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2 The Circumscription of 
Existent ial Formulae 

Let 4(P) be a first-order or a second-order formula with 
equality, involving the sequence P = (Pi, . . . , Ph) of predi- 
cate symbols and possibly other predicate symbols from 
a fixed underlying vocabulary u. Following McCarthy 
[McC80, McC86] and Lifschitz [Li85], we define the cir- 
cumscription ofP in 4(P) to be the following second-order 
formula 4*(P): 

4(P) A (‘dP’)[(P’ < w + ~w% 
where P’ = (Pi, . . . , Pi) is a sequence of predicates and 
P’ < P means that Pi c Pi, 1 2 i < k, and there is a 
j 5 E such that Pi is a proper subset of Pj. 

Several interesting cases have been pointed out in the 
recent past, in which the circumscription of a first-order 
formula collapses to a first-order formula. Lifschitz [Li85] 
showed that this holds for the class of separable formula.e, 
a natural and fairly wide class that includes all quantifier- 
free formulae. Such results, reducing the logical complex- 
ity of circumscription from second-order to first-order, are 
potentially valuable, in view of the intractability of second- 
order logic on the one hand and the completeness theorem 
for first-order logic on the other. 

We show below that the same holds for all exktential 
formulae. 

Theorem 1. Suppose that d(P) is an existential first- 
order sentence of the form 3x$, where x = (xi, . ..x~) is 
a sequence of variables and $ is quantifier-free formula. 
Then the circumscription qS+(P) of P in #(P) is equivalent 
to a first-order formula. 0 

The proof of Theorem 1 constructs a first-order formula 
equivalent to the circumscription. We start by bringing 
$ in its complete disjunctive normal form, that is, $ is 
written as the disjunction of several formulae Bi, where 
each Bi is the conjunction of literals, where a literal can 
be either an atomic formula, or its negation, or an equal- 
ity between two variables, or an inequality (#) between 
two variables; moreover, ‘each disju.nct contains at least 
one of the literals xi = Xj or xi #.-Xj for any two vari- 
ables xi, xj (that is, it determines an equality type). Next, 
we distribute the existential quantifiers over the disjunc- 
tion, and thus we have to show that each disjunct of the 
form 3~6iA(‘v’P’)[(P < P),--+ -(V~=, 3xoj)] is first order. 
However, since only existential. quantifiers occur in this dis- 
junct and Bi has a fixed equality type (in other words, the 
mapping from variables to constants is fixed up to renam- 
ings), the assertion concerning. P above can be replaced 
by a first-order formula stating that P is a cert.ain finite 
set and no proper subset of it satisfies Vj”=, 3x6j (the’ lat- 
ter statement can be expressed by an exponentially long 
first-order formula, ranging over subsets of the set. of con- 
stants determined by the equality type). This completes 
the construction. 

Example: We compute the circumscription of P in the 
formuia 

3Xl3X2(fqXl, x2) A P(Xl) A P(x2)) 

using the procedure described above. After bringing the 
quantifier-free part in complete disjunctive normal form 
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and distributing the existential quantifiers over the dis- 
junction, this formula is transformed to 

3~13~2(f@1,~2) A P(w) A p(x2) A (xl = ~2)) 

V 3~13~2(R(x1, x2) A P(n) A p(x2) A (XI # x2)). 

The circumscription of P in the above formula is equiva.lent 
to 

h(f+l, xl) A P(Q) A ((VY)(~(Y) ++ Y = x:l)>V 

[3xdx2(R(xl, x2) A P(xI) A P(x2) A (xl # x2)A 

((VY>(~(Y> c-) (Y = ~1 V Y = 22)))A 

(-(xl, xl)) A (+(x2, x2)))]. 0 

We notice that computing a first-order sentence equiva- 
lent to the circumscription of P in an existential first-order 
formula I#( P) seems to increase the size of 4(P) exponen- 
tially, a phenomenon not observed in the other known cases 
of first-order circumscription studied in [Li85]. It would be 
interesting to determine whether this is inherent to exis- 
tential first-order formulae, or a particular creation of our 
proof. 

In the full paper we shall also prove that Theorem 1 
can be extended in several directions: It holds for formulae 
containing not only relation symbols, but also function a.nd 
constant symbols. Also, it holds for circumscription with 
variables (a more general variant). Finally, it is also true 
of existential second-order formulae, tl1a.t is, second-order 
formulae whose second-order and first-order qua.ntifiers are 
all existential. 

3 Circumscription and 
Boundedness 

The positive results for the existential formulae in the pre- 
ceding section suggest that one should examine next the 
class of universal first-order formulae. Other properties of 
the circumscription of universal formulae have been stud- 
ied before and it is known, for example, that this cla.ss 
of formulae behaves nicely with respect to the satisfiabil- 
ity of circumscription (cf. [BSSS], [EMR$5], [LiSG]). As 
mentioned in the introduction, however, Lifschitz [Li$5] 
observed that there are universal formulae (actually con- 
junctions of function-free Horn clauses) whose circumscrip- 
tion is not first-order expressible. In view of this, the best 
possible result one could hope for is a computationally use- 
ful characterization of the universal sentences that have a 
first-order circumscription. 

In this section we establish a connection between the cir- 
cumscription of a conjunction of function-free Horn clauses 
and the convergence of the corresponding logic program. 
More specifically, we show that the circumscription of a 
conjunction of Horn clauses is first-order if and only if 
the corresponding progra.m is bounded. Boundedness is a 
property of logic programs that has been showed recently 
by Gaifman et al. [GMSV87] to be an undecidable prob- 
lem. Thus, it is not possible to give a computationally 
usehi characterization of which universa.i first-order for- 
mulae possess a first-order circumscription. In spite of 
these negative consequences, our result suggests that it 
may be possible to identify wide subcla.sses of universal 
formulae on which there are algorithms that detect when 







there a different formalization of common-sense reasoning, 
which on the one hand is computationally more tract,ahle 
than circumscription, and on the other retains most salient 
features of it ? 
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