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Abstract 
Three levels of circumscription have been pro- 
posed by McCathy to formalize common sense 
knowledge and non-monotonic reasoning in 
general-purpose database and knowledge base sys- 
tems. That is, basic circumscription, parallel cir- 
cumscription, and priority circumscription. Basic 
circumscription is a special case of parallel cir- 
cumscription while parallel circumscription is a 
special case of priority circumscription. Lifschitz 
has reduced priority circumscription into parallel 
circumscription, i.e., represented priority cir- 
cumscription as a conjunction of some parallel cir- 
cumscription formulas. In this paper, we have 
reduced parallel circumscription into basic cir- 
cumscription under some restriction, i.e., parallel 
circumscription of a Z-conflict free first order logic 
formula can be represented as a conjunction of 
some basic circumscription formulea. 

1. Introduction 

McCarthy has proposed circumscription to formalize 
common sense knowledge and non-monotonic reason- 
ing designated to handle incomplete and negative 
information in database and knowledge base systems 
[McCarthy, 1980, McCathy, 19861. Different levels of 
circumscription have been proposed for different kinds 
of application [McCathy, 1986, Lifschitz, 19851. 
Assume A(P, Z) is a first order theory, where P and Z 
are disjoint sets of predicates in A. Parallel cir- 
cumscription, denoted as CIR(A; P; Z), asserts that 
the extension of P should be minimized under the 
condition of A(P; Z), while Z is allowed to vary. 
When Z = 0, parallel circumscription reduces to 
CWA; P), which we call basic eircunascription’. 
Minimizing a set P of predicates may conflict with 
each other. Thus, priority circumscription has been 
proposed. Priority circumscription, CIl%(A; P1 > P* 
> . . . > Pn; Z), where P’, . . . , Pn, Z are pairwise dis- 
joint sets of predicates in A, expresses the idea that 
predicates in P’ should be minimized at higher prior- 

. ity than those in P *, P* at higher priority than those 
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in Pa, etc, while Z is allowed to vary. 

Obviously, basic circumscription is a special 
case of parallel circumscription, and parallel cir- 
cumscription is a special case of priority circumscrip- 
tion. Lifschitz has reduced priority circumscription 
into parallel circumscription, i.e., a priority cir- 
cumscription can be represented by a conjunction of 
some parallel circumscription formulae [Lifschitz, 
19851. He has also tried to reduce parallel circumscrip- 
tion into basic circumscription. However, as he indi- 
cated, the result is not satisfactory, since a second- 
order quantifier is introduced within circumscription. 

Przymusinski has proposed an algorithm to 
compute parallel circumscription, under certain 
assumptions [Przymusinski]. Because of the difficulties 
brought in by Z, the algorithm has to treat parallel 
circumscription and basic circumscription separately, 
and the complexity for parallel circumscription is 
much higher than for basic circumscription. If we 
could reduce parallel circumscription into basic cir- 
cumscription, his algorithm can be simplified dramati- 
cally and be much more efficient. 

Therefore, from both the theoretical and practi- 
cal points of view, we would like to reduce parallel 
circumscription into basic circumscription, if possible. 

In this paper, we first define the Z-resolution 
process, which is used to transfer all negative literals 
of Z into positive ones, without lossing of logical con- 
nection between other predicates. If the Z-resolution 
successes, then we are able to eliminate all rules 
which contain predicate Z without affecting comput- 
ing parallel circumscription. Then a class of first order 
theory, called Z-conflict free, is defined. When the 
given theory is Z-conflict free, an algorithm is 
presented to eliminate all Z predicates from A. 
Finally, we show that when the given theory is Z- 
conflict free, parallel circumscription can be reduced 

1 In the literature, parallel circumscription with empty Z is 
usually used. However, for the sake of clarity, the term basic 
circumscription is used here instead. 
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into basic circumscription. 

The rest of this paper is organized as follows. In 
Section 2, we recall the definition of circumscription 
and some preliminary results. In Section 3, some pro- 
perties about logical systems are discussed. Section 4 
shows how Z-resolution can be used to reduce parallel 
circumscription into basic circumscription. In Section 
5, we show that the restriction can be removed in 
many cases. 

2. Preliminary Results 

In this section, we briefly discuss some fundamental 
concepts and preliminary results which are useful for 
the following discussion. 

There are three kinds of circumscription as for- 
malized in [Lifschitz, 19851. 

Basic Circumscription Let A be a first order 
logic formula, P = { p1 , . . . , Pn} be a set of predi- 
cates in A. The basic circumscription of P in A, 
denoted as CI[R(A; I’), is a second-order formula 

A(P) ,‘\ -3P’(A(P’) /\ P’ < P ), 

where P’ is a tuple of predicate variables similar to 
P, and P’ < P means 

*il H x (Pi’ (x) 3 PI (4) A *il 3 x (p* (4 A -7 

Pi’ (X))? 
where x is a tuple of variables. 

Parallel Circumscription Let A(P, Z) be a first 
order logic formula, where P = {Pi , . . . , P,} and Z 
= {z, , . . . , Z,} are two disjoint sets of predicates in 
A. The circumscription of P in A(P, Z) with variable 
Z, denoted as CIR(A; P; Z), is a second order formula 

A(P, Z) /\ -zP’, Z’(A(P’, Z’) /\ P’ < P), 

where P ’ , Z ’ are tuples of predicate variables similar 
to P and Z, and P ’ < P has the same meaning as 
above. 

Priority Circumscription Let A( Pi, P* ,... , Pn , 
Z) be a first order formula, where P’ = { P+,..., PI, }, 

1= * 1 , “‘, n, and Z = { Z1 , . . . , Z,} are pairwise dis- 
joint sets of predicates in A. The priority circumscrip- 
tion of A, denoted as CIR(A; P’ > P* > . . . > Pn; Z), 
is defined as a second order formula 

A(P, Z) /\ -aP’, Z’ (A(P’, Z’) /\ P’ M P) 

where, P = {P’, . . . , P”}, and P’ and Z ’ stands for P 
and Z, and P ’ w P means 

,i ( ,!I p” = PJ 1 PI' < PI) /\ P’ # P, and PI’ < 

Pi means Pi’ < Pi or PI’ = PI. 

Lifschitz has tried to reduce parallel cir- 
cumscription into basic circumscription, as stated 
below. 

Theorem 2.1 [Lifschitz, 19851 ClR(A(P, Z); P; Z) 
= A(P, Z) /\ ClR(3 Z’ A(P, Z ‘); P). /-J 

As noticed by Lifschitz, theorem 2.1 does not 
strip off Z in circumscription, since the formula con- 
tains a second-order quantifier. However, Lifschitz 
has successfully reduced priority circumscription to 
parallel circumscription, as shown in the following 
theorem . 

Theorem 2.2 [Lifschitz, 19851 ClR(A; P’ > P* > 

. . . >Pk; Z) = ;; CIR(A; Pi ; P’+l, . . . , Pk, Z). q  I=1  

3. %-Recursion and One-Side Predi- 
cates 
Let A be a first order formula. Without loss of gen- 
erality, we assume A is in clausal form, i.e., a set of 
clauses. Each clause r in A has the form 

7 &I \/ 1 Q2 \/ . . . 7 Qm \/ PI \/ P2 \/ . . . \/ P,, 
where Qi, PJ are predicates and may contain variables. 
A clause r may be rewritten in the form of 

&I /\ . . . /\ Qm 3 PI \/ . . . \/ P, , 
and is called a rule in A. 

Given a rule r, LHS(r) is used to denote the set 
of all predicates occurring negatively in r, and R.HS(r) 
the set of all predicates occurring positively in r. 

Recursion plays an important role in logical sys- 
tem implementation. Since we are interested in com- 
puting parallel circumscription CIR(A; P; Z), we dis- 
cuss only the recursion associated with the set Z of 
predicates in A. 

Let A be a first order formula, Z be the set of 
predicates in A. A binary relation is defined on Z. 
Assume Zi, Z, are two predicates in Z (Zr and Z, are 
not necessarily distinct), then we say Zi deriues Z,, 
denoted as Zl - Zj, if there exists a rule r in A such 
that Zi E LHS(r) and ZJ E RHS(r). We define +* to be 
the transitive closure (not the reflexive transitive clo- 
sure) of -. 

ZI and Zj are mutually Z-recursive if Zi ---)* Z, and 
z, +* Zi. ZI is Z-recursive if Zr --t* Z,. Otherwise ZI is 
Z-recursion jree. It can be easily shown that mutual 
Z-recursion is an equivalence relation on the set of Z- 
recursive predicates [Bancilhon et al., 19861. 
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A rule r in A is said to be Z-recursive if there 
exist two predicates ZI and ZJ in Z, (Z, and ZJ are not 
necessarily distinct) such that 2, E LHS(r), ZJ E 

RHS(r), and Zi and ZJ are mutually recursive. Other- 
wise, r is Z-recursion free. 

A predicate Zi is said to be Z-recursion free in a 
rule r if Zi E RHS(r) and for each ZJ E LHS( r), ZI and 
ZJ are not mutually recursive. The fact that Z, is Z- 
recursion free in r does not necessarily imply that Zt is 
Z-recursion free in A. 

Example 3 .l Assume A is given by the following 
rules: 

rl: &I 3 ZI \/ PI 
r2: ZI 3 22 \/ QZ 
rg: P2 /\ Z2 2 Z1 \/ Qs \/ ZS 
r4: Q2 /\ Z8 3 PP. 

rs: Qa 1 Zs. 
Then, Z1 - Z2, Z2 - Zi and Z2 - Zs. Let Z = {Zi, Zs, 
Z,}. Thus Zi and Z2 are mutually Z-recursive. Zs is Z- 
recursion free, Z1 is Z-recursion free in rl, and Zs is Z- 
recursion free in r3 and r6. r2 and rs are Z-recursive, 
while rl, r4, and rs are Z-recursion free. cl 

The Z-recursion is defined regardless of the 
terms occurring in predicates. Thus, 
Z1 (x) 3 Z1 (a) is Z- recursive. The reason is that such 
a definition has no impact on our implementation 
method, but simplifies our discussion. 

Now, we discuss a technique 
computing circumscription. 

used to simplify 

Consider Example 3.1. If we assume both Z1 and 
Z2 are true, then rl, r2 and rs are always satisfied. 
Because Z is allowed to vary, such an assumption is 
valid. Therefore, in the processing of minimizing P 
when we compute CIR(A; P; Z), rl, r2 and r8 make no 
contribution, so they can be deleted. Let A’ contain 
only r4 and rs, then it is easy to show that 
CIR(A; P; Z) i CIR(A’; P; Z,) /\ A(P, Z) = (PI = 

false) /\ (% 3 Q2 /\ Qs) /\ A(P, Z). 
Motivated by the above example, we propose the 
one-side predicate as defined below. 

Definition 3.1 Let A be a first order formula, Z be 
a set of predicates. Let z C Z be a set of predicates. z 
is said to be left-side if for each r in A, either RHS(r) 
n z = 0 or LHS(r) n z # 0. z is right-side if for each 
r in A, either LHS(r) n z = 0 or RHS(r) n z # 0. z is 
one-side if z is either left-side or right-side. q  

In Example 3.1, {Z,, Z2) is right-side. The 
significance of defining the one-side predicate is 
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demonstrated by the following theorem. 

Theorem 3.1 Let A(Q, P, Z) b e a first order for- 
mula, z be a one-side set of predicates in Z. A’(Q, P, 
Z) be a formula obtained from A by deleting all rules 
containing some predicates in z. Then CIR(A; P; 
Z) = CIR(A’; P; Z) /\ A(P, Z). q  

Theorem 3.1 can be used to simplify computing 
CIR(A; P; Z). However, unless Z is entirely one-side, 
we cannot avoid computing parallel circumscription. 

4. 2 - Resolution 
In this section, we first present an algorithm, called 
Z-resofution, to simplify the given theory, and then 
show that under certain condition, the Z-resolution 
can be used to reduce parallel circumscription into 
basic one. Like the Robinson resolution, the idea of 
Z-resolution is very simple as demonstrated below. 

Example 4.1 Assume A is defined by the following 
two rules: 

Q$‘<Qy; \/ P(x) (1) 
X X. (2) 

Then, if we replace Z(x) in the first clause by Qr(x), 
we have: 

Q,(x) 3 Q&) \/ P(x)- (3) 
Let A’ contain (3), then it is easy to show that: 

CIR(A(Q, P, Z); P; Z) = CIR(A’(Q, P); P) /\ 
A(&, P, Z). q  

This example motivates us trying to eliminate 
all Z predicates from A, while still remain logical con- 
nection between those predicates in Q and P. 

Let us briefly discuss some notations. A set of 
expressions { i91, . . . . 9, } is unifiable if and only if 
there is a substitution cr that makes the expressions 
identical. In such a case, u is said to be a unifier for 
that set. A most general unifier 7 of @ and \k has the 
property that, if Q is any unifier of the two expres- 
sions, then, there exists a substitution 6 with the fol- 
lowing property: 

a+ = *CT = *a. 

If a subset of the literals in a clause @ has a 
most general unifier 7, then, the clause a’ is called a 
factor of @ if it is obtained by applying 7 to a. Let Q, 
and \k are two clauses, if there is a literal -4 in some 
factor <P’ of @ and a literal $J in some factor dr ’ of @ 
such that @ and \k have a most general unifier 7, then 
the clause (@’ - ((a}) U (\k ’ - {+I'})7 is called a 
resolvent of the two clauses using @P[Genesereth et al., 
19871. In Example 4.1, (3) is a resolvent of (1) and 



(2) using Z(x). 

Let rl and r2 be two clauses, -4 be a literal in rl, 
h 9452, “‘, $,, be all literals in r2 that have most gen- 
eral umfiers with 4. Sr, S2, ..‘, S, is a sequence resol- 
vents of rl and r2 using 4. That is S1 is the resolvent 
of rl and r2 using 4, S2 the is the resolvent of r2 and S1, 
. . . . etc. Then the &resolvent of rl and r2 using 4 is 
defined as S,. 

Example 4.2 Let 
rl: &1(x, Y) 1 z(x, Y) \! Z(Y, x> 
r2: Z(x, Y) A Qdx, Y) 1 P(x, Y). 

Then, the Z-resolvent of r2 and rl using Z(x, y) is the 
clause 

Q&G Y) /\ QP(x, Y) A Q~(Y, x) 1 p(x, Y) \/ P(Y, x). 

cl 

Let A be a set of clauses, XD be a clause in A, -Z 
be a negative literal in <p, A’(@, Z) be the set of all 
Z-resolvents of @ with each clause in A which con- 
tains positive occurrence from Z. Then the Z- 
resolution set R(A, @, Z) is defined as A’(@, Z) u (A - 
9. 
Lemma 4.1 R(A, Z) = A. q  
Example 4.3 Assume A contain the following 
clauses: 

rl: Ql(x, Y) 1 Zi(x, Y) \/ &(x9 Y) 
rs: Z&C, y) 1 Qz(x, Y) \! PI&, Y) 

rs: Zi(x, y) /\ &(Y, s) 1 p2(x9 Z) 
Then, Ai = R(A, rs, zl(x, Y)) contains: 

rl: Q,(x, Y) 3 %(X, Y) \/ z& Y) 
r2: Ze(x, y) 2 &2(x, Y) \! PdX, Y) 

r4: Q1(x, y) /\ &(Y, x) 1 p2(% Z) \/ zz(% Y)- 
A2 = R(&, r4, Zi(y, x)) contains: 

rl: &1(x, Y) 1 &(x7 Y) \/ Zdx, Y) 
r2: 2&(x, y) 1 &2(x, Y) \/ p&h Y) 
r5: ($(;,(Y) :) Qi(s, x) 2 ps(z, Y) \/ z1(Z* x) 

2x, * q  
By examing 4, we find that Zi becomes one side 

predicate in 4. As far as computing parallel cir- 
cumscription is concerned, we may obtain an & from 
A2 by deleting rl. That is & contains only r2 and r6. 

Let A, = R(&, r2, Z(x, y)). Then A, contains: 
rs: Q&q Y) /\ QI(z, x) 3 Pz(z, Y) \/ ZP(Z, x) \I’ &.(x9 

Y) 
w &1(x, Y) /\ QI(z, x) 2 Pz(z, Y) \/ Qz(z, x) h(z, x) 

\/ 92(x, Y) \I Pdx, Y). 

Since r6 is one side in &, & = {r6}. Then, by 
Theorem 3.1, 

CIR(A; P; Z) = CIW%; P) A A(Q, R Z). 

Given a theory A, the Z-resolution tries to 
transfer all negative occurrences of Z into positive 
ones, i.e., one side. If the process successes, by 
Theorem 3.1, the parallel circumscription can be 
reduced into basic circumscription. Unfortunately, the 
process may not always success. 

Example 4.4 Let A contain only two rules as fol- 
lows: 

rl: Q(x) 1 Z(x, Y) V Z(Y, x) 
r2: Z(x, Y) A Z(Y, x) 3 P(x, Y). 

Then we simply can not transfer Z into one side by 
Z-resolution. 

Now, we specify a class of theories for which the 
Z-resolution guarantees the reducing of parallel cir- 
cumscription into basic one. 

Let A be a set of clauses, and Z be a set of 
predicate symbols in A. A binary relation is defined 
on Z as follows. Assume Zi, ZJ are two predicates in Z, 
then Zi => ZJ if either Z1 + ZJ, or there exists an 
predicate Zk from Z and two clauses rl and r2 in A 
such that {Z,, 2$} E LHS(ri) and {ZJ, Z,} E RHS(r2). 
We define => to be the transitive closure (not the 
reflexive closure) of =>. ZI and ZJ are extended Z- 
recursive if ZI => * ZJ and Z 

4 
=-O.l’>*. Zi is 

extended Z-recursive if Zi => Z,. Extended Z- 
recursion is an equivalence relation of the set of 
extended Z-recursive predicates. 

Let A be a set of clauses and Z be a set of 
predicates. A is said to be Z-conflict free if whenever 
there exist a clause r, and two predicates Zr and ZJ 
such that {Z,, ZJ) E LHS(r), then Zi and ZJ are not 
extended Z-recursive. A in Example 4.3 is Z-conflict 
free, while A in Example 4.4 is not. 

Let A be a set of clauses and Z be a set of 
predicates in A. An SP-ordering of Z is defined as an 
sequence Z1, Z 2, . . . . Z, such that i < j implies that if 
SJ =>I* Si, then Si =>* SJ. 

An SP-ordering of Z always exists, though it 
may not be unique. 

Now we present an algorithm to reduce parallel 
circumscription of A into basic circumscription when 
A is Z-conflict free. 
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Function REDUCE (A; Z); 

Input: A Z-conflict free set A(Q, P, Z) of clauses. 

output: REDUCE( Q, P) such that CIR(A, P; Z) = 
CIR(REDUCE; P) /\ A(Q, P, Z). 

Method: 
begin 

Let Z1, Z2, . . . . Z, be an SP-ordering of Z; 
for i = 1 step 1 to n do 

begin 
repeat 

select a clause r from A such that Z1 E LHS(r) 
and RHS(r) n ZI = 8; 
Let -Zi from Z be an negative literal in r; 
A := R(A, r, Zi); 

until Zi is one side in A; 
delete all clauses which contain Zl from A; 

end 
REDUCE := A 

end. 

Theorem 4.1 If A(Q, P, Z) is Z-conflict free, then 
ClR(A; P; Z) = CIR(REDUCE; P) /\ A(&, P, Z). 

cl 

5. Further Discussion 
Given a Z-conflict free theory A, the parallel cir- 
cumscription of A can be reduced into basic one by 
Z-resolution. However, we are also able to transform 
many Z-conflict theories into Z-conflict free theories 
without affecting the result of circumscription. Let A 
be a set of clauses, Z be a predicate in A. Z is said to 
be negated if all positive literals from Z are changed 
into negative, and vice versa. Assume A’ is a first 
order formula obtained from A by negating some z 
from Z in A, the circumscription models for A and A’ 
differ only with the assignments of the z which have 
been negated. The following example shows how this 
method works. 

Example 5.1 Let A contain two rules: 
Zl(X, Y) A ZP(Y, 4 3 Pl(X, Y) 
Q,(x, Y) 3 Zdx, Y) 
Q& Y) 3 ZP(X, Y) 
Z&G Y) 3 Z&G Y) \/ Q&c, Y) 
Zz(x, Y) 3 ZI(X, Y) \/ Q4(x, Y) 

Q&G Y) 2 Zdx, Y) 
Q&G Y) /\ Z&c Y) 3 F 
z&c, Y) A Zz(x, Y) 3 Q& Y) 
z&q Y) /\ Z,(x, Y) 1 Q4k Y) 

Following lemma 
of this transformation. 

demonstrates the significance 

Lemma 5.1 Let A(Q, P, Z) b e a set of clauses, A’ 
be a set of clauses obtained from A by negating a 
subset z from Z. Then 

ClR(A(Q, P, 2); P; Z) = CIR(A’ ; P; Z’) 
A AZ VX(Zi(X) = -Z,‘(x)). q  
However, not all Z-conflict theories can be 

transformed to Z-conflict free theories by negating. A 
notable example is A in Example 4.4. 
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Obviously A is not Z-conflict free. By negating Z2, we 
obtain a Z-conflict free theory A’ containing the fol- 
lowing two rules: 

z&G Y) 1 Z2(Y, 4 A h(x, Y) 
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