the remaining
predicates are varied in the process of minimization; also,
priorities can be assigned to the circumscribed predicates.

Given a circumscriptive theory (A, C) and a formula F,
we may wish to know whether F is a theorem of (A, C),
that is, whether F follows from the axioms A by the cir-
cumscription represented by C. There is no general al-
gorithm for this problem, and several authors have pro-
posed computational methods for some special cases that
are important for applications to AI. Many of these meth-
ods [Bossu and Siegel, 1985; Gelfond and Przymusinska,
1986; Przymusinski, 1986; Ginsberg, 19881 are, in essence,
extensions of the query evaluation procedures used in logic
programming.

In this paper we explore another approach to the use of
logic programming for the automation of circumscription:
compiling circumscriptive theories in to logic programs.’
We may be able to transform the given circumscriptive
theory (A, C) and the goal formula F into a logic program
II and a query W, so that the output produced by II for
the query W will show whether F is a theorem of (A, C).

*This research was partially supported by DARPA under
Contract N0039-82-C-0250.

‘In [Gelfond, 19871 a similar method is applied to answering
queries in autoepistemic theories.

Vladimir Lifschitz
Department of Computer Science

Stanford University
Stanford, CA 94305

The rules of the program II will be essentially the axioms
A, sometimes modified to reflect the circumscription pol-
icy C. In the simplest case, W will coincide with the goal
F, and the answer yes will be interpreted as the conclusion
that F is a theorem. In general, W will be obtained from
F by a simple syntactic transformation.

We have to make rather strong assumptions about the
form of the given circumscriptive theory and about the
goal formula. Nevertheless, the method is applicable to a
number of interesting examples, including, notably, some
formalizations of tree-structured (i.e., not multiple) inher-
itance systems with exceptions.

The idea of reducing special cases of circumscription
to logic programming is suggested by the well-known fact
that minimization plays a fundamental role in the seman-
tics of logic programs. The semantics of Horn clause pro-
gramming defined by van Emden and Kowalski [1976] uses
minimization of the same sort as in the definition of cir-
cumscription. The semantics of stratified programs with
negation [Apt et al., 1988; Van Gelder, 1988) is closely re-
lated to the use of priorities [Lifschitz, 1988; Przymusinski,
1988a; Przymusinski, 1988b].

The main differences between circumscription and the
declarative semantics of logic programming can be sum-
marized as follows.

1. In logic programming, different ground terms are as-
sumed to represent different elements of the universe.
There is no corresponding assumption in the definition
of circumscription.

2. In logic programming, every predicate is minimized.
In the definition of circumscription, some predicates
are minimized, and others are not.

3. In logic programming, each given clause should be
written as a “rule”, with one of the atoms designated
as the “head”, and the rest included in the “body”.
Deciding whether a given predicate should be placed
in the head or, negated, in the body, significantly af-
fects the meaning of the program, because in the latter
case the minimization of that predicate will be given a
higher priority. The definition of circumscription, on
the contra.ry, is invariant with respect to replacing ax-
ioms by logically equivalent formulas; the assignment
of priorities is explicitly described by the circumscrip-
tion policy.

In view of these differences, it is usually impossible to
simply view the axioms of a circumscriptive theory as the
rules of the corresponding logic program, and a compila-
tion process is required.

In Section 2, we review some terminology and notation
related to circumscription and logic programs. In Section

Gelfond and Likhitz 455

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

3, a series of examples is given in which circumscriptive
theories are translated into logic programs. In Section 4
we state a theorem that demonstrates the correctness of
the method used in these examples. The full paper will
contain the proof of the theorem and some extensions.

2 Terminology and Notation
We start with a fixed first-order language with a finite
number of object, function and predicate constants. In
this preliminary report we assume that there are no func-
tions in the language, so that its only ground terms are
object constants Cl, C2, , . . . In this case we call the for-
mulas Ci $1 Cj (i < j) the uniqueness of names axioms for
this language.

An atom is an atomic formula not containing equality.
A literal is an atom (positive literal) or a negated atom
(negative literal). A clause is a disjunction of literals. A
clause is negative if each of its literals is negative, and
definite if it has exactly one positive literal. A rule is a
formula of the form

L1 A... AL,>A,

where L1,...,Lnz (m 10) are literals (they form the body
of the rule), and A is an atom (the head). A clause that has
I, positive literals can be written as a rule in Ic essentially
different ways, because any of the i% positive literals can be
placed in the head. In particular, a negative clause cannot
be written as a rule, and a definite clause corresponds to
a. single rule.

A program is a finite set of rules. We identify a program
with the conjunction of its rules. The definition of a pred-
icate P in a program II is the subset of II consisting of all
rules that contain P in the head. A stratification2 of II is
a partition of its predicates into disjoint parts

Pl;. . .; Pk

such that, for every predicate P from Pi (1 5 ?: < L), (a)
all predicates that occur in the definition of P belong to
PI,... , Pi, and (b) all predicates that occur in the defini-
tion of P under 1 belong to PI, . . . , Pi-l. It is convenient
to allow some of the parts Pi to be empty. A program is
stratified if it has a stratification.

If A is a sentence, and P, 2 are disjoint lists of pred-
icates, then Circum(A; P; 2) stands for the result of cir-
cumscribing the predicates in P relative to A, with the
predicates in 2 allowed to va.ry [Lifschitz, 19851. If P is
broken into parts P’, . . . , P”, then the circumscription as-
signing a higher priority to the members of Pi than to the
members of Pj for i < j is denoted by

Circum(A; P1 > . . . > P”; 2).

The last argument 2 will be omitted if it is empty. No-
tice that we use semicolons to separate the arguments of
Circum from each other, whereas commas are used to sep-
arate predicates inside each of the lists P’, . . . , Pk, 2.

If II is a stratified program without functions then, ac-
cording to [Przymusinski, 1988b], its semantics can be
characterized as follows: a sentence F in the language of

“This is essentially the definition from [Apt et al., 19881,
except tha.t we stratify predicates, rather than rules.

n is true relative t,o II if, in the presence of the uniqueness
of names axioms, it follows from the circumscription

Circum($TI; P1 > . . . > P”),

where \;, denotes universal closure, and PI; . . . ; P” is a
stratification of II. Denote this circumscription by II’.

Given a stratified program II and a ground atom W, a
logic programming interpreter is supposed to answer yes if
W is true relative to II, and no if 1W is true. Accordingly,
we define:

{

yes, ifUAII’bW;
Ans(II, W) = no, ifUAII’+=W;

undefined, otherwise,

where U is the conjunction of the uniqueness of names ax-
ioms. The third case corresponds to the situation when
neither W nor lT/v follows from the circumscription. Ac-
cording to [Przymusinski, 198Sb], this is only possible for
floundered queries.

This semantics differs from the iterated fixed point se-
mantics [Apt et al., 19S8; Van Gelder, 19SS] in that the
latter takes into account Herbrand models only.

If W is a. ground atom whose predicate does not belong
to the language of II then we set Ans(II, T/v) = no.

3 Examples
Example 1. Consider the circumscriptive theory with the
a.xioms:

John # Jack, John # Jim, Jack # Jim, (1)

f ather(John, Jack), (2)
father(Jack, Jim), (3)

father(x, y) A father(y, z) 3 grandfathe?(x, z), (4)

with both predicates fatlzer and g~ancl~athev minimized.
How can we use logic programming to determine whether
a given ground literal in the language of this t,heory is a
theorem? Consider the logic program II whose rules are
(a), (3) and (4). If the goal formula is a ground a.tom TV
then W follows from axioms (l)-(4) by circumscription
iff Ans(II, TW) = yes. If the goal formula, is a negated
ground atom, then let T/lr be the goal formula with the
negation sign removed; lT/lr follows from the axioms by
circumscription iff Ans(II, W) = no.

The translation process used in Example 1 is extremely
simple: II is obtained from the axiom set A by dropping
some axioms, and W is obtained from the goal formula
by dropping the negation sign, if there was one. The main
reason why translating was so easy is that the circumscrip-
tion policy in this example is the standard circumscription
policy of Horn clause logic programming - minimizing all
predicates.

Remark 1. It is essential that the uniqueness of na.mes ax-
ioms (1) were initially included in the axiom set. Without
them, it would be impossible to prove any negated ground
atom, and such formulas as fathe?a(John, John) would be
undecidable.3 At the same time, it is essential that these

3To see why, consider a model of axioms (2)-(4) in which
the universe is a singleton. The extents of all predicates in this
model are minimal.

456 Knowledge Representation

axioms were deleted in the process of compilation: Syn-
tactically, they are not rules and cannot be included in a
program.

Remark 2. If axiom (4) were written as a clause

7father(x, y) V 7father(y, z) V grandfather(z, z), (4’)

then an additional step would be required: replacing this
clause by the corresponding rule (4). Notice that clause
(4’) is definite, so that it can be written as a rule in only
one way.

In applications to formalizing commonsense reasoning,
circumscription is often used to minimize “abnormality”
[McCarthy, 19861. I n such cases, the language contains
one or more abnormality predicates ub, ubl, ub2, These
predicates express that their arguments are exceptional rel-
ative to some “default principles”.

Example 2. The axioms are:

Tweety # Opus, Tweety # Joe, Opus # Joe, (5)

bird(x) A hub > flies(x), (6)
bird(Tweet y) , (7)

bird(Opus), (8)
ub(Opus). (9)

Axiom (6) p ex resses that normally birds can fly. The pred-
icates czb and bird are minimized; flies is varied.4

We compile the given axiom set into a logic progra.m II in
the same way as above, i.e., simply delete the uniqueness
of names axioms (5). The answer given by a logic pro-
gramming system to a query P(c), where P is one of the
predicates ub, bz’~*cZ and flies, and c is one of the constants
Tweety, Opu.s, a.nd Joe, is interpreted a.s follows:

1. If Ans(II, P(c)) = yes tl ien the given circumscription
implies P(c). In this wa.y we conclude that the cir-
cumscription implies

ub(Opus), bird(Tweety), bird(Opus), fZies(Tweety).

2. If An@, P(c)) = no and P is one of the circum-
scribed predicates ub and bird, then the circumscrip-
tion implies lP(c). I n tl iis wa.y we get the conclusions

-ub(Joe), lub(Tweety), Gird(Joe).

3. If Ans(II,P(c)) = no and P is the varied predicate
flies, then P(c) is undecidable: The circumscription
implies neither P(c) nor lP(c). We conclude that the
formulas fZies(Opus) and fZies(Joe) ca.n be neither
proved nor refuted on the basis of the given axioms
eveii using circumscription.

Remark 3. The program constructed in Example 2 is
stratified. For instance, we can place bird and ab in P’,
and flies in P2.

Remark 4. If axiom (6) were written as a cla.use

Third(x) V cd(z) V fZies(x),

*Another reasonable circumscription policy is to leave bird
fixed. Unfortunately, onr method is not applicable to circum-
scriptions witch fixed predicates.

then we would have
it as a rule: (6) and

a between two ways of writing

bird(x) A lfZies(x) > ub(x). (6’)

The second possibility would lead to a stratified program
also (place bird and flies in P1 and ub in P2). But that
program would not be satisfactory for our purposes: It
answers no to the query fZies(Tweety), even though this
query follows from the axioms by circumscription. We will
see in Section 4 that the main result justifying the correct-
ness of our method distinguishes between (6) and (6’) by
demanding that, in the absence of priorities, the circum-
scribed predicates belong to the first stratum PI.

Example 3. Replace axioms
example by the axioms

(8) and (9) in the previous

penguin(Opus), (10)

penguin(x) II bird(x), (11)
penguin(x) 3 Iflies((12)

lfZies(Joe). (13)
Thus the new axiom set is (5)-(7)) (lo)---(13). We mini-
mize ub, bird and penguin, and vary flies. The transfor-
mation used in Exa.mples 1 and 2 (dropping the uniqueness
of names axioms) is not sufficient in this case for produc-
ing a program, beca.use some of the remaining axioms, (12)
and (13)) are not rules. In fact, (13) is a. negative clause,
and (12)) written as a clause, is negative a.lso, so l,hat it is
impossible to write either as a rule. Some addit,ional work
is needed.

The key observation is that the remaining formulas (6))
(7), (lo)-(13) will b ecome a program if we replace all
occurrences of TfZies by a new preclicate,” flies. The
rules of this program are (6)) (7), (lo), (ll),

penguin(x) 3 flies(x) (12’)

and
fZies(Joe). (13’)

This program, however, is not satisfactory for our pur-
pose, because it treats flies and flies as unrelat,ed pred-
icates. The information that they represent each other’s
negation is lost here. This can be fixed in the following
way. Let us go back to the axiom set (6)) (7)) (lo)-(13)
and find all pairs of axioms that, writ.ten as clauses, can
be resolved upon f dies. There are 2 such pairs: (6)) (12)
and (6)) (13). Th e resolvent of the first pair is the definite
clause

4kd(x) V U/I(X) V lpenguin(x);

written as a rule, it becomes6

bird(x) A penguin (xc> > ub(x). (14)

The resolvent of the second pair is the definite clause

4ird(Joe) V ub(Joe);

written as a rule, it becomes

bird(Joe) > ub(Joe). (15)

5Similar transformations were used by several authors, be-
ginning with Meltzer [1966].

61n view of asiom (ll), the literal bird(z) in t,his rule ca.n be
dropped. We will ignore “optimization? of this kind.

Gelfond and Lifschitz 457

We add the resolvents (14), (15) to the program that was
obtained by introducing flies. The result is the program:

bird(x) A -d(x) > flies(x), (6)

bird(Tweety), (7)
penguin(Opus), (10)

penguin(x) > bird(x), (11)

penguin(x) 3 fZies(x), (12’)

fZies(Joe), (13’)
bird(x) A penguin(x) >~ub(x), (14)

bird(Joe) 3 ab(Joe). (15)
If the goal literal F does not have the form TfZies(c)

then the program is used for resolving F in the same way
as before. We conclude that these facts follow from the
axioms by circumscription:

xb(Tweety), ab(Opus), lab(Joe),

bird(Tweet y), bird(Opus), +ird(Joe),

lpenguin(Tweety), penguin(Opus), Ipenguin(Joe),

fZies(Tweet y).

About the formulas fZies(Opus) and fZies(Joe) we con-
clude that they do not follow from the axioms by circum-
scription. If W is lfZies(c) then we look at the answer
to the query flies(c). If the answer is yes then W follows
from the axioms by circumscription; if no then it does not.
In our example, we get lfZies(Opus) and lfZies(Joe).

Finally, we will show that prioritized circumscription can
be sometimes compiled into a logic program in essentially
the same way.

Example 4. Let
and replace it by

us make axiom (12) in Example 3 weaker

pengu.in(x) A labl(x) > Iflies (120)

(normally, penguins cannot fly). The new abnormality
predicate ubl will be circumscribed at a higher priority
than ab, in accordance with the familiar principle that
more specific information in an inheritance system should
be given a higher priority. Thus we give priority 1 to mini-
mizing ubl, Bird and penguin, and priority 2 to minimizing
ab; as before, flies is varied. Replacing lflies by flies
gives

penguin(x) A l&l(x) > flies(x). Pb)
The first of the two resolvents computed
compilation will get an additional term:

in the process of

4&-d(x) V c&(x) V lpenguin(x) V &l(x). (16)

This clause has 2 positive literals, ah(x) and &l(x), so
that we have to decide which of them should be placed in
the head. We choose the form

bird(x) A penguin(x) A ~~bl(x) > d(x), W-d

because the given circumscription policy assigns to ubl a
higher priority than to u.b. Generally, we will require that
the resulting program have a stratification with the higher
priority predicates placed in the lower strata. This require-
ment determines how the assignment of priorities affects

458 Knowledge Representation

the result of compilation. The result of compilation is the
program

bird(x) A Y&(X) > flies(x), (6)
bird(Tweety), (7)

penguin(Opus), (10)
penguin(x) r> bird(x), (11)

penguin(x) A -&l(x) > flies(x), tw
fZies(Joe), (13’)

bird(x) A penguin(x) A l&l(x) > ub(x), WJ)
bird(Joe) II ub(Joe). (15)

Its answers are interpreted in the same way as in Ex-
a.mple 3. If the predicate in the goal literal is ub, bird,
penguin or flies, then the result of computation is the
same as before. To each query of the form &l(c) the pro-
gram answers no, which shows that all these formulas can
be refuted in the given circumscriptive theory.

4 Main Theorem
Let A be (the conjunction of) a set of clauses without func-
tion symbols. These clauses, along with the uniqueness of
names axioms, will constitute the axiom set of the cir-
cumscriptive theory that we want to compile into a logic
program. The circumscription policy of the theory will
be determined by k disjoint lists of predicates P’, . . . , Pk’
(k 1 1) occurring in A. These predicates will be min-
imized: Those included in P1 with the highest priority,
those in P’ with the lowest. Let 2 be the list of pred-
icates 21, . . . , 21 that occur in A but are not included in
Pl,... , P”. These predicates will be allowed to vary. Sym-
bolically, the circumscription under consideration is

Circum(‘dA A U; P1 > . . . > P’; Z),

where U is the conjunction of the uniqueness of names
axioms. We will denote this formula by Circum.

We assume that every clause in A contains at most one
literal whose predicate symbol belongs to 2.

We have seen that the process of compilation may in-
clude the replacement of some negated predicates by new
predicate symbols, and also deriving new axioms by res-
olution. To describe these processes in the general form,
assume that for each i (,l 5 i 5 Z) a new predicate zi is
selected_, of the same arity as Zi. The list of new pred-
icates 21, . . . , zl will be denoted by z. By Replace(A)
we denote the result of replacing each 1Zi in A by zi.
Let Resolve(A) be (th e conjunction of) the set of clauses
that can be obtained by resolving a pair of clauses from
A upon an atom whose predicate symbol belongs to 2.
Since every clause in A contains at most one literal whose
predicate belongs to 2, the formula Resolve(A) does not
contain predicates from 2.

Theorem 1. Let II be a program obtained from
Replace(A) U Resolve(A) by writing each clause as a rule,
so that the partition

Pl; P”; 2,-z (17)

is a stratification of II. Then, for any
whose predicate symbol occurs in A,

ground atom W

1. Circum j= W iff Ans(II, W) = yes;

2. If the predicate symbol of W belongs to P’, . . . , P”,
then

Circum b TW iff Ans(lI, W) = no;

3. If the predicate symbol of W belongs to 2, then

Circum /= 1W iff Ans(II,RepZuce(~W)) = yes.

It is easy to see that the conclusions made in Examples
l-4 above can be justified on the basis of Theorem 1. In
Example 2, the predicate flies does not belong to the lan-
guage of the program obtained as the result of compilation;
this fact justifies our conclusion that no literal of the form
lflies(c) is a theorem.

Remark 5. There is no guarantee, of course, that each
clause in Replace(A) U ResoZve(A) can be written as a
rule stratified by (17). But there is a simple algorithm
that transforms a given clause X into a rule stratified by
(17) or determines that this is impossible. If X is nega-
tive, then the task is impossible. Otherwise, find the last
among the groups (17) that contain a predicate occurring
in X positively. If X has only one positive literal whose
predicate is in that group, then make this literal the head
of the rule. Otherwise the task is impossible.

An important class of examples in which some clauses
cannot be stratified by (17) * g IS iven by multiple inheritance
systems.

Example 5. The system formalized in Example 4 will be-
come a multiple inheritance system if we disregard the fact
that penguins are a subclass of birds, and treat penguin
and bird as two partially overlapping classes. Formally, we
consider the circumscriptive theory with the axioms (5)-
(7), (lo), (120) (13) and with the same priority assigned
to the minimized predicates ub, ubl. Now both positive
predicates in clause (16), obtained by resolving (6) against
(120), belong to P i. Hence there is no way to write that
clause as a rule stratified by (17).

Remark 6. If A consists of n clauses, then RepZuce(A)
consists of n clauses too, and the number of clauses in
Resolve(A) is at most (n2 - n)/2. Hence the number of
rules in II is at most (n2 + n)/2.

Acknowledgments
We are grateful to Krzysztof Apt, Matthew Ginsberg,

John McCarthy, Halina Przymusinska and Teodor Przy-
musinski for useful discussions.

eferences
[Apt et al., 19SS] Krzysztof R. Apt, Howard A. Blair, and

Adrian Walker. Towards a theory of declarative knowl-
edge. In J. Minker (ed.), Foundations of Deductive
Databases and Logic Programming, pages 89-148. Mor-
gan Kaufmann Publishers, Los Altos, CA, 1988.

[Bossu and Siegel, 19851 G enevieve Bossu and Pierre Sie-
gel. Saturation, nonmonotonic reasoning and the closed-
world assumption. Artificial Intelligence, 25(1):13-63,
1985.

[van Emden and Kowalski, 19761 Maarten H. van Emden
and Robert A. Kowalski. The semantics of predi-
cate logic as a programming language, Journal ACM,
23(4):733-742, 1976.

[Gelfond, 19871 Michael Gelfond. On stratified autoepis-
temic theories. In Proceedings AAAI-87, 1, pages 207-
211. Morgan Kaufmann Publishers, Los Altos, CA,
1987.

[Gelfond and Przymusinska, 19SS] Michael Gelfond and
Halina Przymusinska. Negation as failure: Careful clo-
sure procedure. Artificial Ititelligence 30(3):273-288,
1986.

[Ginsberg, 19881 Matthew Ginsberg. A circumscriptive
theorem prover: preliminary report. In these Proceed-
ings.

[Lifschitz, 19851 Vl a imir d Lifschitz. Computing circum-
scription. In Proceedings IJCAI-85, 1, pages 121-127.
Morgan Kaufmann Publishers, Los Altos, CA, 19S5.

[Lifschitz, 19881 Vl a d imir Lifschitz. On the declarative se-
mantics of logic programs with negation. In J. Minker
(ed.), Foundations of Deductive Databases and Logic
Programming, pages 177-192. Morgan Kaufmann Pub-
lishers, Los Altos, CA, 1958.

[McCarthy, 19801 John McCarthy. Circumscription - a
form of non-monotonic reasoning. Artificial Intelligence
13(1,2):27-39, 1980.

[McCarthy, 19S6] John McCarthy. Applications of circum-
scription to formalizing commonsense knowledge, Arti-
ficial Intelligence 28(1):89-118, 1986.

[Meltzer, 19661 Bernard Meltzer. Theorem proving for
computers: some results on resolution and renaming.
Comput. Journal, 8:341-343, 1966.

[Przymusinski, 19861 Teodor Przymusinski, Query an-
swering in circumscriptive and closed-world theories. In
Proceedings AAAI-86, 1, pages 186-190. Morgan Kauf-
mann Publishers, Los Altos, CA, 1986.

[Przymusinski, 1988a] Teodor Przymusinski. On the de-
clarative semantics of deductive databases and logic
programs. In J. Minker (ed.), Foundations of Deduc-
tive Databases and Logic Programming, pages 193-216.
Morgan Kaufmann Publishers, Los Altos, CA, 1988.

[Przymusinski, 1988131 Teodor Przymusinski. On the de-
clarative and procedural semantics of logic programs.
Preprint, University of Texas at El Paso, 1988.

[Van Gelder, 19881 Allen Van Gelder. Negation as failure
using tight derivations for general logic programs. In J.
Minker (ed.), Foundations of Deductive Databases and
Logic Programming, pages 149-176. Morgan Kaufmann
Publishers, Los Altos, CA, 1988.

Gelfond and Lifschitz 459

