From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.
Some Computational Aspects of Circumscription

Phokion G. Kolaitis

Christos H. Papadimitriou

Department of Computer Science Department of Compuler Science and Engineering

Stanford University
Stanford, CA 94305

Abstract

We explore the effects of circumscribing first-
order formulae from a computational standpoint.
First, extending work of V. Lifschitz, we show
that the circumscription of any existential first-
order formula is equivalent to a first-order for-
mula After this, we establish that a set of uni-
versal Horn clauses has a first-order circumscrip-
tion if and only if it is bounded (when consid-
ered as a logic program); thus it is undecidable
to tell whether such formulae have first-order cir-
cumscription. Finally, we show that there are
first-order formulae whose circumscription has a
coNP-complete model-checking problem

1 Introduction

Circumscription, introduced by McCarthy [McC80,
McC86], has turned out to be an influential formalism for
common-sense teasoning Circumscription transforms log-
ical formulae by adding a 1equirement of minimality, so
that the circumscription of a formula ¢(P), where P is
a predicate symbol, asserts not only that P satisfies ¢,
but also that no proper subset of P satisfies ¢ The cir-
cumscription of a first-order formula is, on the face of it,
a second order formula (a second-order quantifier ranging
over predicates P’ is needed to express minimality of P)
This increase in logical complexity has important adverse
consequences; for example, the inclusion of second-order
formulae in a first-order set of beliefs rules out in princi-
ple a complete deductive system. Some of these difficulties
have been pointed out before by several researchers, in-
cluding Davis [Da80] and Schlipf [Sc86]

There have been numerous attempts to contain these
adverse effects of circumsciption One fiuitful direction
has been to identify classes of first-order formulae whose
circumscription is equivalent to a first-order formula Sev-
eral such sufficient conditions for fitst-orderness have been
proved in the recent past [Li85]; for a detailed exposition
see also [GN87] These conditions are not necessary, since,
as Lifschitz [Li85] observed, the circumscription of the for-
mula 3z P(z) is first-order, although this formula is not
contained in the classes identified by {Li85] In this pa-
per we give a new such sufficient (although not necessary)
condition, by establishing that every existential first-order
formula has a first-order circumscription, thus generalizing
the above example

In view of the above positive results for the existential
formulae, it is natural to ask whether or not similar conclu-
sions hold for the dual class of universal first-order formu-

University of California, San Diego

La Jolla, CA 92093

lae — of interest in Artificial Intelligence, because quite of-
ten belief statements or common-sense facts are expressed
as universal sentences Lifschitz [Li85], however, pointed
out that the circumsciiption of a universal first-order for-
mula need not he equivalent to a first-order formula In-
deed, if #(P) is a universal first-order sentence asserting
that P is a transitive binary relation containing the binary
relation F, then the citcumscription ¢*(P) states that P is
the transitive closure of E (cf example 8 in [Li85]). Thus,
¢*(P) is not equivalent to a first-order sentence, because,
using the compactness theorem of logic, it is easy to see
that transitive closure is not first-order definable. Notice
that ¢(P) is actually a conjunction of function-free Horn
clauses, since it can be written as
(VaVy)(E(z,y) — Pz, y))A
(VaVy¥=)(P(z,y) A P(y, z) — P(z, z)).

Recall that formulae that are conjunctions of (univer-
sally quantified) Iforn clauses can also be thought of as
logic programs and ae, therefore, of special relevance
to Artificial Intelligence Our second result characterizes
precisely those formulae in this.class (equivalently, logic
programs) that have a fitst-order expressible circumscrip-
tion Moie specifically, we show that the conjunction of
function-fiee Ilorn clauses has a first-order circumscription
if and only if the corresponding logic program is bounded.
Boundedness of logic programs has been recently stud-
ied by several 1eseaichers in database theory ([GMSVS87],
[Va88], [CGKV88]) Fiom these works and the above char-
acterization, it follows that it is an undecidable problem
to determine whether or not the circumscription of such a
sentence is expressible in first-order logic

Finally, we point out, we believe for the first time, an-
other adverse effect of passing from a first-order formula
to its circumsciiption Model-checking becomes compu-
tationally intractable As is well-known, any set of first-
order formulae has a polynomial-time (in fact, logarithmic-
space) algorithm for testing whether a finite structure
satisfies it In contrast, we exhibit a first-order formula
whose ciicumsciiption is coNP-complete (and thus cannot
be checked in polynomial time, unless P=NP).

This extended abstiract is organized in five sections (this
is the end of the first). In Section 2 we show our posi-
tive result for the ciicumscription of existential first-order
formulae. Section 3 conlains the characterization theorem
for the circumscription of logic programs and the compu-
tational consequences of this result. In Section 4 we study
the complexity of model-checking for circumscription, and
we conclude in Section 5 by discussing some questions left
open by this work Detailed proofs will be provided in the
full paper

Kolaitis and Papadimitriou 465

2 The Circumscription of
Existential Formulae

Let ¢(P) be a first-order or a second-order formula with
equality, involving the sequence P = (P4, ..., P;) of predi-
cate symbols and possibly other predicate symbols from
a fixed underlying vocabulary ¢. Following McCarthy
[McC80, McC86] and Lifschitz [Li85], we define the cir-
cumscription of P in ¢(P) to be the following second-order
formula n’)*(P\

$(P) A (VP)[(P' < P) — =¢(P’)],

where P’ = (P{,...,P{) is a sequence of predicates and
P’ < P means that P/ C P;, 1 < i < k, and there is a
J < k such that Pj is a proper subset of P

‘Several 1nterest111g cases have been pomted out in the
recent past, in which the circumscription of a first-order
formula collapses to a first-order formula. Lifschitz [Li85]
showed that this holds for the class of separable formulae,
a natural and fairly wide class that includes all quantifier-
free formulae. Such results, reducing the logical complex-

ity of circumscription from second-order to first-order, are
potentially valuable, in view of the intractability of second-
order logic on the one hand and the completeness theorem
for first-order logic on the other.

We show below that the same holds for all existential

formulae.

Theorem 1. Suppose that ¢(P) is an existential first-
order sentence of the form 3Ixt), where x = (z1,...2;) is
a sequence of variables and ¢ is quantifier-free formula.
Then the circumscription ¢*(P) of P in ¢(P) is equivalent
to a first-order formula. []

The proof of Theorem 1 constructs a first-order formula
equivalent to the circumscription. We start by bringing
¥ in its complete disjunctive normal form, that is, ¥ is
written as the disjunction of several formulae §;, where
each 6; is the conjunction of literals, where a literal can
be either an atomic formula, or its negation, or an equal-
ity between two variables, or an inequality (#) between
two variables; moreover, each disjunct contains at least
one of the literals «; = z; or «; # z; for any two vari-
ables z;, z; (that is, it determines an equality type). Next,
we distribute the existential quantifiers over the disjunc-
tion, and thus we have to show that each disjunct of the
form 3x0; A(VP')[(P' < P) — —=(V/j~, 3x0;)] is first order.
However, since only existential quantifiers occur in this dis-
junct and 6; has a fixed equality type (in other words, the
mapping from variables to constants is fixed up to renam-
ings), the assertion concerning P above can be replaced
by a first-order formula stating that P is a certain finite
set and no proper subset of it satisfies \/}”:1 Ix0; (the lat-
ter statement can. be expressed by an exponentially long
first-order formula, ranging over subsets of the set. of con-
stants determined by the equality type). This completes
the construction.

Example: We compute the circumscription of P in the
formula

Az13z2(R(21, z2) A P(z1) A P(x2))

using the procedure described above. After bringing the
quantifier-free part in complete disjunctive normal form

466 Knowledge Representation

and distributing the existential quantifiers over the dis-
Jjunction, this formula is transformed to

31‘13$2(R(Z‘1, .’132) A P(.’El) A P(le) A (.131 = xz))

\4 EwlﬂxZ(R(ml,xz) A P(%l) A P(.’l?g) AN (231 —',é xz))

The circumscription of P in the above formulais equivalent
to

31 (R(z1, 1) A P(z1) A((VY)(P(y) < y=z1))V
[31:131:2(]?,(:01, 172) A P((El) A P(xz) A (.’Bl # .’132)/\
(V)(P(y) = (y =21 Vy = 22)))A
(oR(z1,21)) A (=R(22,22)))]. U

We notice that computing a first-order sentence equiva-
lent to the circumscription of P in an existential first-order
formula ¢(P) seems to increase the size of ¢(P) exponen-

tially, a phenomenon not observed in the other known cases
of first-order circumscription studied in [Li85]. It would be

interesting to determine whether this is inherent to exis-

tential first-order formulae, or a particular creation of our

proof.
T tha 311 nomar wa ahall olan nrave +that Thasna 1
L1E LIAICT I.Llll PGIIJCL YWwo DlJCth alov PLUVL viiav .Lll\zulClll i

can be extended in several directions: It holds for formulae
containing not only relation symbols, but also function and
constant symbols. Also, it holds for circumscription with
variables (a more general variant). Finally, it is also true
of existential second-order formulae, that is, second-order
formulae whose second-order and first-order quantifiers are
all existential.

3 Circumscription and
Boundedness

The positive results for the existential formulae in the pre-
ceding section suggest that one should examine next the
class of universal first-order formulae. Other properties of
the circumscription of universal formulae have been stud-
ied before and it is known, for example, that this class
of formulae behaves nicely with respect to the satisfiabil-
ity of circumscription (cf. [BS85], [EMRS5], [Li86]). As
mentioned in the introduction, however, Lifschitz [Li85]
observed that there are universal formulae (actually con-
junctions of function-free Horn clauses) whose circumscrip-
tion is not first-order expressible. In view of this, the best
possible result one could hope for is a computationally use-
ful characterization of the universal sentences that have a
first-order circumscription.

In this section we establish a connection between the cir-
cumscription of a conjunction of function-free Horn clauses
and the convergence of the corresponding logic program.
More specifically, we show that the circumscription of a
conjunction of Horn clauses is first-order if and only if
the corresponding program is bounded. Boundedness is a
property of logic programs that has been showed recently
by Gaifman et al. [GMSV87] to be an undecidable prob-
lem. Thus, it is not possible to give a computationally
useful characterization of which universal first-order for-
mulae possess a first-order circumscription. In spite of
these negative consequences, our result suggests that it
may be possible to identify wide subclasses of universal
formulae on which there are algorithms that detect when

circumscription is first-order. In the case of logic programs,
algorithms detecting boundedness on fairly natural collec-
tions of logic programs have been discovered in recent years
by researchers in database theory and logic programming

([1085], [Sa85], [Na86), [NS87], [CGKV8S)).

Logic Programs. Recall that a Horn clause ¢(P) (with
respect to the n-ary predicate P) is an expression of the
form:
VxVz(x(x,z, P) — P(x)),

where x(x, 2, P) is a conjunction of (positive) atomic for-
mulas involving P and other predicate symbols (these lat-
ter symbols are called database relations). Finally, a logic
program ¢(P) is a conjunction

!
/\ VxVz;(xi(x, 2, P) — P(x))
i=1
of Horn clauses.

Suppose that A is a structure (set of values for the
database relations in ¢{P)). The semantics of the pro-
gram ¢(P) on A is the smallest n-ary relation P*° on A
such that A = ¢(P>). The semantics P of the logic
program can be alternatively viewed as the least fixpoint
of a certain operator © on n-ary relations associated with
¢(P). More precisely, notice first that the logic program

I

N\ ¥xVzi(xi(x, i, P) — P(x))

i=1
is equivalent to

I
vx[(\/ 3zixi(x, zi, P)) — P(x)].
i=1

We define now the operator © from n-ary relations to n-ary
relations as follows:

i
G(P) = {a tA l: \/ HZiXi(a) zi:-P)}'
i=1
In other words, © maps a relation P to the set of all those
tuples that satisfy with A some x;. The operator © is
monotone, that is

P C P — ©(P)C O(F),

and hence it has a least fixpoint, which can be easily seen
to be equal to P, The least fixpoint can also be obtained
by the iteration

PO=g, P™H =0(P™),

because P> = | J;-_, P™. Intuitively, P™ is the relation
resulting from at most m successive applications of the
rules of the program, where we start by taking P to be
empty. On finite structures this process converges after
a finite number of steps, i.e for every finite structure A
there is an integer mg such that P = P™> = P™, for all
m > mg.

Example: Consider the logic program ¢(P) which is the
conjunction of the Horn clauses (omitting universal quan-
tifiers)

(B(z,5) — P(a,4)) A (P(z,2) A P(z,1)) = P(2,)).

The associated operator © gives here
O(P) = {(z,y) : (E(z,y) Vv Iz(P(z,2) A P(z,9))}

As a result, on any graph G = (V, E), the relation P™
consists of all pairs (z, y) such that there is a path of length
m or less from z to y. It follows that P is equal to the
transitive closure of E.

Lifschitz [Li85] noticed that the circumscription ¢*(P)
of P in the logic program above asserts that P is the tran-
sitive closure of E, in other words the circumscription of P
coincides with the semantics of the logic program. It turns
out that this is a special case of the following:

Lemma 1. Let ¢(P) be a logic program and let ¢*(P) be
the circumscription of P in ¢(P). Then, for any structure
A and any relation S on A

A [=6*(S) if and only if S = P> [J

A logic program ¢(P) is bounded if there is a positive
integer k such that on any structure A the logic program
converges to its least fixpoint within k steps, i.e. P™ = Pk
on any A. Notice that the logic program defining the tran-
sitive closure TC of E is unbounded Moreover, it is well
known (cf [AU79]) that T'C' is not first-order definable
This is not a coincidence; as a matter of fact, bounded
programs are exactly those programs for which recursion
can be eliminated:

Lemma 2 . A logic program ¢(P) is bounded if and only
if there is a first-order formula 6(x) which defines P. J

The proof of Lemma 2 involves the compactness theorem
of mathematical logic. We now have all the prerequisites
to derive the main result of this section:

Theorem 2. The circumscription ¢*(P) of P in a logic
program #(P) is equivalent to a first-order sentence if and
only if the logic program ¢{P) is bounded.

Proof: Assume first that there is a first-order sentence
#(P) which is equivalent to the circumscription ¢*(P) on
every structure A. It follows from Lemma 1 that (P} im-
plicitly defines P on every stucture, that is for any struc-
ture A and any n-ary relations S and 5’ on A

A= (O(S) AI(S)) — (S =S = P)

The Beth definability theorem (cf [CK73]) implies then
that P is explicitly definable, i.e there is a first-order
formula #(x) defining P> on every structure A We apply
now Lemma 2 to conclude that the logic program ¢(P) is
bounded.

Conversely, if there is an integer k > 1 such that P =
P¥ on every structure, then the circumscription ¢*(P) is
equivalent to the first-order sentence

Vx(P(x) —— ¢*(x)),
where ¢*(x) is a first-order formula defining the k-th stage
Pk of P on every structure. []

The question of when is a logic program bounded has been
studied extensively in database theory The interest in
this property is explained by Lemma 2, which reveals that
bounded programs are exactly those logic programs for
which recursion is not necessary Thus, testing a logic

Kolaitis and Papadimitriou 467

program for boundedness is a useful step in optimizing
the program and obtaining efficient evaluation methods
for it Several researchers, including [lo85], [Sa85], [Na86],
[NS86], developed boundedness algorithms for fairly wide
classes of logic programs. Gaifman, Mairson, Sagiv, and
Vardi [GMSV8T7], however, showed that no such algorithm
exists for the class of all logic programs, by establishing
the following:

Theorem.([GMSV87]) The collection of bounded logic
programs is a complete recursively enumerable set. [

As an immiediate consequence of Theorem 2 and the above
result, we have

Corollary 1. The collection of logic programs having a
first-order circumscription is a complete recursively enu-
merable set. Consequently, it is an undecidable problem
to tell whether or not, given a universal first-order formula,
its circumscription is expiessible in first-order logic. [J

We should mention that Krishnaprasad [Kr88] showed that
it is an undecidable problem to tell whether or not the
circumscription of a first-order formula is expressible in
first-order logic The formulae he constructed, however,
involved function symbols and at least two alternations of
quantifiers

4 Model Checking

Let ¢ be a formula (first or second-order) The model
checking pioblem for is the following computational
question (of obvious interest to AI): Given a finite struc-
ture, does it satisfy ¢¥? It is well-known that the model
checking problem for first-order formulae can be carried
out in logatithmic space (and thus in polynomial time) in
the size of the given finite structuie.

The inherent second-orderness of circumscription has yet
another unpleasant side: in passing from a first-order for-
mula to its circumscription, model-checking may become
intractable Since circumscription is defined in terms of
second-order logic, the complexity of model checking for
¢*(P) cannot surpass polynomial space. In fact, since the
definition of ciicumscription uses only universal second-
order quantifiers, the model checking problem for ¢*(P)
is in coNP ([Fa74]). In the case of a logic program ¢(P),
the model checking for ¢*(P) is actually solvable in poly-
nomial time (this follows from Lemma 1) In contrast to
this, we give an example of a simple first-order formula,
whose circumscription s coNP-complete, and thus most
probably inherently intractable A similar phenomenon
was also observed by Vardi [Va86] in passing from physical
databases to logical databases

Example: We call an undirected graph cubic if all nodes
have degree three (that is, exactly three edges incident
upon each). Obviously, cubicity is a first-order property,
that is, there is a first-order formula x(E) such that «(E)
is satisfied by exactly the cubic graphs G = (V, F). A
circuit of the graph is a closed path without repetitions
of edges Call a circuit long if it contains at least twelve
nodes. Finally, we call a graph simple if it is the disjoint
union of long circuits. That is, simple graphs have all
degrees two, and there are no circuits of length eleven or

468 Knowledge Representation

less In them. It is easy to see that simplicity can also be
expressed by a first order formula o(E).

Let ¢(F) be the formula &(E) V o E). It states the el-
ementary fact that a graph G = (V, E) is either simple
or cubic. Naturally, this is a very easy property to check.
What is the circumscription ¢*(E), however? It proclaims
that G = (V, E) is either cubic or simple, and there is no
proper subset E’ of E such that G’ = (V, E") is also either
cubic or simple. If G is simple, then clearly no proper sub-
graph (here we mean that edges, but no nodes, are deleted)
can be simple. Similarly, if a connected graph is cubic, then
no proper subgraph of it can be cubic However, if a graph
is cubic, it may or may not contain a simple subgraph, and
it is not clear how to tell those that do from those that do
not {short of enumerating all subgraphs, an exponetially
difficult task) Thus, it appears difficult to solve the model
checking problem for ¢*(£) In fact, we shall next show
that the problem is coNP-complete. [

Lemma 2. It is NP-complete to tell whether a cubic con-
nected graph has a simple subgraph (on the same set of
nodes).

Sketch of Proof: The proof is a variant of the reduction
from 3SAT to the Hamilton circuit problem [PS82]. It
turns out that the existence of a simple subgraph of the
graph constructed theire is equivalent to the existence of a
Hamilton.cycle Moreover, the graph can be made cubic
by standard techniques [

Thus, we have established the following:

Theorem 4. There is a first order sentence, whose circum-
scription has a coNP-complete model checking problem. (]

5 Open Problems

There are several open problems motivated from the results
reported here The following is only a partial list:

1 Identify interesting classes of universal formulae
on which either circumscription is first-order definable or
there are efficient algorithis detecting which formulae in
the class possess a first-order circumscription

2. From the results of section 3, it follows that it is an
undecidable problem to determine if the cicumseription of
a given first-order sentence is equivalent to a first-order
sentence on finite structures This problem is, on the face
of it, in Xy (= the second level of the arithmetic hierar-
chy). Is it Ba-complete? Recall that a typical Es-complete
problem is the set of Gédel numbers of non-total recursive
functions '

3 Let C be the collection of all logic programs whose
circumscription is equivalent to a first-order sentence on
finite structures Is C a recursively enumerable set? This
questions is closely related to the problem of whether or not
Lemma 2 holds, when only finite structures aie considered.

4. Assume that ¢(P) is a universal fitst-order sentence.
Is it true that the model checking for the cicumscription
#*(P) is solvable in polynomial time? This is certainly
true when ¢(P) is in addition a logic program Notice also
that the sentence ¢(F) in section 4, whose circumscription
has a coNP-complete model cheking problem, is actually
equivalent to a universal-existential sentence

5. In view of the computational difficulties surrounding
cirumscription, it is natural to raise again the question: is

there a different formalization of common-sense reasoning,
which on the one hand is computationally more tractable
than circumscription, and on the other 1etains most salient
features of it 7

Acknowledgments. We are grateful to Viadimir Lifs-
chitz for several useful comments and suggestions on an
earlier version of this paper. The reseaich of the second
author was partially supported by a NSF grant

6 References

m [AUT9] Aho, A V., Ullman, J D.: Universality of data
retrieval languages Proc. 6th ACM Symposium on

Priciples of Programming Languages, 1979, pp 110-
117.

w [BS85] Bossu, G, Siegel, P.. Saturation, non-
monotonic reasoning and the closed world assump-
tion. Artificial Intelligence 25 (1985), pp. 13-63

n [CGKV88] Cosmadakis, S.S , Gaifman, H , Kanellakis
P.C, Vardi, M.Y : Decidable optimization problems
for database logic programs Proc 20th ACM Sym-
posium on Theory of Compuiing, Chicago, 1988, pp
477-490.

m [CK73] Chang, C C, Keisler, HJ: Model Theory,
Noith-Holland, 1973

m [Da80] Davis, M : The mathematics of non-monotonic
reasoning Artificial Intelligence 13 (1980), pp 73-80

m (EMRS85] Etherington, D , Mercer, R, Reiter, R : On
the adequacy of predicate circumscription for closed-

world reasoning Computational Intelligence 1 (1985),
pp- 11-15

m [Fa74] Fagin, R : Generalized first-order spectra and
polynomial-time recognizable sets. Complezity of
Computations, ed by R Karp, SIAM-AMS Proc 7
(1974), pp 43-74

m [GMSV8T] Gaifman, H, Mairson, H, Sagiv, Y,
Vardi, MY : Undecidable optimization problems for
datahase logic programs Proc 2nd IEEE Symposium
on Logic in Computer Science, 1987, pp 106-115

w [GN87] Genesereth, M., Nilsson, N.J.: Logical Foun-
dations of Artificial Intelligence, Morgan-Kaufman,
1987

m [[085] Ioannides, Y E : A time bound on the materi-
alization of some 1ecursively defined views Proc. 111)

International Conference on Very Large Data Bases,
1985, pp 219-226

w [Kr88] Kiishnaprasad, T : On the computability of
circumscription Information Processing Letters Vol-
ume 27, Number 5 (1988), pp. 237-243

n [Li85] Lifschitz, V.: Computing circumscription Proc.
9th International Joint Conference on Artificial Intel-
ligence 1985, pp 121-127.

w {Li86] Lifschitz, V.: On the satisfiability of circum-
scription Artificial Intelligence 28 (1986), pp. 17-27

m [McC80] McCarthy, J: Circumscription - a foim
of non-monotonic reasoning Artificial Intelligence 13
(1980), pp 27-39

m [McC86} McCarthy, J.: Applications of circumscrip-

tion in formalizing common sense knowledge Artificial
Intelligence 28 (1986), pp 89-116

[Na86] Naughton, J.F : Data independent recursion
in deductive databses Proc. 5th ACM Symposium on
Principles of Database Systems, 1986, pp. 267-279.

[NS87] Naughton, J.F., Sagiv, Y : A decidable class
of bounded recursions. Proc 6th ACM Symposium on
Principles of Database Systems, 1987, pp. 227-236.
[PS82] Papadimitriou, C.H., Steiglitz, X : Combina-
torial Oplimization, Prentice-Hall, 1982.

[Sa85] Sagiv, Y.: On computing restricted projections
of representative instances.Proc. 4ith ACM Sympo-
sium on Principles of Database Systems, 1985, pp.
171-180.

[Sc86] Schlipf, J S.: How uncomputable is general cir-
cumscription Proc. 1st IEEE Conference on Logic in
Computer Science, 1986, pp 92-95.

[Va86] Vardi, M.Y.: Quering Logical Databases J
Computer and System Sciences 33, No. 2 (1986), pp.
142-160

[Va88] Vardi, MY : Decidability and undecid-
ability results for boundedness of linear iecuisive
queries: Proc. 7Tth ACM Symposium on Principles of
Database Systems, 1988

Kolaitis and Papadimitriou 469

