
On Reducing Parallel Circumscription

Li Yan Yuan and Cheng Hui Wang
The Center for Advanced Computer Studies

University of Southwestern Louisiana
Lafayette, LA 70504

Abstract
Three levels of circumscription have been pro-
posed by McCathy to formalize common sense
knowledge and non-monotonic reasoning in
general-purpose database and knowledge base sys-
tems. That is, basic circumscription, parallel cir-
cumscription, and priority circumscription. Basic
circumscription is a special case of parallel cir-
cumscription while parallel circumscription is a
special case of priority circumscription. Lifschitz
has reduced priority circumscription into parallel
circumscription, i.e., represented priority cir-
cumscription as a conjunction of some parallel cir-
cumscription formulas. In this paper, we have
reduced parallel circumscription into basic cir-
cumscription under some restriction, i.e., parallel
circumscription of a Z-conflict free first order logic
formula can be represented as a conjunction of
some basic circumscription formulea.

1. Introduction

McCarthy has proposed circumscription to formalize
common sense knowledge and non-monotonic reason-
ing designated to handle incomplete and negative
information in database and knowledge base systems
[McCarthy, 1980, McCathy, 19861. Different levels of
circumscription have been proposed for different kinds
of application [McCathy, 1986, Lifschitz, 19851.
Assume A(P, Z) is a first order theory, where P and Z
are disjoint sets of predicates in A. Parallel cir-
cumscription, denoted as CIR(A; P; Z), asserts that
the extension of P should be minimized under the
condition of A(P; Z), while Z is allowed to vary.
When Z = 0, parallel circumscription reduces to
CWA; P), which we call basic eircunascription’.
Minimizing a set P of predicates may conflict with
each other. Thus, priority circumscription has been
proposed. Priority circumscription, CIl%(A; P1 > P*
> . . . > Pn; Z), where P’, . . . , Pn, Z are pairwise dis-
joint sets of predicates in A, expresses the idea that
predicates in P’ should be minimized at higher prior-

. ity than those in P *, P* at higher priority than those

MO Knowledge Representation

in Pa, etc, while Z is allowed to vary.

Obviously, basic circumscription is a special
case of parallel circumscription, and parallel cir-
cumscription is a special case of priority circumscrip-
tion. Lifschitz has reduced priority circumscription
into parallel circumscription, i.e., a priority cir-
cumscription can be represented by a conjunction of
some parallel circumscription formulae [Lifschitz,
19851. He has also tried to reduce parallel circumscrip-
tion into basic circumscription. However, as he indi-
cated, the result is not satisfactory, since a second-
order quantifier is introduced within circumscription.

Przymusinski has proposed an algorithm to
compute parallel circumscription, under certain
assumptions [Przymusinski]. Because of the difficulties
brought in by Z, the algorithm has to treat parallel
circumscription and basic circumscription separately,
and the complexity for parallel circumscription is
much higher than for basic circumscription. If we
could reduce parallel circumscription into basic cir-
cumscription, his algorithm can be simplified dramati-
cally and be much more efficient.

Therefore, from both the theoretical and practi-
cal points of view, we would like to reduce parallel
circumscription into basic circumscription, if possible.

In this paper, we first define the Z-resolution
process, which is used to transfer all negative literals
of Z into positive ones, without lossing of logical con-
nection between other predicates. If the Z-resolution
successes, then we are able to eliminate all rules
which contain predicate Z without affecting comput-
ing parallel circumscription. Then a class of first order
theory, called Z-conflict free, is defined. When the
given theory is Z-conflict free, an algorithm is
presented to eliminate all Z predicates from A.
Finally, we show that when the given theory is Z-
conflict free, parallel circumscription can be reduced

1 In the literature, parallel circumscription with empty Z is
usually used. However, for the sake of clarity, the term basic
circumscription is used here instead.

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

into basic circumscription.

The rest of this paper is organized as follows. In
Section 2, we recall the definition of circumscription
and some preliminary results. In Section 3, some pro-
perties about logical systems are discussed. Section 4
shows how Z-resolution can be used to reduce parallel
circumscription into basic circumscription. In Section
5, we show that the restriction can be removed in
many cases.

2. Preliminary Results

In this section, we briefly discuss some fundamental
concepts and preliminary results which are useful for
the following discussion.

There are three kinds of circumscription as for-
malized in [Lifschitz, 19851.

Basic Circumscription Let A be a first order
logic formula, P = { p1 , . . . , Pn} be a set of predi-
cates in A. The basic circumscription of P in A,
denoted as CI[R(A; I’), is a second-order formula

A(P) ,‘\ -3P’(A(P’) /\ P’ < P),

where P’ is a tuple of predicate variables similar to
P, and P’ < P means

*il H x (Pi’ (x) 3 PI (4) A *il 3 x (p* (4 A -7

Pi’ (X))?
where x is a tuple of variables.

Parallel Circumscription Let A(P, Z) be a first
order logic formula, where P = {Pi , . . . , P,} and Z
= {z, , . . . , Z,} are two disjoint sets of predicates in
A. The circumscription of P in A(P, Z) with variable
Z, denoted as CIR(A; P; Z), is a second order formula

A(P, Z) /\ -zP’, Z’(A(P’, Z’) /\ P’ < P),

where P ’ , Z ’ are tuples of predicate variables similar
to P and Z, and P ’ < P has the same meaning as
above.

Priority Circumscription Let A(Pi, P* ,... , Pn ,
Z) be a first order formula, where P’ = { P+,..., PI, },

1= * 1 , “‘, n, and Z = { Z1 , . . . , Z,} are pairwise dis-
joint sets of predicates in A. The priority circumscrip-
tion of A, denoted as CIR(A; P’ > P* > . . . > Pn; Z),
is defined as a second order formula

A(P, Z) /\ -aP’, Z’ (A(P’, Z’) /\ P’ M P)

where, P = {P’, . . . , P”}, and P’ and Z ’ stands for P
and Z, and P ’ w P means

,i (,!I p” = PJ 1 PI' < PI) /\ P’ # P, and PI’ <

Pi means Pi’ < Pi or PI’ = PI.

Lifschitz has tried to reduce parallel cir-
cumscription into basic circumscription, as stated
below.

Theorem 2.1 [Lifschitz, 19851 ClR(A(P, Z); P; Z)
= A(P, Z) /\ ClR(3 Z’ A(P, Z ‘); P). /-J

As noticed by Lifschitz, theorem 2.1 does not
strip off Z in circumscription, since the formula con-
tains a second-order quantifier. However, Lifschitz
has successfully reduced priority circumscription to
parallel circumscription, as shown in the following
theorem .

Theorem 2.2 [Lifschitz, 19851 ClR(A; P’ > P* >

. . . >Pk; Z) = ;; CIR(A; Pi ; P’+l, . . . , Pk, Z). q I=1

3. %-Recursion and One-Side Predi-
cates
Let A be a first order formula. Without loss of gen-
erality, we assume A is in clausal form, i.e., a set of
clauses. Each clause r in A has the form

7 &I \/ 1 Q2 \/ . . . 7 Qm \/ PI \/ P2 \/ . . . \/ P,,
where Qi, PJ are predicates and may contain variables.
A clause r may be rewritten in the form of

&I /\ . . . /\ Qm 3 PI \/ . . . \/ P, ,
and is called a rule in A.

Given a rule r, LHS(r) is used to denote the set
of all predicates occurring negatively in r, and R.HS(r)
the set of all predicates occurring positively in r.

Recursion plays an important role in logical sys-
tem implementation. Since we are interested in com-
puting parallel circumscription CIR(A; P; Z), we dis-
cuss only the recursion associated with the set Z of
predicates in A.

Let A be a first order formula, Z be the set of
predicates in A. A binary relation is defined on Z.
Assume Zi, Z, are two predicates in Z (Zr and Z, are
not necessarily distinct), then we say Zi deriues Z,,
denoted as Zl - Zj, if there exists a rule r in A such
that Zi E LHS(r) and ZJ E RHS(r). We define +* to be
the transitive closure (not the reflexive transitive clo-
sure) of -.

ZI and Zj are mutually Z-recursive if Zi ---)* Z, and
z, +* Zi. ZI is Z-recursive if Zr --t* Z,. Otherwise ZI is
Z-recursion jree. It can be easily shown that mutual
Z-recursion is an equivalence relation on the set of Z-
recursive predicates [Bancilhon et al., 19861.

Yuan and Wang &I

A rule r in A is said to be Z-recursive if there
exist two predicates ZI and ZJ in Z, (Z, and ZJ are not
necessarily distinct) such that 2, E LHS(r), ZJ E

RHS(r), and Zi and ZJ are mutually recursive. Other-
wise, r is Z-recursion free.

A predicate Zi is said to be Z-recursion free in a
rule r if Zi E RHS(r) and for each ZJ E LHS(r), ZI and
ZJ are not mutually recursive. The fact that Z, is Z-
recursion free in r does not necessarily imply that Zt is
Z-recursion free in A.

Example 3 .l Assume A is given by the following
rules:

rl: &I 3 ZI \/ PI
r2: ZI 3 22 \/ QZ
rg: P2 /\ Z2 2 Z1 \/ Qs \/ ZS
r4: Q2 /\ Z8 3 PP.

rs: Qa 1 Zs.
Then, Z1 - Z2, Z2 - Zi and Z2 - Zs. Let Z = {Zi, Zs,
Z,}. Thus Zi and Z2 are mutually Z-recursive. Zs is Z-
recursion free, Z1 is Z-recursion free in rl, and Zs is Z-
recursion free in r3 and r6. r2 and rs are Z-recursive,
while rl, r4, and rs are Z-recursion free. cl

The Z-recursion is defined regardless of the
terms occurring in predicates. Thus,
Z1 (x) 3 Z1 (a) is Z- recursive. The reason is that such
a definition has no impact on our implementation
method, but simplifies our discussion.

Now, we discuss a technique
computing circumscription.

used to simplify

Consider Example 3.1. If we assume both Z1 and
Z2 are true, then rl, r2 and rs are always satisfied.
Because Z is allowed to vary, such an assumption is
valid. Therefore, in the processing of minimizing P
when we compute CIR(A; P; Z), rl, r2 and r8 make no
contribution, so they can be deleted. Let A’ contain
only r4 and rs, then it is easy to show that
CIR(A; P; Z) i CIR(A’; P; Z,) /\ A(P, Z) = (PI =

false) /\ (% 3 Q2 /\ Qs) /\ A(P, Z).
Motivated by the above example, we propose the
one-side predicate as defined below.

Definition 3.1 Let A be a first order formula, Z be
a set of predicates. Let z C Z be a set of predicates. z
is said to be left-side if for each r in A, either RHS(r)
n z = 0 or LHS(r) n z # 0. z is right-side if for each
r in A, either LHS(r) n z = 0 or RHS(r) n z # 0. z is
one-side if z is either left-side or right-side. q

In Example 3.1, {Z,, Z2) is right-side. The
significance of defining the one-side predicate is

462 Knowledge Representation

demonstrated by the following theorem.

Theorem 3.1 Let A(Q, P, Z) b e a first order for-
mula, z be a one-side set of predicates in Z. A’(Q, P,
Z) be a formula obtained from A by deleting all rules
containing some predicates in z. Then CIR(A; P;
Z) = CIR(A’; P; Z) /\ A(P, Z). q

Theorem 3.1 can be used to simplify computing
CIR(A; P; Z). However, unless Z is entirely one-side,
we cannot avoid computing parallel circumscription.

4. 2 - Resolution
In this section, we first present an algorithm, called
Z-resofution, to simplify the given theory, and then
show that under certain condition, the Z-resolution
can be used to reduce parallel circumscription into
basic one. Like the Robinson resolution, the idea of
Z-resolution is very simple as demonstrated below.

Example 4.1 Assume A is defined by the following
two rules:

Q$‘<Qy; \/ P(x) (1)
X X. (2)

Then, if we replace Z(x) in the first clause by Qr(x),
we have:

Q,(x) 3 Q&) \/ P(x)- (3)
Let A’ contain (3), then it is easy to show that:

CIR(A(Q, P, Z); P; Z) = CIR(A’(Q, P); P) /\
A(&, P, Z). q

This example motivates us trying to eliminate
all Z predicates from A, while still remain logical con-
nection between those predicates in Q and P.

Let us briefly discuss some notations. A set of
expressions { i91, 9, } is unifiable if and only if
there is a substitution cr that makes the expressions
identical. In such a case, u is said to be a unifier for
that set. A most general unifier 7 of @ and \k has the
property that, if Q is any unifier of the two expres-
sions, then, there exists a substitution 6 with the fol-
lowing property:

a+ = *CT = *a.

If a subset of the literals in a clause @ has a
most general unifier 7, then, the clause a’ is called a
factor of @ if it is obtained by applying 7 to a. Let Q,
and \k are two clauses, if there is a literal -4 in some
factor <P’ of @ and a literal $J in some factor dr ’ of @
such that @ and \k have a most general unifier 7, then
the clause (@’ - ((a}) U (\k ’ - {+I'})7 is called a
resolvent of the two clauses using @P[Genesereth et al.,
19871. In Example 4.1, (3) is a resolvent of (1) and

(2) using Z(x).

Let rl and r2 be two clauses, -4 be a literal in rl,
h 9452, “‘, $,, be all literals in r2 that have most gen-
eral umfiers with 4. Sr, S2, ..‘, S, is a sequence resol-
vents of rl and r2 using 4. That is S1 is the resolvent
of rl and r2 using 4, S2 the is the resolvent of r2 and S1,
. . . . etc. Then the &resolvent of rl and r2 using 4 is
defined as S,.

Example 4.2 Let
rl: &1(x, Y) 1 z(x, Y) \! Z(Y, x>
r2: Z(x, Y) A Qdx, Y) 1 P(x, Y).

Then, the Z-resolvent of r2 and rl using Z(x, y) is the
clause

Q&G Y) /\ QP(x, Y) A Q~(Y, x) 1 p(x, Y) \/ P(Y, x).

cl

Let A be a set of clauses, XD be a clause in A, -Z
be a negative literal in <p, A’(@, Z) be the set of all
Z-resolvents of @ with each clause in A which con-
tains positive occurrence from Z. Then the Z-
resolution set R(A, @, Z) is defined as A’(@, Z) u (A -
9.
Lemma 4.1 R(A, Z) = A. q
Example 4.3 Assume A contain the following
clauses:

rl: Ql(x, Y) 1 Zi(x, Y) \/ &(x9 Y)
rs: Z&C, y) 1 Qz(x, Y) \! PI&, Y)

rs: Zi(x, y) /\ &(Y, s) 1 p2(x9 Z)
Then, Ai = R(A, rs, zl(x, Y)) contains:

rl: Q,(x, Y) 3 %(X, Y) \/ z& Y)
r2: Ze(x, y) 2 &2(x, Y) \! PdX, Y)

r4: Q1(x, y) /\ &(Y, x) 1 p2(% Z) \/ zz(% Y)-
A2 = R(&, r4, Zi(y, x)) contains:

rl: &1(x, Y) 1 &(x7 Y) \/ Zdx, Y)
r2: 2&(x, y) 1 &2(x, Y) \/ p&h Y)
r5: ($(;,(Y) :) Qi(s, x) 2 ps(z, Y) \/ z1(Z* x)

2x, * q
By examing 4, we find that Zi becomes one side

predicate in 4. As far as computing parallel cir-
cumscription is concerned, we may obtain an & from
A2 by deleting rl. That is & contains only r2 and r6.

Let A, = R(&, r2, Z(x, y)). Then A, contains:
rs: Q&q Y) /\ QI(z, x) 3 Pz(z, Y) \/ ZP(Z, x) \I’ &.(x9

Y)
w &1(x, Y) /\ QI(z, x) 2 Pz(z, Y) \/ Qz(z, x) h(z, x)

\/ 92(x, Y) \I Pdx, Y).

Since r6 is one side in &, & = {r6}. Then, by
Theorem 3.1,

CIR(A; P; Z) = CIW%; P) A A(Q, R Z).

Given a theory A, the Z-resolution tries to
transfer all negative occurrences of Z into positive
ones, i.e., one side. If the process successes, by
Theorem 3.1, the parallel circumscription can be
reduced into basic circumscription. Unfortunately, the
process may not always success.

Example 4.4 Let A contain only two rules as fol-
lows:

rl: Q(x) 1 Z(x, Y) V Z(Y, x)
r2: Z(x, Y) A Z(Y, x) 3 P(x, Y).

Then we simply can not transfer Z into one side by
Z-resolution.

Now, we specify a class of theories for which the
Z-resolution guarantees the reducing of parallel cir-
cumscription into basic one.

Let A be a set of clauses, and Z be a set of
predicate symbols in A. A binary relation is defined
on Z as follows. Assume Zi, ZJ are two predicates in Z,
then Zi => ZJ if either Z1 + ZJ, or there exists an
predicate Zk from Z and two clauses rl and r2 in A
such that {Z,, 2$} E LHS(ri) and {ZJ, Z,} E RHS(r2).
We define => to be the transitive closure (not the
reflexive closure) of =>. ZI and ZJ are extended Z-
recursive if ZI => * ZJ and Z

4
=-O.l’>*. Zi is

extended Z-recursive if Zi => Z,. Extended Z-
recursion is an equivalence relation of the set of
extended Z-recursive predicates.

Let A be a set of clauses and Z be a set of
predicates. A is said to be Z-conflict free if whenever
there exist a clause r, and two predicates Zr and ZJ
such that {Z,, ZJ) E LHS(r), then Zi and ZJ are not
extended Z-recursive. A in Example 4.3 is Z-conflict
free, while A in Example 4.4 is not.

Let A be a set of clauses and Z be a set of
predicates in A. An SP-ordering of Z is defined as an
sequence Z1, Z 2, Z, such that i < j implies that if
SJ =>I* Si, then Si =>* SJ.

An SP-ordering of Z always exists, though it
may not be unique.

Now we present an algorithm to reduce parallel
circumscription of A into basic circumscription when
A is Z-conflict free.

Yuan and Wang 463

Function REDUCE (A; Z);

Input: A Z-conflict free set A(Q, P, Z) of clauses.

output: REDUCE(Q, P) such that CIR(A, P; Z) =
CIR(REDUCE; P) /\ A(Q, P, Z).

Method:
begin

Let Z1, Z2, Z, be an SP-ordering of Z;
for i = 1 step 1 to n do

begin
repeat

select a clause r from A such that Z1 E LHS(r)
and RHS(r) n ZI = 8;
Let -Zi from Z be an negative literal in r;
A := R(A, r, Zi);

until Zi is one side in A;
delete all clauses which contain Zl from A;

end
REDUCE := A

end.

Theorem 4.1 If A(Q, P, Z) is Z-conflict free, then
ClR(A; P; Z) = CIR(REDUCE; P) /\ A(&, P, Z).

cl

5. Further Discussion
Given a Z-conflict free theory A, the parallel cir-
cumscription of A can be reduced into basic one by
Z-resolution. However, we are also able to transform
many Z-conflict theories into Z-conflict free theories
without affecting the result of circumscription. Let A
be a set of clauses, Z be a predicate in A. Z is said to
be negated if all positive literals from Z are changed
into negative, and vice versa. Assume A’ is a first
order formula obtained from A by negating some z
from Z in A, the circumscription models for A and A’
differ only with the assignments of the z which have
been negated. The following example shows how this
method works.

Example 5.1 Let A contain two rules:
Zl(X, Y) A ZP(Y, 4 3 Pl(X, Y)
Q,(x, Y) 3 Zdx, Y)
Q& Y) 3 ZP(X, Y)
Z&G Y) 3 Z&G Y) \/ Q&c, Y)
Zz(x, Y) 3 ZI(X, Y) \/ Q4(x, Y)

Q&G Y) 2 Zdx, Y)
Q&G Y) /\ Z&c Y) 3 F
z&c, Y) A Zz(x, Y) 3 Q& Y)
z&q Y) /\ Z,(x, Y) 1 Q4k Y)

Following lemma
of this transformation.

demonstrates the significance

Lemma 5.1 Let A(Q, P, Z) b e a set of clauses, A’
be a set of clauses obtained from A by negating a
subset z from Z. Then

ClR(A(Q, P, 2); P; Z) = CIR(A’ ; P; Z’)
A AZ VX(Zi(X) = -Z,‘(x)). q
However, not all Z-conflict theories can be

transformed to Z-conflict free theories by negating. A
notable example is A in Example 4.4.

References

[Bancilhon et al., 19861 Bancilhon, F. and Ramak-
rishnan, R., An Amateur’s Introduction to Recur-
sive Query Processing Strategies, Proc. of ACM
SIGMOD, 1986, pp. 16-51.

[Clark, 319781 Clark, K., Negation as Failure, In:
Logic and Database (Gallaire, H. and Minker, J.,
Eds.), Plenum Press, N. Y., 1978, pp. 293-322.

[Genesereth et al., 19871 Genesereth, M. and Nils-
son, N., Logical Foundation of Artilicial Intelli-
gence, Morgan Kaufmann Pub., Inc. Los Altos,
CA, 1987.

[Lifschitz, 19851 Lifschitz, V., Computing Cir-
cumscription, Proc. of the 9th Int. Joint Conf. on
AI, 1985, pp. 121-127.

[McCarthy, 19801 McCarthy, J., Circumscription -
A Form of Non-Monotonic Reasoning, Artificial
Intelligence 13, 1980, pp. 295-323.

[McCathy, 19861 McCarthy, J., Application of Cir-
cumscription to Formalizing Commonsense
Knowledge, AAAI Workshop on Non-Monotonic
Reasoning, 1984, pp. 295-323.

[Przymusinski] Przymusinski, T.G., An Algorithm
to Compute Circumscription, to appear in J.
Artificial Intelligence.

Obviously A is not Z-conflict free. By negating Z2, we
obtain a Z-conflict free theory A’ containing the fol-
lowing two rules:

z&G Y) 1 Z2(Y, 4 A h(x, Y)

464 Knowledge Representation

