On Reducing Parallel Circumscription

Li Yan Yuan and Cheng Hui Wang
The Center for Advanced Computer Studies
University of Southwestern Louisiana
Lafayette, LA 70504

Abstract

Three levels of circumscription have been proposed by McCathy to formalize common sense knowledge and non-monotonic reasoning in general-purpose database and knowledge base systems. That is, basic circumscription, parallel circumscription, and priority circumscription. Basic circumscription is a special case of parallel circumscription while parallel circumscription is a special case of priority circumscription. Lifschitz has reduced priority circumscription into parallel circumscription, i.e., represented priority circumscription as a conjunction of some parallel circumscription formulas. In this paper, we have reduced parallel circumscription into basic circumscription under some restriction, i.e., parallel circumscription of a Z-conflict free first order logic formula can be represented as a conjunction of some basic circumscription formulea.

1. Introduction

McCarthy has proposed circumscription to formalize common sense knowledge and non-monotonic reasoning designated to handle incomplete and negative information in database and knowledge base systems [McCarthy, 1980, McCathy, 1986]. Different levels of circumscription have been proposed for different kinds of application [McCathy, 1986, Lifschitz, 1985]. Assume $\mathrm{A}(\mathrm{P}, \mathrm{Z})$ is a first order theory, where P and Z are disjoint sets of predicates in A. Parallel circumscription, denoted as $\operatorname{CIR}(\mathrm{A} ; \mathrm{P} ; \mathrm{Z})$, asserts that the extension of P should be minimized under the condition of $\mathrm{A}(\mathrm{P} ; \mathrm{Z})$, while Z is allowed to vary. When $\mathrm{Z}=\emptyset$, parallel circumscription reduces to $\operatorname{CIR}(\mathrm{A} ; \mathrm{P})$, which we call basic circumscription ${ }^{1}$. Minimizing a set P of predicates may conflict with each other. Thus, priority circumscription has been proposed. Priority circumscription, $\operatorname{CIR}\left(\mathrm{A} ; \mathrm{P}^{1}>\mathrm{P}^{2}\right.$ $>\ldots>\mathrm{P}^{\mathrm{n}} ; \mathrm{Z}$), where $\mathrm{P}^{1}, \ldots, \mathrm{P}^{\mathrm{n}}, \mathrm{Z}$ are pairwise disjoint sets of predicates in A, expresses the idea that predicates in P^{1} should be minimized at higher priority than those in $\mathrm{P}^{2}, \mathrm{P}^{2}$ at higher priority than those
in P^{3}, etc, while Z is allowed to vary.
Obviously, basic circumscription is a special case of parallel circumscription, and parallel circumscription is a special case of priority circumscription. Lifschitz has reduced priority circumscription into parallel circumscription, i.e., a priority circumscription can be represented by a conjunction of some parallel circumscription formulae [Lifschitz, 1985]. He has also tried to reduce parallel circumscription into basic circumscription. However, as he indicated, the result is not satisfactory, since a secondorder quantifier is introduced within circumscription.

Przymusinski has proposed an algorithm to compute parallel circumscription, under certain assumptions [Przymusinski]. Because of the difficulties brought in by Z , the algorithm has to treat parallel circumscription and basic circumscription separately, and the complexity for parallel circumscription is much higher than for basic circumscription. If we could reduce parallel circumscription into basic circumscription, his algorithm can be simplified dramatically and be much more efficient.

Therefore, from both the theoretical and practical points of view, we would like to reduce parallel circumscription into basic circumscription, if possible.

In this paper, we first define the Z-resolution process, which is used to transfer all negative literals of Z into positive ones, without lossing of logical connection between other predicates. If the Z-resolution successes, then we are able to eliminate all rules which contain predicate Z without affecting computing parallel circumscription. Then a class of first order theory, called Z-conflict free, is defined. When the given theory is Z-conflict free, an algorithm is presented to eliminate all Z predicates from A . Finally, we show that when the given theory is Zconflict free, parallel circumscription can be reduced

[^0]into basic circumscription.
The rest of this paper is organized as follows. In Section 2, we recall the definition of circumscription and some preliminary results. In Section 3, some properties about logical systems are discussed. Section 4 shows how Z-resolution can be used to reduce parallel circumscription into basic circumscription. In Section 5, we show that the restriction can be removed in many cases.

2. Preliminary Results

In this section, we briefly discuss some fundamental concepts and preliminary results which are useful for the following discussion.

There are three kinds of circumscription as formalized in [Lifschitz, 1985].
Basic Circumscription Let A be a first order logic formula, $P=\left\{P_{1}, \ldots, P_{n}\right\}$ be a set of predicates in A. The basic circumscription of P in A, denoted as $\operatorname{CIR}(\mathrm{A} ; \mathrm{P})$, is a second-order formula

$$
\mathrm{A}(\mathrm{P}) \wedge \neg \exists \mathrm{P}^{\prime}\left(\mathrm{A}\left(\mathrm{P}^{\prime}\right) / \mathrm{P}^{\prime}<\mathrm{P}\right)
$$

where P^{\prime} is a tuple of predicate variables similar to P , and $\mathrm{P}^{\prime}<\mathrm{P}$ means

$$
\bigwedge_{i=1}^{n} \forall x\left(P_{1}^{\prime}(x) \supset P_{1}(x)\right) \wedge \bigvee_{i=1}^{n} \exists x\left(P_{1}(x) \wedge \neg\right.
$$ $\mathrm{P}_{1}{ }^{\prime}(\mathrm{x})$),

where x is a tuple of variables.
Parallel Circumscription Let $A(P, Z)$ be a first order logic formula, where $P=\left\{P_{1}, \ldots, P_{n}\right\}$ and Z $=\left\{\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{m}}\right\}$ are two disjoint sets of predicates in A. The circumscription of P in $A(P, Z)$ with variable Z, denoted as $\operatorname{CIR}(A ; P ; Z)$, is a second order formula

$$
\mathrm{A}(\mathrm{P}, \mathrm{Z}) \wedge \neg \exists \mathrm{P}^{\prime}, \mathrm{Z}^{\prime}\left(\mathrm{A}\left(\mathrm{P}^{\prime}, \mathrm{Z}^{\prime}\right) / \wedge \mathrm{P}^{\prime}<\mathrm{P}\right)
$$

where P^{\prime}, Z^{\prime} are tuples of predicate variables similar to P and Z, and $P^{\prime}<P$ has the same meaning as above.
Priority Circumscription Let $A\left(\mathrm{P}^{1}, \mathrm{P}^{2}, \ldots, \mathrm{P}^{\mathrm{n}}\right.$, $Z)$ be a first order formula, where $P^{1}=\left\{P_{L_{1}}, \ldots, P_{1_{k j}}\right\}$, $\mathrm{i}=1, \ldots, \mathrm{n}$, and $\mathrm{Z}=\left\{\mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{m}}\right\}$ are pairwise disjoint sets of predicates in A. The priority circumscription of A , denoted as $\operatorname{CIR}\left(\mathrm{A} ; \mathrm{P}^{1}>\mathrm{P}^{2}>\ldots>\mathrm{P}^{\mathrm{n}} ; \mathrm{Z}\right)$, is defined as a second order formula

$$
\mathrm{A}(\mathrm{P}, \mathrm{Z}) \wedge \neg \exists \mathrm{P}^{\prime}, \mathrm{Z}^{\prime}\left(\mathrm{A}\left(\mathrm{P}^{\prime}, \mathrm{Z}^{\prime}\right) / \wedge \mathrm{P}^{\prime} \approx \mathrm{P}\right)
$$

where, $P=\left\{P^{1}, \ldots, P^{n}\right\}$, and P^{\prime} and Z^{\prime} stands for P and Z, and $P^{\prime} \approx P$ means
$\wedge_{\mathrm{H}=1}^{\mathrm{n}}\left(\wedge_{\mathrm{N}=1}^{1-1} \mathrm{P}^{\mathrm{J}^{\prime}}=\mathrm{P}^{\mathrm{J}} \supset \mathrm{P}^{\mathrm{l}^{\prime}} \leq \mathrm{P}^{\mathrm{l}}\right) \wedge \mathrm{P}^{\prime} \neq \mathrm{P}$, and $\mathrm{P}^{\prime} \leq$
P^{\prime} means $\mathrm{P}_{1}{ }^{\prime}<\mathrm{P}_{1}$ or $\mathrm{P}_{1}^{\prime}=\mathrm{P}_{1}$.
Lifschitz has tried to reduce parallel circumscription into basic circumscription, as stated below.
Theorem 2.1 [Lifschitz, 1985] $\quad \operatorname{CIR}(A(P, Z) ; P ; Z)$ $\equiv \mathrm{A}(\mathrm{P}, \mathrm{Z}) / \triangle \mathrm{CIR}\left(\exists \mathrm{Z}^{\prime} \mathrm{A}\left(\mathrm{P}, \mathrm{Z}^{\prime}\right) ; \mathrm{P}\right)$.

As noticed by Lifschitz, theorem 2.1 does not strip off Z in circumscription, since the formula contains a second-order quantifier. However, Lifschitz has successfully reduced priority circumscription to parallel circumscription, as shown in the following theorem .
Theorem 2.2 [Lifschitz, 1985] $\operatorname{CIR}\left(A ; \mathrm{P}^{1}>\mathrm{P}^{2}>\right.$ $\left.\ldots>P^{k} ; Z\right) \equiv \bigwedge_{i=1}^{k} \operatorname{CIR}\left(A ; P^{i} ; P^{i+1}, \ldots, P^{k}, Z\right)$

3. Z-Recursion and One-Side Predicates

Let A be a first order formula. Without loss of generality, we assume A is in clausal form, i.e., a set of clauses. Each clause r in A has the form

$$
\neg Q_{1} \vee \neg Q_{2} \vee \ldots \neg Q_{m} \vee P_{1} \vee P_{2} \bigvee \ldots \backslash P_{n}
$$

where Q_{1}, P_{j} are predicates and may contain variables. A clause r may be rewritten in the form of

$$
\mathrm{Q}_{1} \wedge \ldots \wedge \mathrm{Q}_{\mathrm{m}} \supset \mathrm{P}_{1} \vee \ldots \vee \mathrm{P}_{\mathrm{n}}
$$

and is called a rule in A.
Given a rule $r, \operatorname{LHS}(r)$ is used to denote the set of all predicates occurring negatively in r , and RHS(r) the set of all predicates occurring positively in r.

Recursion plays an important role in logical system implementation. Since we are interested in computing parallel circumscription $\operatorname{CIR}(A ; P ; Z)$, we discuss only the recursion associated with the set Z of predicates in A.

Let A be a first order formula, Z be the set of predicates in A. A binary relation is defined on Z. Assume Z_{i}, Z_{j} are two predicates in $Z\left(Z_{i}\right.$ and Z_{j} are not necessarily distinct), then we say Z_{l} derives Z_{j}, denoted as $Z_{1} \rightarrow Z_{j}$, if there exists a rule r in A such that $Z_{i} \in \operatorname{LHS}(r)$ and $Z_{j} \in \operatorname{RHS}(r)$. We define $\rightarrow{ }^{*}$ to be the transitive closure (not the reflexive transitive closure) of \rightarrow.
Z_{1} and Z_{j} are mutually Z-recursive if $Z_{1} \rightarrow{ }^{*} Z_{1}$ and $Z_{1} \rightarrow{ }^{*} Z_{i} . Z_{1}$ is Z-recursive if $Z_{i} \rightarrow{ }^{*} Z_{1}$. Otherwise Z_{1} is Z-recursion free. It can be easily shown that mutual Z-recursion is an equivalence relation on the set of Zrecursive predicates [Bancilhon et al., 1986].

A rule r in A is said to be Z-recursive if there exist two predicates Z_{1} and Z_{j} in $Z,\left(Z_{1}\right.$ and Z_{j} are not necessarily distinct) such that $Z_{i} \in \operatorname{LHS}(r), Z_{j} \in$ RHS(r), and Z_{1} and Z_{j} are mutually recursive. Otherwise, r is Z-recursion free.

A predicate Z_{1} is said to be Z-recursion free in a rule r if $Z_{1} \in \operatorname{RHS}(r)$ and for each $Z_{j} \in \operatorname{LHS}(r), Z_{1}$ and Z_{j} are not mutually recursive. The fact that Z_{1} is Z recursion free in r does not necessarily imply that Z_{1} is Z-recursion free in A.
Example 3.1 Assume A is given by the following rules:

$$
\begin{aligned}
& \mathrm{r}_{1}: \mathrm{Q}_{1} \supset \mathrm{Z}_{1} \vee \mathrm{P}_{1} \\
& \mathrm{r}_{2}: \mathrm{Z}_{1} \supset \mathrm{Z}_{2} \vee \mathrm{Q}_{2} \\
& \mathrm{r}_{3}: \mathrm{P}_{2} \wedge \mathrm{Z}_{2} \supset \mathrm{Z}_{1} \backslash \mathrm{Q}_{3} \vee \mathrm{Z}_{3} \\
& \mathrm{r}_{4}: \mathrm{Q}_{2} \wedge \mathrm{Z}_{3} \supset \mathrm{P}_{2} \\
& \mathrm{r}_{5}: \mathrm{Q}_{3} \supset \mathrm{Z}_{3} .
\end{aligned}
$$

Then, $\mathrm{Z}_{1} \rightarrow \mathrm{Z}_{2}, \mathrm{Z}_{2} \rightarrow \mathrm{Z}_{1}$ and $\mathrm{Z}_{2} \rightarrow \mathrm{Z}_{3}$. Let $\mathrm{Z}=\left\{\mathrm{Z}_{1}, \mathrm{Z}_{2}\right.$, $\left.Z_{3}\right\}$. Thus Z_{1} and Z_{2} are mutually Z-recursive. Z_{3} is Z recursion free, Z_{1} is Z-recursion free in r_{1}, and Z_{3} is Z recursion free in r_{3} and $r_{5} . r_{2}$ and r_{3} are Z-recursive, while r_{1}, r_{4}, and r_{5} are Z-recursion free.

The Z-recursion is defined regardless of the terms occurring in predicates. Thus,
$\mathrm{Z}_{1}(\mathrm{x}) \supset \mathrm{Z}_{1}(\mathrm{a})$ is Z -recursive. The reason is that such a definition has no impact on our implementation method, but simplifies our discussion.

Now, we discuss a technique used to simplify computing circumscription.

Consider Example 3.1. If we assume both Z_{1} and Z_{2} are true, then r_{1}, r_{2} and r_{3} are always satisfied. Because Z is allowed to vary, such an assumption is valid. Therefore, in the processing of minimizing P when we compute $\operatorname{CIR}(A ; P ; Z), r_{1}, r_{2}$ and r_{8} make no contribution, so they can be deleted. Let A^{\prime} contain only r_{4} and r_{5}, then it is easy to show that
$\operatorname{CIR}(\mathrm{A} ; \mathrm{P} ; \mathrm{Z}) \equiv \mathrm{CIR}\left(\mathrm{A}^{\prime} ; \mathrm{P} ; \mathrm{Z}_{3}\right) / \mathrm{A}(\mathrm{P}, \mathrm{Z}) \equiv\left(\mathrm{P}_{1} \equiv\right.$ false) $\wedge\left(P_{2} \supset Q_{2} \wedge Q_{3}\right) \wedge A(P, Z)$.
Motivated by the above example, we propose the one-side predicate as defined below.
Definition 3.1 Let A be a first order formula, Z be a set of predicates. Let $z \subseteq Z$ be a set of predicates. z is said to be left-side if for each r in A, either RHS(r) $\cap \mathrm{z}=\emptyset$ or $\operatorname{LHS}(\mathrm{r}) \cap \mathrm{z} \neq \emptyset . \mathrm{z}$ is right-side if for each r in A, either LHS(r$) \cap \mathrm{z}=\emptyset$ or $\operatorname{RHS}(\mathrm{r}) \cap \mathrm{z} \neq \emptyset . \mathrm{z}$ is one-side if z is either left-side or right-side.

In Example 3.1, $\left\{\mathrm{Z}_{1}, \mathrm{Z}_{2}\right\}$ is right-side. The significance of defining the one-side predicate is
demonstrated by the following theorem.
Theorem 3.1 Let $A(Q, P, Z)$ be a first order formula, z be a one-side set of predicates in $Z . A^{\prime}(Q, P$, Z) be a formula obtained from A by deleting all rules containing some predicates in z. Then $\operatorname{CIR}(A ; P$; $Z) \equiv \operatorname{CIR}\left(A^{\prime} ; P ; Z\right) / A(P, Z)$.

Theorem 3.1 can be used to simplify computing CIR(A; P; Z). However, unless Z is entirely one-side, we cannot avoid computing parallel circumscription.

4. Z - Resolution

In this section, we first present an algorithm, called Z-resolution, to simplify the given theory, and then show that under certain condition, the Z-resolution can be used to reduce parallel circumscription into basic one. Like the Robinson resolution, the idea of Z-resolution is very simple as demonstrated below.
Example 4.1 Assume A is defined by the following two rules:

$$
\begin{align*}
& \mathrm{Q}_{1}(\mathrm{x}) \supset \mathrm{Z}(\mathrm{x}) \bigvee \mathrm{P}(\mathrm{x}) \tag{1}\\
& \mathrm{Z}(\mathrm{x}) \supset \mathrm{Q}_{2}(\mathrm{x}) . \tag{2}
\end{align*}
$$

Then, if we replace $Z(x)$ in the first clause by $Q_{2}(x)$, we have:

$$
\begin{equation*}
\mathrm{Q}_{1}(\mathrm{x}) \supset \mathrm{Q}_{2}(\mathrm{x}) \vee \mathrm{P}(\mathrm{x}) \tag{3}
\end{equation*}
$$

Let A^{\prime} contain (3), then it is easy to show that:

$$
\operatorname{CIR}(\mathrm{A}(\mathrm{Q}, \mathrm{P}, \mathrm{Z}) ; \mathrm{P} ; \mathrm{Z}) \equiv \operatorname{CIR}\left(\mathrm{A}^{\prime}(\mathrm{Q}, \mathrm{P}) ; \mathrm{P}\right) \wedge
$$ A(Q, P, Z).

This example motivates us trying to eliminate all Z predicates from A, while still remain logical connection between those predicates in Q and P.

Let us briefly discuss some notations. A set of expressions $\left\{\Phi_{1}, \ldots, \Phi_{\mathrm{n}}\right\}$ is unifiable if and only if there is a substitution σ that makes the expressions identical. In such a case, σ is said to be a unifier for that set. A most general unifier γ of Φ and Ψ has the property that, if σ is any unifier of the two expressions, then, there exists a substitution δ with the following property:

$$
\Phi \gamma \delta=\Phi \sigma=\Psi \sigma .
$$

If a subset of the literals in a clause Φ has a most general unifier γ, then, the clause Φ^{\prime} is called a factor of Φ if it is obtained by applying γ to Φ. Let Φ and Ψ are two clauses, if there is a literal $\neg \phi$ in some factor Φ^{\prime} of Φ and a literal ψ in some factor Ψ^{\prime} of Ψ such that Φ and Ψ have a most general unifier γ, then the clause $\left(\Phi^{\prime}-\{\Phi\}\right) \cup\left(\Psi^{\prime}-\{\neg \Psi\}\right) \gamma$ is called a resolvent of the two clauses using $\Phi[$ Genesereth et al., 1987]. In Example 4.1, (3) is a resolvent of (1) and
(2) using $\mathrm{Z}(\mathrm{x})$.

Let r_{1} and r_{2} be two clauses, $\neg \phi$ be a literal in r_{1}, $\psi_{1}, \psi_{2}, \ldots, \psi_{\mathrm{n}}$ be all literals in r_{2} that have most general unifiers with $\phi . S_{1}, S_{2}, \ldots, S_{n}$ is a sequence resolvents of r_{1} and r_{2} using ϕ. That is S_{1} is the resolvent of r_{1} and r_{2} using ϕ, S_{2} the is the resolvent of r_{2} and S_{1}, \ldots, etc. Then the ϕ-resolvent of r_{1} and r_{2} using ϕ is defined as S_{n}.
Example 4.2 Let

$$
\begin{array}{ll}
r_{1}: & Q_{1}(x, y) \supset Z(x, y) \backslash Z(y, x) \\
r_{2}: & Z(x, y) \wedge Q_{2}(x, y) \supset P(x, y)
\end{array}
$$

Then, the Z-resolvent of r_{2} and r_{1} using $Z(x, y)$ is the clause

$$
Q_{1}(x, y) / Q_{2}(x, y) \wedge Q_{2}(y, x) \supset P(x, y) \bigvee P(y, x)
$$

Let A be a set of clauses, Φ be a clause in $A, \neg Z$ be a negative literal in $\Phi, A^{\prime}(\Phi, Z)$ be the set of all Z-resolvents of Φ with each clause in A which contains positive occurrence from Z. Then the Z resolution set $R(A, \Phi, Z)$ is defined as $A^{\prime}(\Phi, Z) \cup(A-$ Φ).

Lemma $4.1 \quad \mathrm{R}(\mathrm{A}, \mathrm{Z}) \equiv \mathrm{A}$.

Example 4.3 Assume A contain the following clauses:

$$
\begin{aligned}
& \mathrm{r}_{1}: \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \vee \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{r}_{2}: \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}) \vee \mathrm{P}_{1}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{r}_{3}: \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Z}_{1}(\mathrm{y}, \mathrm{z}) \supset \mathrm{P}_{2}(\mathrm{x}, \mathrm{z}) \\
& \text { Then, } \mathrm{A}_{1}=\mathrm{R}\left(\mathrm{~A}, \mathrm{r}_{3}, \mathrm{z}_{1}(\mathrm{x}, \mathrm{y})\right) \text { contains: } \\
& \mathrm{r}_{1}: \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \vee \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{r}_{2}: \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}) \bigvee \mathrm{P}_{1}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{r}_{4}: \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Z}_{1}(\mathrm{y}, \mathrm{x}) \supset \mathrm{P}_{2}(\mathrm{x}, \mathrm{z}) \bigvee \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) . \\
& \mathrm{A}_{2}=\mathrm{R}\left(\mathrm{~A}_{1}, \mathrm{r}_{4}, \mathrm{Z}_{1}(\mathrm{y}, \mathrm{x})\right) \text { contains: } \\
& \mathrm{r}_{1}: \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \bigvee \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{r}_{2}: \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}) \bigvee \mathrm{P}_{1}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{r}_{5}: \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Q}_{1}(\mathrm{z}, \mathrm{x}) \supset \mathrm{P}_{2}(\mathrm{z}, \mathrm{y}) \vee \mathrm{Z}_{2}(\mathrm{z}, \mathrm{x}) \\
& \quad \vee \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) .
\end{aligned}
$$

By examing A_{2}, we find that Z_{1} becomes one side predicate in A_{2}. As far as computing parallel circumscription is concerned, we may obtain an A_{8} from A_{2} by deleting r_{1}. That is A_{3} contains only r_{2} and r_{5}.

Let $A_{4}=R\left(A_{3}, r_{2}, Z(x, y)\right)$. Then A_{4} contains: $r_{5}: Q_{1}(x, y) \wedge Q_{1}(z, x) \supset P_{2}(z, y) \bigvee Z_{2}(z, x) \backslash / Z_{2}(x$, y)
$r_{0}: Q_{1}(x, y) / \triangle Q_{1}(z, x) \supset P_{2}(z, y) \bigvee Q_{2}(z, x) P_{1}(z, x)$ $V Q_{2}(\mathrm{x}, \mathrm{y}) \backslash / \mathrm{P}_{1}(\mathrm{x}, \mathrm{y})$.
Since r_{5} is one side in $A_{4}, A_{5}=\left\{r_{6}\right\}$. Then, by Theorem 3.1,

$$
\operatorname{CIR}(\mathrm{A} ; \mathrm{P} ; \mathrm{Z}) \equiv \operatorname{CIR}\left(\mathrm{A}_{8} ; \mathrm{P}\right) \wedge \mathrm{A}(\mathrm{Q}, \mathrm{P}, \mathrm{Z})
$$

Given a theory A, the Z-resolution tries to transfer all negative occurrences of Z into positive ones, i.e., one side. If the process successes, by Theorem 3.1, the parallel circumscription can be reduced into basic circumscription. Unfortunately, the process may not always success.
Example 4.4 Let A contain only two rules as follows:

$$
\begin{aligned}
& r_{1}: Q(x) \supset Z(x, y) \bigvee Z(y, x) \\
& r_{2}: Z(x, y) / Z(y, x) \supset P(x, y) .
\end{aligned}
$$

Then we simply can not transfer Z into one side by Z-resolution.

Now, we specify a class of theories for which the Z-resolution guarantees the reducing of parallel circumscription into basic one.

Let A be a set of clauses, and Z be a set of predicate symbols in A. A binary relation is defined on Z as follows. Assume $\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{j}}$ are two predicates in Z , then $Z_{1}=>Z_{j}$ if either $Z_{1} \rightarrow Z_{j}$, or there exists an predicate Z_{k} from Z and two clauses r_{1} and r_{2} in A such that $\left\{\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{k}}\right\} \in \operatorname{LHS}\left(\mathrm{r}_{1}\right)$ and $\left\{\mathrm{Z}_{\mathrm{j}}, \mathrm{Z}_{\mathrm{k}}\right\} \in \operatorname{RHS}\left(\mathrm{r}_{2}\right)$. We define $=>^{*}$ to be the transitive closure (not the reflexive closure) of $=>. Z_{1}$ and Z_{j} are extended Z recursive if $Z_{1}=>^{*} Z_{j}$ and $Z_{j}=-0.1^{\prime}>^{*}$. Z_{i} is extended Z-recursive if $Z_{1}={ }^{*} Z_{1}$. Extended Z recursion is an equivalence relation of the set of extended Z-recursive predicates.

Let A be a set of clauses and Z be a set of predicates. A is said to be Z-conflict free if whenever there exist a clause r, and two predicates Z_{1} and Z_{j} such that $\left\{Z_{l}, Z_{j}\right\} \in \operatorname{LHS}(r)$, then Z_{i} and Z_{j} are not extended Z-recursive. A in Example 4.3 is Z-conflict free, while A in Example 4.4 is not.

Let A be a set of clauses and Z be a set of predicates in A. An SP-ordering of Z is defined as an sequence $Z_{1}, Z_{2}, \ldots, Z_{n}$ such that $i<j$ implies that if $\mathrm{S}_{\mathrm{j}}=>^{*} \mathrm{~S}_{\mathrm{i}}$, then $\mathrm{S}_{\mathrm{l}}=>^{*} \mathrm{~S}_{\mathrm{j}}$.

An SP-ordering of Z always exists, though it may not be unique.

Now we present an algorithm to reduce parallel circumscription of A into basic circumscription when A is Z -conflict free.

Function REDUCE (A; Z);

Input: A Z-conflict free set $\mathrm{A}(\mathrm{Q}, \mathrm{P}, \mathrm{Z})$ of clauses.
Output: $\operatorname{REDUCE}(\mathrm{Q}, \mathrm{P})$ such that $\operatorname{CIR}(\mathrm{A} ; \mathrm{P} ; \mathrm{Z}) \equiv$ $\operatorname{CIR}($ REDUCE; $P) / \triangle A(Q, P, Z)$.
Method:
begin
Let $Z_{1}, Z_{2}, \ldots, Z_{n}$ be an SP-ordering of Z;
for $\mathrm{i}=1$ step 1 to n do
begin
repeat
select a clause r from A such that $Z_{1} \in \operatorname{LHS}(r)$
and $\mathrm{RHS}(\mathrm{r}) \cap \mathrm{Z}_{1}=\emptyset$;
Let $\neg Z_{1}$ from Z be an negative literal in r;
$\mathrm{A}:=\mathrm{R}\left(\mathrm{A} ; \mathrm{r}, \mathrm{Z}_{1}\right)$;
until Z_{1} is one side in A;
delete all clauses which contain Z_{1} from A ;

end

REDUCE :=A
end.
Theorem 4.1 If $A(Q, P, Z)$ is Z-conflict free, then $\operatorname{CIR}(\mathrm{A} ; \mathrm{P} ; \mathrm{Z}) \equiv \mathrm{CIR}(\operatorname{REDUCE} ; \mathrm{P}) \wedge \mathrm{A}(\mathrm{Q}, \mathrm{P}, \mathrm{Z})$.

5. Further Discussion

Given a Z-conflict free theory A, the parallel circumscription of A can be reduced into basic one by Z-resolution. However, we are also able to transform many Z-conflict theories into Z-conflict free theories without affecting the result of circumscription. Let A be a set of clauses, Z be a predicate in $\mathrm{A} . \mathrm{Z}$ is said to be negated if all positive literals from Z are changed into negative, and vice versa. Assume A^{\prime} is a first order formula obtained from A by negating some z from Z in A, the circumscription models for A and A^{\prime} differ only with the assignments of the z which have been negated. The following example shows how this method works.
Example 5.1 Let A contain two rules:
$\mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Z}_{2}(\mathrm{y}, \mathrm{x}) \supset \mathrm{P}_{1}(\mathrm{x}, \mathrm{y})$
$\mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y})$
$\mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y})$
$\mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \bigvee \mathrm{Q}_{3}(\mathrm{x}, \mathrm{y})$
$Z_{2}(x, y) \supset Z_{1}(x, y) \bigvee Q_{4}(x, y)$
Obviously A is not Z-conflict free. By negating Z_{2}, we obtain a Z-conflict free theory A^{\prime} containing the following two rules:

$$
\mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{2}(\mathrm{y}, \mathrm{x}) \wedge \mathrm{P}_{1}(\mathrm{x}, \mathrm{y})
$$

$$
\begin{aligned}
& \mathrm{Q}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{Q}_{2}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \supset \mathrm{F} \\
& \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Q}_{3}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{Z}_{2}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Z}_{1}(\mathrm{x}, \mathrm{y}) \supset \mathrm{Q}_{4}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Following lemma demonstrates the significance of this transformation.

Lemma 5.1 Let A(Q, P, Z) be a set of clauses, A^{\prime} be a set of clauses obtained from A by negating a subset z from Z. Then

$$
\begin{aligned}
& \operatorname{CIR}(\mathrm{A}(\mathrm{Q}, \mathrm{P}, \mathrm{Z}) ; \mathrm{P} ; \mathrm{Z}) \equiv \operatorname{CIR}\left(\mathrm{A}^{\prime} ; \mathrm{P} ; \mathrm{Z}^{\prime}\right) \\
& \wedge \wedge_{\mathrm{Z}_{1} \in \mathrm{Z}} \forall \mathrm{x}\left(\mathrm{Z}_{1}(\mathrm{x})=-\mathrm{Z}_{1}^{\prime}(\mathrm{x})\right)
\end{aligned}
$$

However, not all Z-conflict theories can be transformed to Z-conflict free theories by negating. A notable example is A in Example 4.4.

References

[Bancilhon et al., 1986] Bancilhon, F. and Ramakrishnan, R., An Amateur's Introduction to Recursive Query Processing Strategies, Proc. of ACM SIGMOD, 1986, pp. 16-51.
[Clark, 1978] Clark, K., Negation as Failure, In: Logic and Database (Gallaire, H. and Minker, J., Eds.), Plenum Press, N. Y., 1978, pp. 293-322.
[Genesereth et al., 1987] Genesereth, M. and Nilsson, N., Logical Foundation of Artificial Intelligence, Morgan Kaufmann Pub., Inc. Los Altos, CA, 1987.
[Lifschitz, 1985] Lifschitz, V., Computing Circumscription, Proc. of the 9th Int. Joint Conf. on AI, 1985, pp. 121-127.
[McCarthy, 1980] McCarthy, J., Circumscription A Form of Non-Monotonic Reasoning, Artificial Intelligence 13, 1980, pp. 295-323.
[McCathy, 1986] McCarthy, J., Application of Circumscription to Formalizing Commonsense Knowledge, AAAI Workshop on Non-Monotonic Reasoning, 1984, pp. 295-323.
[Przymusinski] Przymusinski, T.G., An Algorithm to Compute Circumscription, to appear in J. Artificial Intelligence.

[^0]: 1 In the literature, parallel circumscription with empty Z is usually used. However, for the sake of clarity, the term basic circumscription is used here instead.

