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Abstract 

An intuitive four-valued semantics can be used to 
develop expressively powerful terminological log- 
its which have tractable subsumption. If a four- 
valued identity is also used, number restrictions 
can be added to the logic while retaining tracts 
bility. The subsumptions supported by the logic 
are a type of “structural” subsumption, where 
each structural component of one concept must 
have an analogue in the other concept. Struc- 
tural subsumption captures an important set of 
subsumptions, similar to the subsumptions com- 
puted in KL-ONE and NIKL. This shows that the 
trade-off between expressive power and computa- 
tional tractability which plagues terminological 
logics based on standard, two-valued semantics 
can be defeated while still retaining a useful and 
semantically supported set of subsumptions. 

1 Introduction 
Terminological logics formalize the notion of frames-a 
notion present in many current knowledge representation 
systems-as structured types, often called concepts. These 
logics include a set of syntactic constructs that form con- 
cepts, and other, related, notions such as roles. Terrnino- 
logical logics are based on formal model-theoretic seman- 
tics which provide firm definitions for the syntactic con- 
structs of the logic. 

The allowable concepts vary between different termino- 
logical logics but generally concepts are the conjunction of 
a set of more general concepts and a set of restrictions on 
the attributes of instances of the concept. Such concepts 
can be loosely rendered as noun phrases such as 

a student and a female whose major is a com- 
puter science major, and who has at least 
three enrolled courses, each of which is a 
graduate course whose department is an en- 
gineering department. 

Terminological logics are part of KL-ONE [Brachman and 
Schmolze, 19851, NIKL [Moser, 19831, KRYPTON [Brachman 
et al., 1983, Brachman et al., 19851, and KANDOR [Patel- 
Schneider, 19841, as well as several other knowledge repre- 
sentation systems. 

The most important operation in terminological logics 
is determining if one concept subsumes-is more general 

than-another. A formal definition of subsumption is part 
of the semantics of terminological logics. Informally, one 
concept subsumes another if any object that satisfies the 
requirements of the second concept (i.e., is an instance of 
the second concept) must also satisfy the requirements of 
the first. For example, the concept 

person with at least two children 

subsumes the concept 

person with at least three children who are 
lawyers 

in standard terminological logics. This is so because, in the 
standard semantics for terminological logics, all instances 
of the second concept must also be instances of the first. 

However, as shown by Levesque and Brachman [1987], 
computing subsumption is intractable in expressively pow- 
erful terrninological logics based on standard semantics. 
This intractability is a severe problem, since terminolog- 
ical reasoners would be useful in many knowledge-based 
systems, and it is not desirable to have components of 
knowledge-based systems that may take an extremely long 
time to compute common operations. To achieve tractable 
subsumption, at least in the worst case, the logic must be 
expressively weak -too weak to be usable in knowledge- 
based systems. 

The trade-off between expressive power and computa- 
tional tractability can be defused by using a weak seman- 
tics for terminological logics-one that supports fewer sub- 
sumption relationships -resulting in tractable subsump- 
tion for expressively powerful logics. This solution retains 
a firm semantic foundation for the system, as opposed to 
the more usual method of achieving tractability by provid- 
ing a sound but not complete reasoner (as in KL-ONE and 
NIKL). 

A tractable terminological logic using a weak semantics 
based on the four truth values of tautological entailment 
[Belnap, 1977, Levesque, 19841 has been developed [Patel- 
Schneider, 19861. The logic is more expressive than the 
terminological logic that Levesque and Brachman discov- 
ered to be computationally intractable in the standard se- 
mantics. However, it is still expressively weak, as it does 
not include number restrictions-a construct appearing in 
many semantic networks and frame-based knowledge rep- 
resentation systems. 

A number restriction is a way of restricting the number 
of values that a role has. For example, “at least three 
children who are lawyers” is a number restriction. As 
number restrictions are useful in many domains, a termi- 
nological logic without number restrictions is lacking an 
extremely useful construct. 
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Number restrictions introduce a new source of complex- 
ity to terminological logics. When they are added, new 
semantic ideas--such as identity and cardinality-have to 
be considered, thus complicating the semantics and the 
analysis of the logic. 

The computational problem with number restrictions is 
that the standard two-valued notion of identity sanctions 
subsumptions that are hard to compute, even in an oth- 
erwise four-valued semantics. This paper presents a four- 
valued notion of identity that solves this computational 
problem, resulting in a terminological logic incorporat- 
ing number restrictions that has tractable subsumption- 
subsumption similar to the “structural” subsumption of 
KL-ONE and NIKL. 

. 
Of course, there is a price to be paid for using a four- 

valued identity. A four-valued identity is yet another 
change from the standard semantics, resulting in less cor- 
respondence between the semantics of the terminological 
logic and the standard semantics. However, the change 
is not too unappealing, and incorporating number restric- 
tions while still retaining tractable subsumption and a sim- 
ilarity to subsumption in KL-ONE and NIKL is useful. 

2 Syntax and Intuitive Meaning 

The terminological logic developed here has two major 
syntactic types-concepts and roZes-corresponding to the 
frames and slots of most frame-based knowledge represen- 
tation systems. Concepts represent collections of related 
individuals and roles describe relations between these in- 
dividuals. The intuitive meaning of the various constructs 
in the language are derived from the intuitive meanings of 
constructs in frame-based knowledge representation sys- 
tems. 

The logic mostly is an extension of the logic in [Patel- 
Schneider, 19861. It is closely related to the terminological 
logics of KL-ONE, NIKL,KRYPTON, and KANDOR. 

Concepts can be formed in the following ways: 

<concept> ::= <atomic concept> 1 
(and <concept>+) 1 
(all <role> <concept>) 1 
(atleast <minimum> <role>) 1 
(atmost <maximum> <role>) 

<minimum> ::= <positive integer> 
<maximum> ::= <non-negative integer> 

The construct (and <concept>+) is a conjunction con- 
struct. Informally, an individual belongs to (and Cl Cs) if 
it belongs to both Cl and C2. The construct (all <role> 
<concept>) is a role restriction construct. Informally, an 
individual (Y belongs to (all R C) if, for every individual p, 
either a is not related to p by R, or p belongs to C. 

The constructs (atleast <minimum> <role>) and (at- 
most <maximum> <role>) are number restriction con- 
structs. Informally, an individual belongs to (atleast n R) 
if it is related to at least n distinct individuals by R. If n 
is 1, this reduces to a role filler existence construct. An in- 
dividual belongs to (atmost n R) if it is related to at most 
n distinct individuals by R. 

Roles can be formed in the following ways: 
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<role> ::= <atomic role> I 
(and <role>+) I 
(restrict <role> <concept>) 

The construct (and <role>+) is a conjunction construct, 
similar to (and <concept>+). The construct (restrict 
<role> <concept>) is a restriction construct. Two in- 
dividuals are related by (restrict R C) if they are related by 
R and the second is also an instance of C. 

The addition of number restrictions is the major 
change between this language and the language of [Patel- 
Schneider, 19861. This addition brings the expressive 
power of the language nearly up to par with the termi- 
nological languages of KL-&NE and NIKL. 

3 Formal Semantics 
The formal semantics of the logic is an extension of the 
semantics of [Patel-Schneider, 1986]-supporting number 
restrictions via a notion of cardinality based on a four- 
valued identity. The basic ideas underlying the semantics 
are similar to the ideas underlying other denotational se- 
mantics. The semantics is based on semantic structures or 
possible worlds, each of which contains a set of individuals 
and a mapping from syntactic constructs-concepts and 
roles-into their meaning in the semantic structure. The 
truth values of this semantics are {t} or true, {f} or false, 
{} or unknown, and {t, f} or contradictory.’ Thus the set 
of truth values form the powerset of {t, f}, written 21tyfl. 

A semantic structure is a triple, (D, V, I), where D is 
a set of individuals, V is a function that takes concepts 
and roles into their extension, and I is an identity rela- 
tionship over D. The extension of a concept is a mapping 
from D to 21tyfl. Th e extension of a concept is thus a 
four-valued characteristic function-not a two-valued char- 
acteristic function. Similarly, the extension of a role is a 
mapping from D x D to 2ttyfl. The identity relationship 
is also a mapping from D x D to 2ct*fl, which must satisfy 

1. I(d,d) = {t), 

2. I(d, e) = I(d, e), and 

3. if t E I(d, e) and t E I(e, f) then t E I(d, f), 

for all d, e,f E D. These restrictions make the identity 
relationship into a four-valued version of an equivalence 
relation. 

Although this semantics is not too far distant from a 
standard two-valued extensional semantics, there are some 
differences that need explanation. One way of motivating 
these differences is to treat treat the extension of a con- 
cept, and also of a role, as two extensions, the positive 
extension and the negative extension. The positive exten- 
sion of the concept C is the set of individuals that belong 
to the concept-defined as {d E D : t E V[C](d)}. The 
negative extension of the concept C is the set of individu- 
als that definitely do not belong to the concept-defined 

‘A slightly different set of truth values that could be used is 

the set WI, USI, 0, fH used by Frisch [1985]. This set of truth 
values gives a slightly stronger logic, which may be tractable 
here, at the expense of removing a useful symmetry. Note that 
the set of truth values ((1, {t}, {f)}, used by some of the pop- 
ular three-valued logics, is usually as intractable as two-valued 
logics. 



as (d E D : f E V[C](d)}. Unlike the case in two-valued 
semantics, these two sets need not be complements of each 
other-there may be individuals that are members of nei- 
ther of these sets, and also individuals that are members 
of both of these sets. 

Individuals that are members of neither set are not 
known to belong to the concept and are also not known 
not to belong to the concept. This is a perfectly reason- 
able state for a system that is not a perfect reasoner or 
does not have complete information. Individuals which 
are in both the positive and negative extension of a con- 
cept can be thought of as inconsistent with respect to that 
concept in that there is evidence to indicate that they are 
both in the extension of the concept and also (conflicting) 
evidence to indicate that they are not in the extension of 
the concept. (Such individuals need not be contradictory 
with respect t’o other concepts). This is a slightly harder 
state to rationalize but can be. considered a possibility in 
the light of inconsistent information. 

The difference between this semantics and the one in 
[Patel-Schneider, 19861 is the presence of the four-valued 
identity relationship. This relationship is easier to under- 
stand if viewed in a manner similar to the positive and 
negative extension viewing of the extension function. Un- 
der this view, if t E I(d, e) then d and e are known to be 
identical, and if f E I(d, e) then d and e are known not 
to be identical, i.e., known to be distinct. As above, it 
is possible that two individuals are neither known to’be 
identical nor known not to be identical, and it is also pos- 
sible that two individuals are both known to be identical 
and known not to be identical. The reflexive, symmetric, 
and transitive nature of the identity relationship do, how- 
ever, serve to make it similar to the standard two-valued 
notion of equality, and thus makes the change reasonably 
palatable. 

A notion of cardinality can be derived from this four- 
valued identity. A set does not have a unique cardinality, 
but instead has a minimum cardinality, based on which _ 
of its members are known to be distinct, and a maximum 
cardinality, based on how many members it has which are 
not known to be identical. The minimum cardinality of a 
set, X, is defined to be the size of its largest subset for 
which all elements are known to be distinct, 

Similarly, the maximum cardinality of a set, X, is defined 
to be the size of its largest subset for which no two elements 
are known to be identical, 

maxc(x) = max ly] ’ re?Ig$), Vd, e E Y, d # e > ’ 

It is possible for the maximum and minimum cardinality 
of a set-to be different. For example, if no identity relation- 
ships, positive or negative, are known, then the maximum 
cardinality of a set is its standard cardinality and its min- 
imum cardinality is 1. It is also possible for the maximum 
cardinality of a set to be less than the minimum cardinality 
of a set. For example, if the identity relationship is total- 
everything is both identical and distinct from everything 
else-then the maximum cardinality of a set is 1 and its 
minimum cardinality is its standard- cardinality. 

The four-valued identity and the derived notions of min- 
imum and maximum cardinality form another departure 
from the standard semantics. The main problem with this 
departure is not the change from a twovalued identity to 
a four-valued one, which is in keeping with the basic four- 
valued nature of the semantics, but the associated divorc- 
ing of identity from equality in the domain. The four- 
valued identity weakens the connection between elements 
of the domain and objects in the world, suggesting instead 
an interpretation where elements of the domain are more 
akin to descriptions. Going from individuals to descrip- 
tions is not a fatal problem, but requires some rethinking 
of how well the semantics corresponds to its desired role. 

The semantics can perhaps best be viewed as a semantics 
of belief, where the elements of the domain are descriptions 
in some agent’s belief space. In this view of the semantics, 
if f E I(d, e), th en d and e are believed to be descriptions 
of distinct objects. Similarly, if t E V[C](e), then d is 
believed to be a description of an object that belongs to 
the extension of C. Of course, this view does not change 
the underlying four-valued nature of the semantics, so it is 
possible to have incomplete and inconsistent beliefs about 
identity. 

The extensions of non-atomic concepts and roles are 
specified in terms of conditions that they have to meet: 

t E V[(and Cl . . . C,)](d) 8 for each i, t E V[Ci](d) 
f E V[(and Cl . . . C,)](d) iff for some i, f E V[Ci](d) 
t E V[(aDI R C)](d) iff Ve f E V[R](d, e) or t E V[C](e) 
f E V[(all R C)](d) iff 3e t E V[R](d, e) and f E V[C](e) 
t E V[(atleast m R)](d) iff minc{e : t E V[R](d,e)} 2 m 
f E V[(atleast m R)](d) iff maxc(e : f $ V[R](d, e)} < m 
t E V[(atmost m R)](d) iff maxc{e : f 4 V[R](d,e)) 5 m 
f E V[(atmost m R)](d) iff minc{e : t E V[R](d, e)} > m 
t E V[(and Ri . . . Rla)](d,e) iff for each i, t E V[RJ(d, e) 
f E V[(and RI . . . Rn)](d, e) iff for some i, f E V[RJ(d, e) 
t E V[(restrict R C)](d, e) iff t E V[R](d, e) and t E V[C](e) 
f E V[(restrict R C)](d,e) iff f E V[R](d, e) or f E V[C](e) 

These conditions are designed so that the formal seman- 
tics corresponds closely to the previously-discussed infor- 
mal meaning of concepts and roles. 

For example, the positive extension of (and Cr C,) must 
be the intersection of the positive extension of Cl and Cs 
and its negative extension must be the union of their neg- 
ative extensions. In this way the intuitive notion of con- 
junction is made formal. Similarly, the conditions above 
require that if an element of the domain is in the positive 
extension of (atleast m R) then it must be related to at 
least m domain elements, known to be pairwise distinct, 
by the positive extension of R. Also, if an element of the 

domain, d, is in the positive extension of (atmost m R) then 
any set of domain elements, no two of which are known to 
be identical, that are not known to be related to d by the 
negative extension of R must have cardinality at most m. 
In this way the intuitive semantics of number restrictions 
are captured in a four-valued framework. 

The final part of the semantics is the definition of sub- 
sumption: 

Definition 1 One concept or role is subsumed by another, 
written C a C’, if the positive extension of the first is 
always a subset of the positive extension of the second and 
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the negative extension of the second is always a subset of Subsumption relationships involving modus ponens are 

the negative extension of the first. not valid here. For example, 

This definition again corresponds closely to the informal 
notion of one concept being more general than another. 

4 Discussion 
The semantics defined here has a close relationship to stan- 
dard, two-valued semantics for terminological logics as de- 
fined by Levesque and Brachman [1987]. 

Define a model as a semantic structure where 

1. for every concept C, the positive and negative exten- 
sions of C are disjoint and together exhaust the set of 
individuals of the model, 

2. the positive and negative extensions of roles are also 
disjoint and exhaustive, and 

3. the identity relationship is equality. 

In such semantic structures the above semantics, including 
the definition of subsumption, reduces to a standard two- 
valued semantics for terminological logics. Because of this 
inclusion relationship, all reasoning in this logic is sound 
with respect to standard terminological logics. 

The conditions for concepts and roles, and also the def- 
initions of cardinality and subsumption, are just a reinter- 
pretation, in a four-valued setting, of the standard two- 
valued conditions and definitions. There is nothing added 
besides what is needed to get from two truth values to 
four truth values. Thus the semantics is closely related to 
intuitions about the meanings of concepts and roles. 

The changes in the semantics-going from two to four 
truth values and a four-valued identity-are reasonable for 
systems with limited reasoning power. Such systems do 
not have total information, thus the presence of truth-value 
gaps, and also cannot resolve inconsistencies, thus allowing 
for inconsistent situations. The four truth values of the 
logic have also been previously used to develop limited 
reasoners in other areas [Levesque, 1984; Patel-Schneider, 
t 0 appear]. 

The set of subsumptions supported by this logic forms 
an interesting and useful set. Since subsumption is sound 
with respect to standard terminological logics, if one con- 
cept subsumes another in this logic then it will also do 
so in a standard, two-valued terminological logic. Sound- 
ness of subsumption is an important requirement if the 
semantics is to capture some of the intuitive ideas behind 
terminological logics. 

The sort of subsumption relationships that are valid in 
this logic are the simple ones, such as 

(and person (atleast 2 child)) 

subsuming 

(and person (atleast 3 (restrict child lawyer))), 

and 

(and person (atmost 4 (restrict child doctor))) 

subsuming 

(and person female (atmost 3 child)). 

As these examples show, the valid subsumption relation- 
ships are not trivial, and include at least some interesting 
subsumption relationships. 

(and person 
(all friend doctor) 
(all (restrict friend doctor) (atleast 1 speciality))) 

is not subsumed by 

(and person 
(all friend (atleast 1 speciality))), 

because in four-valued semantic structures it is possible 
that some friend might both be a doctor and not be a 
doctor, as well as not specializing. Because the friend is 
a doctor, (all friend doctor) is not falsified; because the 
friend is not a doctor, (all (restrict friend doctor) (atleast 1 
speciality)) is not falsified; however, because the friend does 
not specialize, (all friend (atleast 1 speciality)) is falsified, 
and thus the subsumption relationship does not hold. Also, 

(and person 
(atleast 2 friend) 
(all friend doctor)) 

is not subsumed by 

(and person 
(atleast 2 (restrict friend doctor))), 

because some individual might both be a friend and not 
be a friend. 

Subsumptisn relationships that require reasoning from 
the law of the excluded middle for identity are also not 
valid here. For example2, in a two-valued terminological 
logic 

(and (atleast 1 (restrict child lawyer)) 
(atleast 1 (restrict child doctor))) 

would be subsumed by 

(or (atleast 2 child) 
(atleast 1 (restrict child (and lawyer doctor)))), 

because either the child that is a lawyer is different from 
the child that is a doctor, in which case there are two 
children, or they are identical, in which case there is one 
child which is both a doctor or a lawyer. In the four-valued 
logic this is not a valid subsumption because it is possible 
to be uncertain about whether the doctor and the lawyer 
are identical. These subsumptions are hard to compute, 
which forms one of the reasons for the switch to a four- 
valued identity. 

The subsumption relationships that are valid form a sort 
of “structural” subsumption3-where each structural com- 
ponent of one concept or role must have an analogue in the 
other-similar to the subsumption relationships computed 
by KL-ONE and NIKL. This close correspondence indicates 
that the subsumption relationships of this logic form a use- 
ful set, and, moreover, provides a way of semantically jus- 
tifying the incomplete subsumption algorithm for KL-ONE 
and NIKL. 

‘This example cannot be expressed in the logic described 
here because it includes a disjunction operator. However, a 
more complicated example which embeds this one CUYJ be ex- 
pressed in the logic. 

3As will be shown in the next section. 
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5 Computing Subsumption 

Subsumption in this logic is weaker than subsumption in 
logics using the standard semantics, however this does not 
imply that subsumption is easy to compute here. Even 
the fact that subsumption is easy in the logic of [Patel- 
Schneider, 19861 is no assurance that it will be easy here. 
The addition of number restrictions is a major extension 
and, as Levesque and Brachman have shown [1987], even 
small changes in the expressive power of a formal system 
can result in large changes in the computational tractabil- 
ity of its operations. 

Fortunately, subsumption is tractable in this logic. The 
subsumption algorithm for the full form of the logic is too 
long to fit in this paper, so an indirect argument has to 
be used to show its tractability. This is done by convert- 
ing concepts and roles to a canonical form, giving a sub- 
sumption algorithm for concepts and roles in this canon- 
ical form, and then showing how this algorithm can be 
converted into a tractable subsumption algorithm for con- 
cepts and roles in arbitrary form. 

Concepts and roles in canonical form take the following 
form: 

<concept> ::= (and <primary>*) 
<primary> ::= <atomic concept> 1 

7 <atomic concept> 1 
(atleast <minimum> <role>) 1 
1 (atleast <minimum> <role>) 

<role> ::= (restrict (and <atomic role>+) 
<concept>) 

<minimum> ::= <positive integer> 

This canonical form introduces a new operator, 1, which 
is a classical negation operator defined as t E V[X](d) iff 
f E V[C](d) and f E V[X](d) iff t E V[C](d). 

The conversion can be done by using the following equiv- 
alences: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

A 

commutativity and associativity for conjunctions of 
concepts and roles 

C f (and C) 

(all R (and Cl Cz)) zz (and (all R Cl) (all R Cz)) 

(all R E) z -(atleast 1 (restrict R -E)) 

(atmost n R) E l(atleast n+l R) 

R zz (restrict R (and )) 

(and (restrict Rr C) Rz) zz (restrict (and Rr Rz) C) 

(restrict (restrict R Cr) Cz) E (restrict R (and Cl C,)) 

canonical form concept will often be viewed as a set 
of primaries. Similarly, the two parts of a canonical form 
role will often be viewed as a set of atomic roles and a set 
of primaries. 

The conversion to canonical form does not change the 
extension of concepts or roles: 

Theorem 1 Let C’ be the canonical form of the concept 
or role C. Then for any semantic structure, V[C’] = V[C]. 
Proof: By simple structural induction on C.4 

4Proof% of the theorems of this paper can be found 
very similar to proofs in PateI-Schneider, 19881. 

in or are 

Once concepts and roles are in canonical form then the 
following characterization of subsumption is both sound 
and complete. 

Theorem 2 Let C and C’ be canonical form concepts. 
Then C 3 C’ infor all top-level conjuncts, D’, in C’, there 
exists a top-level conjunct, D, in C such that 

1. if D’ is an atomic concept or the negation of an atomic 
concept, then D = D’, 

2. if D’ is of the form (atleast m R’), then D is of the 
form (atleast n R), with n 2 m and R + R’, and 

3. if D’ is of the form -(atleast m R’), then D is of the 
form l(atleast n R), with m > n and R’ + R. 

Let R = (restrict S C) and R’ = (restrict S’ C’) be canon- 
ical form roles. Then R j R’ ifiS’ E S and C 3 C’. 

This characterization confirms that subsumption in this 
logic is weak. Only “structural” subsumptions are valid, 
and inference rules that chain together separate pieces of 
a concept or role are not valid, except for those involving 
the conversion to canonical form. Thus subsumption is 
this logic is very close to the subsumption relationships 
computed by KL-ONE and NIKL. 

Given this characterization of subsumption, it is sim- 
ple to derive a subsumption algorithm that runs in time 
proportional to the product of the sizes of its arguments. 

Theorem 3 Subsumption for canonical form concepts 
and roles can be performed in time proportional to the prod- 
uct of the sizes of the two concepts or roles involved. 

The process of converting concepts and roles to canoni- 
cal form can exponentially increase their size, and thus the 
tractability of subsumption on arbitrary form concepts and 
roles has not yet been demonstrated. Two modifications 
are needed to produce a tractable algorithm for subsump- 
tion. First, the conversion of concepts and roles to canon- 
ical form must be done by means of structure sharing. If 
this is done the “size” of the canonical form of a concept 
or role-not the length of its printed form but the size of 
the data structure-will be proportional to the size of the 
original concept or role, and the canonicalization can be 
done in linear time. Second, the subsumption algorithm 
has to be changed so as not to redo computations. This 
can be done by storing previously performed subsumption 
tests at the appropriate places in the canonical form of 
the concept or role, and querying these results when ap- 
plicable. The obvious method of storing and querying the 
cached subsumption tests results in a subsumption algo- 
rithm that runs in time proportional to the product of the 
“size”s of its arguments. Thus the entire subsumption pro- 
cess can be done in time proportional to the product of the 
sizes of the two concepts or roles, resulting in 
Theorem 4 Subsumption for arbitrary concepts and roles 
can be performed in time proportional to the product of the 
sizes of the two concepts or roles involved. 

6 Summary 

The extension of the four-valued semantics for termino- 
logical logics to encompass number restrictions shows that 
four-valued semantics can be of use in expressive termino- 
logical logics. The logic used here contains most of the con- 
structs of the languages of KL-ONE and NIKL, and contains 
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some useful constructs that do not occur in them. Several 
of the constructs in KL-ONE and NIKL, such as role-value 
maps and structural descriptions, that are not in this logic 
can be easily formulated in it, and, moreover, do not seem 
to provide any computational difficulties for subsumption.5 
One extension that has been investigated is the ability to 
specify fillers (or values) for roles [Patel-Schneider, 19881. 
This extension retains the desirable computational prop- 
erties of subsumption. 

The four-valued semantics used here is a reasonable se- 
mantics, especially when considering systems with limited 
reasoning capabilities. Subsumption in this semantics is 
easy to compute, at least for the language given here. The 
valid subsumption relationships form an interesting set- 
one that includes the easy subsumptions and leaves out 
the less obvious ones. This set corresponds closely to the 
set of subsumption relationships computed in KL-ONE and 
NIKL, lending a degree of credence to that set. 

This extension is not without problems, however. It 
shares the problems of the semantics in [Patel-Schneider, 
1986]-being not as intuitive as the standard twovalued 
semantics and sanctioning a very limited set of subsump- 
tion relationships. These seem to be unavoidable prob- 
lems if a uniform, simple semantics with a fast subsump- 
tion algorithm is required. The extension also weakens the 
relationship between the elements of the domain set and 
objects in the world. 

This extension shows that there are even more tradeoffs 
in the relationship between expressive power, deductive 
power, and computational tractability in terminological 
logics. It justifies a limited set of subsumption relation- 
ships for an expressively powerful terminological logic that 
is easy to compute and, moreover, captures an interesting 
subset of the standard subsumption relationships. This is 
not a total solution, because no total solutions are pos- 
sible (unless P = NP), but it does demonstrate that it 
is possible to to alleviate the computational problems of 
expressively powerful terminological logics by weakening 
deduction in a principled manner. 
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