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Abstract 

. A fundamental problem in knowledge representa- 

tion is how to revise knowledge when new, con- 
tradictory information is obtained. This paper 

formulates some desirable principles of knowl- 
edge revision, and investigates a new theory of 
knowledge revision that realizes these principles. 

This theory of revision can be explained at the 
knowledge level, in purely model-theoretic terms. 
A syntactic characterization of the proposed ap- 
proach is also presented. We illustrate its ap- 
plication through examples and compare it with 
several other approaches. 

1 Introduction 

At the core of very many AI applications built in the past 
decade is a knowledge base - a system that maintains 
knowledge about the domain of interest. Knowledge bases 
need to be revised when new information is obtained. In 
many instances, this revision contradicts previous knowl- 
edge, so some previous beliefs must be abandoned in order 
to maintain consistency. As argued in [Ginsberg, 19861, 
such situations arise in diverse areas such as diagnosis, de- 

sign, database updates, planning, and natural language 
understanding. In this paper, we investigate a new theory 
of knowledge revision. 

In [Levesque, 1984a], Levesque presents formal founda- 
tions of a functional approach to knowledge representation, 
where knowledge bases (KBs) are characterized in terms 
of what they can be asked or told about some domain: 

Tell : KB x C + KB 

Ask: KB x C -+ {yes, no, unbnozon) 

where L is some language to talk about the domain. Since 
Tell can be used to tell only information which is con- 
sistent with the knowledge base, it is not the appropriate 

operation for knowledge revision [Levesque, 1984a, page 
1821. For this purpose, we add an additional operation: 

Revise : KB x L -+ KB 

Levesque argues that one should define the operations on 
a KB at the knowledge level [Newell, 19811, independently 
of the particular symbols/sentences used to build up the 
KB. In this spirit, we define revision purely in terms of the 
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models of the KB. We also give an equivalent symbol level 
description by presenting a syntactic method for revising 
knowledge bases. 

We show the relation of our work to research in Philos- 
ophy on the formal aspects of the logic of theory change 
[Makinson, 19851 which has recently attracted attention in 
the AI community. For any revision scheme, it is desirable 
that it preserve as much as possible the beliefs held prior 

to revision. We provide one possible formalization of the 
notion of knowledge retained by a revision scheme. We also 
briefly discuss some applications of revision. 

2 Principles of Knowledge 
Revision 

For the purpose of this paper, we abstractly represent the 
knowledge in a knowledge base by a finite set of formulae 
in a propositional logic language L; this set describes the 
possible states of the world - its models. The revision is 
presented as a formula in t, 

Let $ o p denote the revised knowledge obtained by re- 
vising the old knowledge + by the new information ~1, i.e., 

+ o p = Revise($, cl). The problem of knowledge revision 
is: given 4 and ~1, define + o ~1. 

In [Dalal, 19881 we motivate certain principles that 
should be followed when characterizing the revised knowl- 
edge $ o p. These are: 

1. Adequacy of Representation: The revised knowledge 
should have the same representataon as the old knowledge. 
Especially in a functional view of knowledge bases, this is 
essential since the same operations need to be performed 
on both. By defining the range of Revise as KB, ti o D is 
implicitly required to satisfy this principle. _ . 

2. Irrelevance of Syntax: The revised knowledge base 
should not depend on the syntax (or representation) of 
either the old knowledge or the new information. Thus, 
if $ is logically equivalent to (a) 4’ and p M p’, then 
4 o b M 4’ o p’. This is essential in order to provide a 

model-theoretic semantics of the revision process. In view 
of this, we omit the distinction between a set of formulae 
(with an implicit conjunction) and a single formula, since 
one can be expressed in terms of the other such that the 

two are logically equivalent. 

3. Maintenance of Consistency: If $ and p are both con- 
sistent, than so is 4 o P. If not for this, Revise and Tell 
could be identical. 

4. Primacy of New Information: The revised knowledge 
of the system should conform to the new information. 
Thus, $ o p b p. This implies a complete reliance on 
the truth of the new information. 
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5. Persistence of Prior Knowledge: As much old knowl- Note that $ b G($) and that G($) is consistent iff 4 
edge as passable should be retaaned an the revised knowledge. is consistent. g can be read as a generalization operator 

Thus $ o ~1 should be obtained by some form of minimal which takes a set of interpretations and generalizes them 
change in +. Note that there may be multiple notions to a larger set. G is also a generalization operator which 

of “minimality” , but that if $ U (p) is consistent then can be thought of as taking a formula or a set of formulae 

+V=MuU. and returning a subset of its logical closure. 

6. Fairness: If there are many candidates for the re- 
vised KB that satisfy the above principles then one of them 
should not be arbitrarily chosen. Arbitrariness is clearly 
undesirable; yet we wish to avoid non-reproducibility 

(hence non-determinism), and by the specification of Re- 
vise, we can rely only on the contents of the KB to choose. 
One possible solution is to define the revised KB as the 
“intersection” of all these candidates. Note that this in- 
volves compromising the principle of persistence of prior 
knowledge only to the extent of reflecting this ambiguity. 

Now we have a way to systematically characterize 
changes in models. We also have a quantitative measure 
of this change: $(A) is a smaller change in A than gj (sl> 
iff i < j. The definition of g’(A) 

if i = 0, (2) gi-l(g(&)) 

is the obvious one: (1) A 

o th erwise. If 4 is inconsistent with 
~1, we change the models of + by applying the operator g. 
If we obtain at least one interpretation that makes p true 
then we are done: we can define $ o ~1 to be G(4) u {p). 
If not, we apply g again and keep on this way. 

Note that we do not claim that the above principles are 
the best for every application. We only make explicit cer- 
tain principles to characterize the intuitive notion of knowl- 
edge base revision. 

Let k be the least value of i for which p holds in some 
interpretation in the set gi(mod($)). It is clear that this 
is also the least value of i for which the set of formulae 
Gi($) U (p) is consistent. 

Definition: $ o p = G”(+) U (p), where k is the least 
value of i for which Gi($) U {p) is consistent. 

3 Semantics of Revision 
Let A be the set of atoms of the underlying language t. 
An interpretation A is a truth assignment to the atoms 
in A. An interpretation A is a model of a formula ~4 if + 
evaluates to true in A. A is a model of a set of formulae 
if it is a model of every formula in the set. Let mod($) 
denote the set of all models of +, where $ could be a single 
formula or a set of formulae. 

Consider the knowledge base Revise($, p). The possible 
states of the world consistent with + are the models of 
$, i.e., mod($). If p is inconsistent with $, p does not 
hold in any of them. We can make changes in the models 
of 4 such that ~1 holds in (some or all of) these changed 
interpretations. What type of changes can we make? How 
do we quantify these changes so that we can formalize the 
notion of minimal change? We answer these questions in 
this section. 

Consider changes first. The smallest change in an inter- 
pretation is a change in the truth value of a single atom. 
Since we do not wish to lje biased in favor of any single 

atom, all changes in truth values of all possible single atoms 
will be our smallest unit of change in an interpretation. 

Definition: If 20 is an interpretation over a set of atoms 

A, then define 

9(w) = (w’ 1 w’ and w differ in the truth-value 

of at most one atom in A) 

At first sight it might appear that we are doing an 
overkill by generalizing $ with respect to all the ground 
atoms in it, since the cause of inconsistency might be lo- 

cated in only a few of them. In [Dalal, 19881 we show that 
revised knowledge is the same (modulo logical equivalence) 
even if II, is generalized with respect to only the conflicting 
atoms. Thus, if it is easier to find the set of conflicting 
atoms, then it would be advantageous to generalize + with 
respect to the conflicting atoms only. 

Example: Let $ = ( a, lb) and p = b. Then mod($) = 

({m mod(p) = {{a, b), {b)). Since $ u (p) is in- 
consistent, we generalize +: 

~d(G($)) = d~d(lcI)) = (A @3> (a, b33 
Since G($) is consistent with ~1, k = 1. Thus 

Revise($, /.4) is GM U b3, whose only model is {a, b). 
Since we are not interested in exact syntactic representa- 
tion of a formula, $ o p can be expressed as any set of 
formulae, whose only model is (a, b). 

4 Syntactic Characterization of 
Revision 

We present a technique to compute G($) by syntactic 
transformation of $, without using models of + or invoking 
any model-theoretic constructions. Since $0~ is defined in 
terms of G we would effectively have a syntactic transfor- 
mation technique to compute +op. For the purpose of this 
section, we represent a set of formulae by a conjunction of 
all the formulae in the set. We use the following lemma 
and definition from JWeber, 19871: 

Note that w E g(w). We can extend the definition of g 
to sets and formulae: 

Definition: If A is a set of interpretations, define 

SW = u 9(w) 
WU 

Lemma: Let $ be a formula a6d cy be an atom. There 
exists formulae $2 and +& such that (1) $2 and $; do 
not contain a, and (2) $ a (a A $2) V (la A $a). 

If $ is a formula or a set of formulae then G($) is defined 
in terms of its models as1 

mod(W)) = g(mod(?ct)) 

We replace each ar in $ by true (or false) to obtain $2 
(or +;). The resulting expressions can be simplified by 
evaluating subexpressions consisting of false’s or true’s, 
until all of these constants are eliminated. 

‘Note that while g is a function on interpretation(s), G is a 
function on a formula Or a set of formulae. an 

2We restrict the set of atoms to A($ U p), and we represent 
interpretation by the set of atoms which are assigned true. 
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Definition: Let +, cy, $2 and $; be as above; then 

zesa ($) = $J,+v+, 

is called the Teeolvent of + with respect to ar. 
Theoremz: Let ~6 be a formula and {cY~, . . . , a+) be the 

set of atoms occurring in +, then 

The following theorem gives a more direct way to de- 
termine whether one revision scheme retains more old- 
knowledge than the other. 

Theorem: o retains more old-knowledge than o’ iff for 

every + and ~1, $ o ~1 b $ 0’ p, while for some $ and p, 

$O’c1 k7/,0& 

WI = ream, (4) V . . . V zeBa,($) 

Thus we have a method to compute G(+) given any for- 
mula y3. This method can be used to compute the revised 
knowledge $ oh following the definition in the last section. 
A caveat in this characterization is that it requires checks 
of logical consistency in order to establish the minimum Je 

for which G”($) needs to be computed. This problem is 
in general NP-Complete for propositional logic. One such 
check is required for every step of generalization. 

Example(continued): Consider the example of the last 
section. It is convenient to express $ as a A lb. $ and ~1 
conflict in the truth-value of the atom b. Thus, we need to 

resolve $ with only b: 

(3% = false (IQ; = a 

Tess($) = (+)if V (7% = a 

Thus, $0~ = G($)u(~) = a/\b 

5 Retained Knowledge 

Let o be any revision scheme. The revised knowledge $0~ 
is expected to represent the composition of the old knowl- 
edge $ and the new information ~1. In this section we will 
formalize the notion of how much knowledge represented 
by + and ~1 is retained in ~6 o ~1. 

Definition: For formulae $ and ~1 and a revision scheme 
o , if there exist formulae u+, blc and b+Op such that $ + 

a;l,cl l= Q~, and 

then u+ is old-knowledge retainedby o, crP is new-knowledge 
retainedby o, and u+or is extra-knowledge added by O. 

Theorem: If o is a revision scheme then for every -+ and 
p the following statements are equivalent: 

2. there exists o+ such that $ b u+ and + 0~ M u+ Ap. 

Since Principles 4 and 5 (section 2) entail condition 
1, this theorem demonstrates that any acceptable revi- 
sion scheme retains complete new-knowledge and adds no 
extra-knowledge. Such schemes differ only in the amount 
of old-knowledge retained. A scheme that retains maxi- 
mum old-knowledge is more desirable. 

Definition: Let o and o’ be any two revision schemes that 
retain complete new knowledge and add no extra knowl- 
edge. o is said to retain at least as much knowledge as o’, 
i.e., o’ 5 o, if for all + and p there exists a+ and u$, such 

that 

?U=U$;+l=U$ 

and c+ b$,. o is said to retain more knowledge than o’ 

iff o’ -( o and o $ 0’. 

6 Related Work and Applications 

6.1 A Logic of Theory Change 

[Makinson, 19851 provides an excellent survey on the work 
by GGrdenfors, Alchourron and Makinson (GAM) on the 
formal aspects of a logic of theory change. A theory is de- 
fined as a set of propositions (formulae) closed under log- 
ical consequence, i.e., A is a theory iff Cn(A) = A, where 
Cn is a consequence operation. Three operations are de- 
fined on a set of propositions A - expansion, where a new 
proposition 1: is set-theoretically added to A; contraction 

(A - z), where a proposition z which is in the theory 

Cn(A) is rejected; and revision (A $ z), where a propo- 
sition 3c inconsistent with the theory Cn(A) is added to 
it under the requirement that the revised theory be con- 
sistent. This operation of revision is very similar to the 

notion of revision introduced in this paper. 

Giirdenfors developed some general postulates that seem 
desirable for contraction and revision. His postulates for 
revision can be expressed as: 

(Gl) A $3: is always a theory; 

(G2) 5~ E A j- 8; 

(G3) If 1~ $! Cn(A) th en A $ z = Cn(A U {z)); 

(G4) If 1~ @ Cn(4) then A $ a: is consistent; 

(G5) If C%(z) = Cn(y) then A $ z = A $ y; 

(G6) A $ (z A y) 5 Cn( (A $ z) U {y)) for any theory A; 

(G7) Cn( (A $ z) U (y)) E A 4 (z A y) for any theory A, 

provided that ly $ A $ z. 

For a theory A, contraction is then defined using the iden- 

tity: A I ;I: = (A $ la) n A, and conversely (for any set 

of propositions A) : A $ z = Cn( (A L 12) U {z}). 
How does our approach compare with that of GAM? 
A superficial difference between the approach of GAM 

and the one presented here is that theirs is defined in terms 
of the set of formulas expressing the KB. If the KB is 
taken however to be the logical closure of these formulas (as 
suggested by a knowledge-level approach) this difference 
disappears. In fact, in the expanded version of this paper 

we characterize the revision schemes $ satisfying Gl-G7 
in model-theoretic terms. On the other hand, the GAM 
approach is more general since it applies to any logic for 
which a notion of logical closure Cn is defined, while ours 

currently applies to only standard propositional logic. 

We do however have 
Theorem: The revision scheme o satisfies the Giirdenfors 

postulates Gl-G7. 

It is obvious that o satisfies axioms Gl-G5, and simple 
model-theoretic arguments establish conditions G6-G74. 

4There is also a proof involving the notion of “partial 
function” introduced in [Alchourron et al., 19851. 

meet 
Wnless otherwise mentioned, proofs appear in [Dalal, 19881. 
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There are of course many other revision schemes that sat- 

isfy these conditions, including defining A 4 z to be just 
C%(z) when&%er +I* E Cm(A); and Cn(AU{z)) otherwise. 
Our scheme is more conservative than at least some of 

of Ginsberg’s definition to the work of AGM, and hence 
further relate it to our own definition of o. 

6.3 Diagnosis from First Principles 
those satisfying Gl-G7: it preserves more old-knowledge Assume one is first given a description of some system (say, 
than the previous admittedly trivial revision, as will be a physical device) and then an observation of the system’s 
shown in the example of section 6.4. behavior. If the two are inconsistent then one is confronted 

Secondly, not all-revision schemes satisfying axioms Gl- 

G7 satisfy our postulate of fairness: One form of fair- 

ness would be to require that the result of 4 not depend 
on the accidents of naming propositions; i.e., if f is an 

isomorphism on A, then we would expect f(A 4 z) = 

f(A) i f(s). E ven some of the revisions considered in 
[Makinson, 19851 are unfair in this sense: they pick ar- 
bitrary maximally consistent subsets of A which do not 
contain x. 

Finally, GAM do not suggest any algorithm to imple- 
ment their constructions, although they do have a the- 
orem characterizing the acceptable revisions in terms of 
maximally consistent subsets of A which do not entail x. 
Such a definition would seem to be much more difficult to 
implement than that presented in Section 4; but then o 
requires tests of consistency, so we cannot make any great 
claims to efficiency. 

Observe also that the definition of o shows that, contrary 
to the intuitions voiced in [Makinson, 19851, contraction is 
not necessarily more primitive/basic than revision: defin- 
ing o does not involve contraction5. 

6.2 Counterfactuals 

A counterfactual is a statement like “if p, then Q”, where 
the premise p is either known or expected to be false. It is 
represented as p > q and is defined to be true in a world6 iff 
q is true in every most similar (possible) worldin which the 
premise p holds. In an excellent paper [Ginsberg, 19861, 
Ginsberg presents a formal description of counterfactual 
implication and discusses the issues involved in implement- 
ing it. 

In our framework, p > q in a world $ is defined to be 
true iff “$0~ + q”. There is only one most similar possible 
world - 70 o p. 

Given a world F, [Ginsberg, 19861 defines a partial order 
among the subsets of F based on set inclusion. The set of 
possible worlds for p in F is defined to be: 

with a diagnostic problem, namely, to determine those sys- 
tem components whose abnormal behavior can account for 
this discrepancy. 

Suppose y$ is the system’s description, where there are 
propositions asserting the normality of all components; and 
suppose /.L is an observation that is inconsistent with $J. By 
protecting all but the normality propositions, it is possible 
to view 4 o ~1 as representing the revised description of the 
system7. This revised description will implicitly contain 
information about all abnormal components - the ones for 
which normality propositions do not hold. 

In [Reiter, 19871, Reiter proposes a theory of diagnosis 
from first principles (references to other work on diagno- 
sis can be found in Reiter’s paper) which starts form the 
same initial $ and /.L. He then suggests an algorithm which 
produces the set of abnormal components explicitly. Space 
limitations only permit us to state that our scheme would 
find only those diagnoses which involve the least number of 
abnormal components: thus if one diagnosis blamed com- 
ponent b, and the other components c,d and e, then using 
o only the former would be reported, while [Reiter, 19871 
would report both. 

6.4 Updates in Logical Databases 

A database can be considered as a set of formulae which 
models our knowledge about the real world. One can add 
new information to the database and query it about its 
current knowledge. Given new information, the update 
problem is to define and compute the revised state of the 
database. Notable approaches to solving this problem have 
been suggested by Fagin, Ullman and Vardi [Fagin et al., 
19831, Borgida [Borgida, 19851, Winslett [Winslett, 19861 
and Weber [Weber, 19871. We suggest that the update 
should be considered as the revision operator o. 

Example: Let $ = (aAb) and p= lavlb. Since @u(p) 
is inconsistent, we generalize $ with respect to both a and 

b. 

W) = res,($) V Tesb($) =’ a V b 

W(P, F) = {T E F 1 T &t -7p, d?(T) and 

V’v, T C U E F * U k -p or B(U)) 

The predicate B is called the badwodd predicate. Its 
purpose is to rule out certain worlds, say, which are com- 
pletely meaningless. p > q is defined to be true in a world 
F iff for every !I’ E W(p, F), T U (p) k q. 

Because of certain examples involving counterfactual 
statements, Ginsberg opts for a definition of p > q which 
depends on the syntactic form of p and q. As such, his def- 
inition clearly differs from our semantic definition. In the 
full version of this paper, we plan to show the relationship 

bGk(t,h) is not T) _l p ! 
6A world is a set of propositions, which are not necessarily 

atomic. 

Since G(*) is consistent with p, we are done: the revised 
knowledge is G($) U (‘3 M ((a/\yb)V(-xzAb)). Given the 
model-theoretic nature of our revision mechanism, the re- 
sult of the update will be the same whether the knowledge 
base is presented as above, or as {a, b) or even {a, b, UA b). 

In contrast, all four of [Fagin et aZ., 19831, [Winslett, 
19861, [Ginsberg, 19861 and [Weber, 19871 obtain (-xzVlb) 
as the revised database. They are thus less “conservative”, 
losing all the knowledge in the hypotheses set $. Moreover, 
[Ginsberg, 19861 and [Fagin et al., 19831 would report a dif- 
ferent answer (the one produced by our mechanism) if the 
database was presented as (a, b), but not as (u A b) ! It 
seems counter-intuitive that updates should produce differ- 
ent results even in such relatively minor variations in the 

‘A protected formula must hold even after the revision. It 
is Iike an integrity constraint in a database. 

478 Knowledge Representation 



syntax of the database - even the limited logic of explicit 

beliefs in [Levesque, 1984b] considers these formulations 

equivalent! 
In a more complete version of this paper, we relate the 

other update schemes to the Gijcrdenfors postulates. In 
[Dalal, 19881 we show that o preserves more old knowledge 

than them. 

7 Conclusions 
The major contribution of this paper is a semantic def- 
inition of revision in propositional knowledge bases, pro- 
viding a new point in the spectrum of approaches to this 
old-standing problem. This definition is founded on a num- 
ber of a priori principles (especially minimality of change 
and fairness) and is also given a syntactic characterization. 
The application of the approach in several domains is also 
discussed. The notion of old-knowledge retained is formal- 
ized, and the approach defined in this paper is shown to 
retain more old-knowledge then some previous proposals. 

In addition to the results mentioned earlier, we also pro- 
pose to investigate the extension of this work in several 

directions: 
- Establish further criteria for fairness and preservation 

of old knowledge, and evaluate all the proposals against 
these. 

- Extend the language of revisions to first order logic 
and epistemic languages like Levesque’s FOPC. 

- Extend the notion of KB to allow differential treat- 
ment of certain atoms, or even formulas (e.g., integrity 
constraints in a data base), so that some beliefs are more 

easily given up. This of course relaxes the principle of 
fairness. 
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