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Abstract 

This paper shows that classical logic is inappro- 
priate for hypothetical reasoning and develops an 
alternative logic for this purpose. The paper fo- 
cuses on a form of hypothetical reasoning which 
appears computationally tractable. Specifically, 
Horn-clause logic is augmented with rules, called 
embedded implications, which can hypothetically 
add atomic formulas to a rulebase. By intro- 
ducing the notion of ruZebuse independence, it is 
shown that these rules can express hypothetical 
queries which classical logic cannot. By adopting 
methods from modal logic, these rules are then 
shown to be intuitionistic. In particular, they 
form a subset of intuitionistic logic having se- 
mantic properties similar to those of Horn-clause 
logic. 

1 Introduction 
Several researchers in the logic-programming community 
have pointed out the utility of augmenting Prolog with the 
ability to hypothetically add facts to a rulebase. Miller, for 
instance, has shown how such rules can structure the run- 
time environment of a logic program [Miller, 19861. Warren 
and Manchanda have also proposed such logics for reason- 
ing about database updates [Warren, 1984; Manchanda, 
19881. The legal domain, in particular, has inspired much 
work into this kind of hypothetical reasoning. Gabbay, for 
example, has reported a need to augment Prolog with hy- 
pothetical rules in order to encode the British Nationality 
Act. The act contains rules such as, “You are eligible for 
citizenship if your father would be eligible if he were still 
alive” [Gabbay and Reyle, 19841. Also, McCarty has de- 
veloped a wide class of hypothetical rules for the purpose 
of constructing computer-based legal consultation systems, 
especially systems for reasoning about contract law and 
corporate tax law [McCarty, 1988a; McCarty, 19811. 

Although hypothetical reasoning is in general com- 
plex [Ginsberg, 19861, these systems focus on a form 
of hypothetical reasoning which appears computationally 
tractable. In particular, they augment Horn-clause logic 
with rules called embedded implications. These are rules 
of the form A t (B + C), which means, “A is true if 
adding C to the rulebase causes B to be true.” 

The formal properties of embedded implications are still 
being explored. Gabbay, for instance, has shown that hy- 
pothetical embedded-implications have an intuitionistic se- 
mantics [Gabbay, 19851, and Miller has developed an intu- 
itionistic fixpoint semantics for the predicate case [Miller, 

19861. McCarty has extended this work to a larger class 
of formulas and established interesting semantic results 
[McCarty, 1988a]. Bonner has shown that query process- 
ing in such systems is PSPACE-complete in the function- 
free predicate case (EXPTIME-complete when hypotheti- 
cal deletions are allowed) [Bonner, 1988a]. 

This paper continues this line of theoretical research in 
two ways. First, it formulates a precise sense in which clas- 
sical logic is incapable of expressing hypothetical queries 
and rules. Specifically, queries are required to be rulebase 
independent; that is, a query should not have to be refor- 
mulated if the rulebase changes. An example is then given 
of a simple, hypothetical query which cannot be expressed 
in classical logic in a rulebase-independent way. 

Second, this paper presents a new development of the 
intuitionistic semantics of embedded-implications. In par- 
ticular, instead of developing fixpoint semantics, we ap- 
ply techniques of modal logic to construct a canonical 
model. This provides a new perspective, and hopefully 
new insight, into the intuitionistic basis of hypothetical 
reasoning. It is shown, in particular, that hypothetical 
embedded-implications are a subset of intuitionistic logic 
with semantic properties similar to those of Horn clauses. 
Indeed, classical Horn-clauses are a special case of intu- 
itionistic embedded-implications both proof-theoretically 
and semantically. 

This paper is an overview of [Bonner, 1988b], to which 
the interested reader is referred for details and proofs. 

2 Examples 
This section gives examples of hypothetical queries and 
rules. They focus on a rulebase representing the policy 
and regulations of a university. For instance, the atomic 
formula tahe(s, c) means that student s has taken course 
c, and g&(s) means that s is eligible for graduation. The 
rulebase contains facts such as take(tony, cs250), and rules 
such as 

grad(s) + take(s, cs250), take(s, I&101) 

The notation R I- II, means that query + is true when 
applied to rulebase R. For example, consider the query, 
“Retrieve those students who could graduate if they took 
(at most) one more course.” This query can be formalized 
at the meta-level as follows: 1 “Retrieve those B such that 

3c [R U (take(s, c)) I- gvad(s)] (1) 
In our logic of hypotheticals, this query is represented by 
the expression 3c [gsad(s) +- take(s, c)]. This is an object- 

‘See [Kowalski, 19791 f or a description of meta-level and 
object-level reasoning. 
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level expression $(8) such that R t- $( 8) iff condition (1) 
is satisfied. 

Having introduced hypothetical queries, we can also use 
them in the premises of rules. Such rules turn our query 
language into a logic for building rulebases. For example, 
suppose the university wishes to enact the following rule: 

“If a student is within one course of graduation, 
and he is not eligible for primary aid, then he is 
eligible for secondary aid.,, 

This hypothetical 
ing two rules:2 

rule can be represented by the follow- 

&-z%(8) t N aidl(s), gradl(8). 
gtUdl(8) t 3C [g7’Ud(8, C) + tUkf?(8, C)] 

Here, uidl(s) and &d%(8) mean that student B is eligible 
for primary and secondary aid, resp. gpudl(e) means that 
8 is within one course of graduation. 

3 Expressibility 
This section defines a new notion of expressibility which 
applies to rulebase systems. It centers on the idea that 
queries should be independent of the rulebase. Using this 
definition, a hypothetical query is constructed which can- 
not be expressed in classical logic. 

3.1 Rulebase Independence 

The term “rulebase query” is a generalization of “database 
query” and refers to a question that is posed to a system 
containing a large number of rules as well as facts. In gen- 
eral, there are two aspects to such a query: (i) a question 
that the user has in mind, and (ii) an expression which he 
constructs to represent it. “Query formulation” is the task 
of constructing this expression. 

This section argues that query formulation should be 
independent of the rulebase. In particular, 

l A user should be able to construct an expression to 
represent a query without a detailed knowledge the 
rulebase. 

o If the rulebase is updated, the expression 
a query should not have to change. 

representing 

Similar constraints exist in database systems; e.g., a 
user should be able to formulate a database query without 
knowing the contents of the database. 

Rulebase independence is important for a variety of fez+ 
sons. Firstly, it permits casual use of the rulebase. That 
is, one does not have to be an expert in the contents of 
the rulebase in order to formulate queries. Secondly, it 
increases reliability. If a user’s knowledge of the rulebase 
is inaccurate, then his queries may be formulated incor- 
rectly. Thirdly, it makes changes less expensive. If queries 
are not rulebase independent, then changes in the rule- 
base can propagate throughout the user community. For 
example, utility programs which query the rulebase and li- 
braries of commonly used queries would have to be updated 
whenever the rulebase is changed. Finally, the notion of 
rulebase independence is important not only to the formu- 
lation of queries but also to the construction of rulebases. 

Indeed, the premise of a rule is nothing more than a rule- 
base query itself. Thus, keeping rule premises independent 
of the rest of the rulebase has all of the advantages just 
listed for queries: it makes them easier to formulate and 
more reliable, and it prevents small changes from propa- 
gating throughout the rulebase. 

Rulebase independence is captured in the following def- 
inition: 

A rulebase query is expressible in a language if 
and only if it is possible to construct a single ex- 
pression $ which returns the correct answer for 
all rulebases R. 

3.2 Classical Logic 

Because of the properties of material implication, classi- 
cal logic cannot represent some hypothetical queries in 
a rulebase-independent way. For example, consider the 
query: “If one of B1 or Bs were added to the rulebase, 
would C become true?” To represent this query, we need 
an expression + such that for all rulebases R, 

R+$ ij6r RU(Bl)kC or Ru(Bz)+C 

The obvious candidate for $ is the expression 
(C c B1) V (C t B2). Indeed, in intuitionistic logic, this 
expression does represent the query in a rulebase indepen- 
dent way. In classical logic, however, material implication 
leads to the following equivalence: 

$ z (Ct B1)v(C+ B2) 
f (C v N B1) V (C v N B2) 
E Cv-Blv-B2 
E CtB1, B2 

Hence, R j= ~6 iff RU(B,, B2) b C, by the deduction 
theorem. Classically, then, $ does not represent the above 
query. Is there is some other expression which does? The 
following theorem (proven in [Bonner, 1988b]) assures us 
that there is not. 

Theorem 1 Classically, there is no expression -qS szsch 
that for any set R of propositional Horn cIawesj3 

R+$ $7 RU(B1) /=C or Ru(B~)~C 

These ideas extend to the construction of rulebases. In 
particular, suppose that R is a rulebase not containing the 
atom A, and suppose we wish to add new rules R, to R so 
that for all R, 

RUR,l-A iff Ru(BI)I-C OT RU{B2)l-C 

Classically, there is no set of formulas R, (Horn or oth- 
erwise) which satisfies this condition. For if R, existed, 
then we could contradict theorem 1 using $ = A t R,. 
As the next section shows, however, R, can be constructed 
using hypothetical embedded-implications. In particular, 

R* = {A t (C t B1), A t- (C +- B2)) 

3This theorem remains true if R is restricted to Horn clauses 
built from a given set L of atoms. 2The fist rule uses negation-by-failure [Kowalski, 19791. 
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4 Hypothetical Inference 

Because classical logic is inadequate for hypothetical infer- 
ence, new inference mechanisms are needed, i.e., proof pro- 
cedures for embedded implications. Such procedures have 
been developed by several researchers [Gabbay and Reyle, 
1984; Miller, 1986; McCarty, 1988b], and this section de- 
fines a simplified version of them. This propositional ver- 
sion retains the essential properties of the more elaborate 
systems while admitting a clean theoretical analysis. 

Definition 1 A Horn rule is an expression of the form 
B +- B1, Bx, . . . . Bk where h 2 0 and B and each Bi are 
atomic. 

Definition 2 An embedded implication is an expression of 
the .form B t (61,662, . . . . +k where h 2 0 and each & is 
a Horn rule. 

Note that Horn rules include atomic formulas as a special 
case, and embedded implications include Horn rules as a 
special case. 

Definition 3 Suppose R is a set of embedded implications. 
If B and Bi are atomic, then 

1.Rl-B if BER 

2. RF B if B e&,...,d~ is a rule in R and 
R t- & for each i. 

3. R k B c B1, . . . . Bk if RU(&,...,Bk) k B 

If R is a set of Horn rules, then this inference system 
is equivalent to classical Horn-clause logic. However, if 
R contains arbitrary embedded implications, then these 
inference rules do not have a classical semantics. That is, 
although they are clearly sound with respect to classical 
logic, they are not complete. To see this, consider the 
rulebase (A + (B t C), D t A, D t C). Classically, 
D can be inferred from these three rules4, but it is a simple 
exercise to see that D cannot be inferred using the above 
inference rules.5 

5 Intuitionistic Logic 

The rules of hypothetical inference defined above are non 
classical. Indeed, they were introduced precisely to over- 
come the shortcomings of classical logic described in sec- 
tion 3.2. The question thus arises as to the nature of their 
semantics. In fact, they form a subset of intuitionistic 
logic. This section provides a brief development of intu- 
itionistic logic adapted from [Fitting, 19691 and [McCarty, 
1988a]. 

Definition 4 Suppose L is a finite or countably infinite 
set of propositional atoms. A substate is a subset of L, and 
an intuitionistic structure is a set of substates. Further- 
more, if s1 and sx are subatates, then 81 5 82 iff 81 E 82. 

Note that an intuitionistic structure is really a Kripke 
structure (A&‘, R, x), where M is the set of substates, the 
access relation R is the subset relation, and the truth- 
assignment function ?r is given by 

4To see this, note that the two Horn rules are equivalent to 
D t (A V C), and the embedded implication is equivalent to 
(AvC)/\(Av-B). 

‘because there are no rules for inferring B or C. 

x(A) = (s 1 8 E M and A E s) 

Since R and ?r are trivial, we do not make them explicit. 

Definition 6 (Satisfaction) Suppose + is a formula, M is 
an intuitionistic structure, and s is a substate of M. Then 
s, M b y5 is read, “M satisfies 7c, at 8,” and is defined 
recursively as follows: 

0 IfAisatomic,thene,Mj=A ij6r AE~ 

0 s,M kW% i8 s,M k$l and s,M j=& 

e s,M j= $1 Wx i.i7 *, M I= $1 or s, M I= $2 

a 8, M j= - $ ifi T, M &t $ for all r 1 s in M 

e s,M l=$24-1h # Of k $1 * Qf I=& 
for all T 2 s in M 

Note that unlike classical logic, intuitionistic implica- 
tion is not defined in terms of disjunction and negation. 
Rather, it has an independent semantic definition. This is 
why intuitionistic logic does not give rise to the problems 
mentioned in section 3.2. 

Definition 6 (Models) M I=: + ifi 8, M b $ for all 
substates s of M. In this case we say, “M satisfies $,” or 
“M is a model of $ “. 

Definition 7 (Entailment) Suppose $1 and $x are for- 
mulas. Then +I + $2 in every model of $1 is also a 
model of $2. 

6 Semantics 

Several researchers have developed fixpoint semantics for 
inference rules like those of section 4. Miller, for instance, 
has developed fixpoints semantics for such rules based on 
intuitionistic and minimal logic [Miller, 19861. McCarty 
has considered a larger class of formulas involving negation 
and embedded universal quantifier#, developing an intu- 
itionistic fixpoint semantics and establishing interesting 
semantic results [McCarty, 1988a]. Recently, Manchanda 
has considered hypothetical deletions as well as additions, 
developing a fixpoint semantics based on dynamic logic 
[Manchanda, 19881. Indeed, the use of fixpoint semantics 
to establish completeness results has been common in logic 
programming since the seminal work of [Apt and Van Em- 
den, 19821 and [Van Emden and Kowalski, 19’761. 

This section presents an alternative development based 
on completeness techniques used in modal logic. The aim 
is to add a new perspective, and hopefully gain new in- 
sight into the intuitionistic basis of hypothetical reasoning. 
To this end, we introduce an intuitionistic structure called 
the canonical Kripke model. This structure, defined proof- 
theoretically, provides the necessary link between inference 
and semantics. It also plays a central semantic role, anal- 
ogous to that of the unique minimal model in Horn-clause 
logic. 

Finally, we compare the intuitionistic semantics of em- 
bedded implications to the classical semantics of Horn 
clauses, outlining the close relationship that exists between 
them. In particular, some well-known properties of Horn 
clauses are shown to be a special case of properties of the 
canonical Kripke model. 

6A quantifier is embedded if it appears in the premise of a 

rule, 8s in 44 +- Var P(z, 34 +- C(z, ~11 
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6.1 Soundness and Completeness 

To show that the hypothetical inference rules of section 
4 are intuitionistic, one must prove that they are sound 
and complete with respect to intuitionistic semantics. In 
particular, one must prove the following two theorems: 

Theorem 2 (Soundness) If R is a set of embedded impli- 
cations and q5 is a Horn rule, then if R I- 4 then R b q5. 

Theorem 3 (Completeness) If R i8 a set of embedded 
implications and 4 is a Horn rule, then if R k 4 
then RI- 4. 

Soundness is straightforward and follows from modus 
ponens and the deduction theorem. 

Proving completeness is more complex. The approach 
taken here is an adaptation of techniques used in modal 
logic and centers on the notion of a canonical model [Chel- 
las, 19801. In particular, given a set of embedded implica- 
tions R, 

1. Construct an intuitionistic structure 2Mn, called the 
canonical Kriphe model of R. 

‘2. Show that A& b R. 

3. Show that if MR j= A then R I- A, for every atom A. 

Thus, if R k A, then A is true in all models of R. In 
particular, it is true in MR, and so by point 3, R I- A. 
This establishes the completeness of atomic inference; i.e., 
R j= A =+ R I- A. By the deduction theorem, however, 
it follows that R b tj =s- R I- q5 for any Horn-rule 4. 
This would prove theorem 3. 

The central question, however, is how to construct the 
canonical Kripke model MR. We define it to be the range 
of a proof-theoretic operator CUR. This operator thus pro- 
vides the essential link between hypothetical inference and 
intuitionistic semantics. 

Definition 8 If R is a set of embedded implication8 con- 
strutted from the atoms in C, and s is a (possibly infinite) 
subset of C, then CUR is the atomic closure of R and s 
and is defined as follows: 

cIR(s)={AEC 1 RU8kA) 

Definition 8 If R is a set of embedded implications con- 
structed from the atom8 in t, then MR is the canonical 
Kriphe model of R and is defined a8 follows: 

MR = {clR(s) 1 8 G c) 

This definition establishes point 1 above. Points 2 and 
3 follow from these definitions in a straightforward way 
(details may be found in [Bonner, 1988b]). Thus, the rules 
of hypothetical inference defined in section 4 are sound 
and complete with respect to intuitionistic semantics. In 
other words, this restricted form of hypothetical reasoning 
is intuitionistic reasoning. 

6.2 Semantic Properties 

Although the inference system of section 4 is intuitionis- 
tic, it is not equivalent to the full intuitionistic logic. Dis- 
junctions, for instance, cannot be expressed. This section 
describes the semantic properties of this subset of intu- 
itionistic logic. In particular, it is shown that hypothetical 
embedded-implications have properties similar to those of 
Horn clauses. These properties are sometimes sighted as 

the basis for the computational attractiveness of Prolog 
[Makowsky, 1986; McCarty, 1988a], suggesting that em- 
bedded implications may also be attractive as a logic pro- 
gramming language. 

The first results are fundamental properties of the 
canonical Kripke model. 

Theorem 4 MR has a unique minimal substate 8*. That 
is,if SEMR then s,<s. 

Theorem 5 MR ie the unique mazimal model of R. That 
is, if M b R then M 5 MR 

Theorem 4 follows immediately from the definition of 
MR by setting a0 = CIR( (1). It can be generalized, how- 
ever, to the substate intersection property:7 

Theorem 6 The intersection of a collection of substates 
in MR i8 itself a substate in MR. That is, if M C MR 
then HIM E MR. 

The existence of a unique maximal model, having the 
substate intersection property was first established by Mc- 
Carty in [McCarty, 1988a]. Indeed, McCarty defines an 
intuitionistic structure called K* which he shows is the 
unique maximal model of a set of embedded implications. 
Theorem 5 assures us that McCarty’s K* is identical to 
our MR, at least in the propositional case. Conceptu- 
ally, however, the main difference between them is that 
K* is defined semantically whereas MR is defined proof- 
theoretically. 

Theorems 4 and 5 have implications for inference. In 
particular, from 4 it follows that the canonical Kripke 
model contains all the information necessary to perform 
hypothetical inference. That is, 

Corollary 1 If q5 is a Horn rule, then 

RF4 iff MRI=~ 

This offers a semantic interpretation of negation-as- 
failure: 4 cannot be inferred from R iff 4 is not true in 
the maximal model of R. Note the similarity of this to the 
semantics of failure in Horn-clause logic: an atom cannot 
be inferred from a set of Horn clauses iff it is not true in 
the minimal model. In this sense, the canonical Kripke 
model is an intuitionistic analogue of the unique minimal 
model of Horn-clause logic. 

This analogy can be taken one step further. Because 
of the unique minimal model, Horn clauses have the at- 
tractive property that they entail a disjunction of atoms 
iff they entail one of the atoms individually. Similarly, as 
the next corollary shows, a set of embedded implications 
entails a disjunction of Horn rules iff it entails one of the 
Horn rules individually. 

Corollary 2 If 41, . . . . &, are Horn rules, then 

RkW’ - -. V q5m ifi R j= q& for some i. 

This corollary means that a theorem prover for intu- 
itionistic embedded-implications does not need extensive 
modification to deal with disjunctive goals. Indeed, the 
disjuncts are non-interacting and a theorem prover can 
work on each one separately. This suggests adding the 
following rule of hypothetical inference to those of section 
4: 

% particular, the intersection 

unique minimal substate. 

of all substates of MR is the 
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6.3 Relationship to Horn Logic 

The intuitionistic semantics of embedded implications ap- 
pears to have little relation to the classical semantics of 
Horn clauses. This would be surprising since Horn rules 
are a special case of embedded implications both syntac- 
tically and proof-theoretically. This section resolves the 
apparent incompatibility, showing that when R is a set of 
Horn rules, then its classical and intuitionistic semantics 
are closely related. Indeed, many of the well-known prop- 
erties of classical Horn clauses, such as the existence of a 
unique minimal model, are special cases of the properties 
of canonical Kripke models. 

Firstly, we note that it does not matter whether Horn 
rules are treated classically or intuitionistically. In both 
cases, the inference rules of section 4 form a sound and 
complete inference system. That is,8 

Corollary 3 If R is a set of Horn rules, and 4 is a Horn 
rule, then R +i 4 iff R bE 4. 

Secondly, we note that a single classical model can be in- 
terpreted as an intuitionistic substate, and that a collection 
of classical models can be interpreted as an intuitionistic 
model. This forms the basis of the following theorem. 

Corollary 4 Suppose R is a set of Horn rules. Then M 
is an intuitionistic model of R i’ M is a collection of 
classical Herbrand models of R. In particular, the canonical 
Kripke model MB is the collection of all classical Herbrand 
models of R. 

Many semantic properties of classical Horn clauses can 
now be seen as special cases of the properties of canoni- 
cal Kripke models. For instance, the model intersection 
property of Horn clauses is a special case of the substate 
intersection property of canonical Kripke models; and the 
unique minimal model property is a special case of the 
unique minimal substate property. Consider also the prop- 
erty that a set of Horn clauses entails a disjunction of atoms 
iff it entails one of the atoms individually. This is a spe- 
cial case of corollary 2. Finally, in Horn-clause logic, the 
unique minimal model plays a central semantic role: an 
atom is entailed by a set of Horn clauses iff it is in the 
unique minimal model. This property too is a special case 
of a more general property of canonical Kripke models: 

Corollary 5 If R is a set of embedded implications, and 
A is an atom, then R b A iff A is in the unique minimal 
substate of MR. 
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