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Abstract

This paper studies what we call normal muitimodal
logics, which are general modal systems with an
arbitrary set of normal modal operators, We em-
phasize the importance of non-simple systems, for
which some interaction axioms are considered. A
list of such acceptable axioms is proposed, among
which the induction axiom has a special behavior.

(323 m Innics that nan ha hasilé
The class of multimodal logics that can be built

with these axioms generalizes many existing
modai, temporal, dynamic and epistemic systems,
and could also suggesi new formalizations using
modal logics. The main result is a general deter-

m m for thaea lirandal auata
mination theorem for these multimodal systems,

which establishes a correspondence between our
axioms and conditions over Kripke frames; this
should avoid the need for showing determination
each time a new system is considered.

41 Introduction

1.1 Presentaiion

During the iast decade, it has been wideiy shown
how modal logics provide suitable tools for various
theoretical formalizations in computer science. In
fact, many modai systems can be found in the iitera-
ture, and there are a number of areas where such
logics are used. Most popular readings of the modal
formula Oa are, for example, "o is necessarily true”

; ” : o frre”
{standard modal logic), "a will always be true

(temporal logic), "X knows that a” or "X believes that
o” (eplstemlc logic), or "after executing some pro-
gram a, o will be true” (dynamic logic), eic.

In general, only one type of modality is considered,
i.e. only one aspect (time, knowledge, programs, ...)
is ireated at a time. But relatively few attempts have
been made to employ all these systems simultane-
ously; on the other hand, if modal logics are to be of
any practical interest, and especially in Al, it seems
very natural to ask whether these different
modelizations can be “put together”, so we could talk
about necessity, time, knowledge, belief, actions,
plans, deterministic programs, concurient programs,
obligations, conditionals, etc, within the same lan-
guage.

Thus, aitempting to define a rigorous and unified
framework for such systems, which can be called
multimodal logics (an abbreviation for multiple modal
iogics), is the initial motivation for our work. There-
fore, our first task is to define syntactic, axiomatic
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and semantic bases for these systems. However, a
very desirable feature of multimodal systems lies in
their abilily to represent some interreiations beiween
the different aspects (i.e. between modalities 0,0,

...}, such as the well known “If X knows that o, then
X beiieves ihai o” of epistemic iogic. Thereiore,
some questions that naturally arise in considering

multimodal logics are:

1. Which combinations of modal systems should be
examined?

What kinds of interactions between these systems
make sense? Should they be specified seman-
tically or axiomatically?

Can we deveiop a systematic approach to these
multimodal systems, and extend standard tech-
niques developed for traditional modal logic?

IS

w

It is without the scope paperiop
propriate answers o points (1) and (2), since it de-
pends very much on the intended formalizations, and
moreover these guestions may be subject to philo-
sophical discussions. The only thing we can say is
that some particular combinations, such as know-
ledge and belief, or KHUWIE'CJQ(-Z’ and fime, are ceriainly
of primary interest, especially to Al

So we will focus on point (3), and try to follow a
systemalic approach, as in [Chellas, 1980] for
standard modal loaic Thnnnh multimodal logice
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could be entirely defined by thelr semantics, in a
model-theoretic way, as in [Thomason 1984] or
[Halpern and Shoham, 18861 {and this approach
seems particularly relevant when time is consid-
ered), we prefer a more axiomatic approach. To be-
gin with, we propose a first ciass of inferaciion
axioms G?b.<.9 with some examples. Then, a general
determination theorem is given for the normal multi-
modal systems generated by these axioms; the proof
uses an extension of the canonical mode! method for

modal logics. To handle induction, however, this

method fails, and we have to use the Fischer-Ladner

. . bt
filtration method, as will be indicated.

of this naner to provide

an.-
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4.2 Expressiveness: exampies

One main feature of muitimodai languages is their
ability to express complex modalities, obtained by

;c;}ﬁbomng modal operators of different types or,
more generally, by using formal operations over

,,
modalities. For example, “Bob knows it will be the



case that” or "Bob knows it is impossi bln for Alice fo
believe that” are such complex modalitie
To give a very simple example, let us consuder a
bi-moedal epistemic system L, with two agents Alice
and Bob, and two belief operators K, and K,
Koo "Alice believes o”
K o~ . “Bob believes "

NHR . O OOnlveoo &

Suppose that Alice and Bob have, as in real life,
different ways of reasoning about their beliefs; for

avamnla Alica mayv hae anod st hoth nocitive and
eXamp:C, ANCC Mmay ©0C goOGad at olin pOSHIive anhnd

negative introspection, whereas Bob never performs
any kind of introspection With the traditional
Uplalcllllb app.oach, Y] is then a KD45 modal opera-
tor, whereas K2 is simply a KD operator. Suppose
also that the following assertion holds:
"Alice believes everything Bob believes”,

for example if Alice is a little bit naive, or if she is
deeply in love with Bob (despite his lack of
introspection capabiiities!). Then, we wouid iike the
axiom scheme H(K,o — K,a) to hold in our system
L. In short, in our terminology the resulting bi-modal
sysiem wiil be not homogeneous (since K, is of type
KD45 and K, of type KD) and with interactions (since
the above axiom links K, and K,).
Other examples of interaction principies can be
iven in considering:

knowledge and belief:

“If X knows that Y knows that «, then X knows that

”II

“If X believes a, then X believes that he knows o”
* knowledge and time ([Halpern and Vardi, 1986]):

"Iif X knows that in the next state o will be frue,
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then in the next state he will know that o is true”
® belief and time ([Lehmann and Kraus, 18867):

"If X believes that tomorrow o will be Ir“n then

he believes that tomorrow he will still belreve that
o is true”

As we will gae
we Wi 5C¢

action axioms.

1.3 Related work

Dynamic logic ([Parikh, 19811, [Harel, 1984]) and
process logic ([Harel, Kozen and Parikh, 1981]) al-
ready use families of modal operaiors, denoted by
[a], where a represents a program. Also, epistemic

o
=
®

logics ([Halpern and Moses, 1985], [Halpern, 19867)
provide modal Ianguages with several operators

K Roth are, in fnhi multimodal |nﬂlr‘a but
|ANTY ACUOREE L WOR = (o111 IR 11 n m mogcar

both make the two followmg lmponant restrictlons.
o they are homogeneous systems, which means

that every madal anaratasr (FaT Ar WY halhnae
widy CVvery miGlar CpCraior (paj Or vy oTilGngs o

the same system of traditional modal logic (e.g.
T, 84, 85, ..))
- s Frnn $nnes tarifbnns P finma wohinh
- HITY 11Ut byblb’lllb VVII.IIUU( d”y "ll.t:l db(lulh), AAARIIOIA)

means that, roughly speaking, each modal oper-
ator [a] or K, is totally independent (axiomatically
of semanticaily) of the others.

Temporal logics, in both their linear or branching-
time versions, can also be viewed as special cases
of muitimodai logics, since many operators are in-
volved in the language. In fact, these operators
{some of which being not normal) are linked by very
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snecial connections. aenerally indi
special reclions, genera ng y

"y
mantics; for example, operators ("next”) and [0
("always”) of linear-time logic simply interact by a

trangitive-closure corres pr\ndnnre

icated by the se-

Beside these well-known types of logics, some

other multimodal systems have been explored; the
reader is referred to [(‘nhan 106807 NRennie 12701

rCdley 1S 78T CU LORSH, 190UV, LRCHTne, oV,

[Farifias, 1983], [Thomason, 1984], [Farifias and

Orlowska, 1985], [Lucas and Lavendhomme, 1985],
MNaohmann and Kraune 40887 [Halnern and VVardi

ONINANN Qiu I dug, 1900, [FIQiplirnl diiv v arur,

1986], [Halpern and Shoham, 1986], [Fischer and
Immerman, 1987]. Most of them fall within the scope

n\na‘ irdav hava na tha

b N et N o
O (e Mmuimocuar oYy oulTit

I3 W& Consider nere, as ine
reader may verify.

~

2 Formai syntax and semantics

2.1 Language

A propositional multimodal language % is deter-
mined by a set @, of propositional variables p.g ..., a
cot 'S'o of atomic nnrnmntnre AR ..., U lnninn] and
" (composmon) operations over parameters the
boolean connectives = A v — < and, finally, the

'Y ennctrucrt for madal onaratnrg We alggo distin-
LJ CCenswruct O MOGary Operalrs. a:8C GIsUn

guish an element 1 in %, to be the neutral element for
the composition of parameters i.e. to be the identity
parameter. The set X of all abslracl parameters is
built from X, and the "U” and ";” operations, and the
set @ of all formulas is built from ®,, the boolean
connectives, and the ruie "if a is a parameter and o
a formula, {ala is a formula”. As usual, <a> =
—[a]—a.

The set OPS, of atomic modai operators coniains
operators [A] ;mrl <A> for AeX; in the following,

DEOPS means that O =[A] with AeX,, and ,‘Y’(D)
will desugnate the sub-language of £ built from {A}

inctaad nfY Wa alen dAafine A—=T11T— < 1> ac haoinn
insiead Ci & vwe iSO GeINe O — 4 S

the identity operator.

Def

To capture finite sets OPS,= {[] pOy. 0}, we let
¥V —fan ») aaritiome M1 lendan A AF M sinnial
440‘—‘1| [4 e i, wiitny LJi I|IblGdU Oi Ltr}, uosuai

epistemic systems can be obtained in this way. To
get traditional modal logic, we simply let X,={1}.
To get dynamic i{ogic, we just add the ”*” {iteration)
and "?” {test construction) operations to the lan-
guage. Further extensions, as proposed in
[Berman, 1979], could also be incorporated.

nopend;nn on the desired interpretations, some

subsets of parameters in X, can be used to represent
various concepts such as rational agents, programs,

acrtinne or aven snare nr Hmao dimoansginne Alen 2
acuaons OF €ven sSpacCe CF ume G/imensiCns. ~AS0, a

fundamental remark is that Kleene operations ”;” and
"U”, along with 9, are always definable with regard to

randdal Anaratasr . "~

preaien e
thivuait U’JUIG(UIO, uoiy.

* (0ot =pe

o (O, ...;0)a =py O, ... O«

a 1 - ¥} f'_l | WP — m o A 1
® (LU . U)o Sper LIGWA LA L&

Thus, we can always assume the presence of these
operations in the language and it allows us, for ex-
ampie, io consider that formuias $ Oa or {0,002 A
Clna A o) can always be represented by <1; 1>oc and
[(1 2) U 3u Al respectlvely



2.2 Systems of muitimodal logics
L denoties a muitimodal ianguage £ with an
n

matization, i.e. a set A‘v of axioms and inference

I s, then, for OeOPS,, we define L({]) to be the set
{cx € £F(D) / a is a theorem of L} and Ax({(J) to be the
subset of f'\X. conlamlng Ine E{XIOIT]S and I'Uleh of f’\)(
which are either non-modal or involve only formulas
belonging to Z([J).

The first probiem is to know whether L{{J) can in-
deed be viewed as a “sub-system” of L, i.e. to know

whether L(OO) can be axuomatlzed. and whether
Ax([J) can be used for this purpose. Conversely, can

wa iuct "nut tnnathar’ cannrata aviomatizatinng for
WE JUST  PUL OGeINEY " Separae aXilCimMaulaulns O

each sub-system L([J), to get an axiomatization of
L? A notion of separability is therefore needed:
Nafinitinn:
An axiomatization Ax is said to be separable if, for
each DEOPSO, C L) =THAx(O)), where
TH(Ax(J)) is the set.of theorems generated by

. (1
the axiom and inference rules of Ax{().

An example of non-separable axiomatization is:
O — )0y — O,B)
L& — &
Oyl — B) —
O, - O
ince D4 — a isin L{O,) butis no
Ax{(C1,). which only contains axiom (3). Thi
not-be. fully examined here (see [Catach,

Using separabie axiomatizations, we wiii take eacii
sub-system L([J) as being at least normal, so we al-
ways have axioms Oa «+ —~O—a and K. O(a —
B) — (Oa — 00f), and aiso the ruie of necessitation
RN. ”if F—a« then FOa” for atomic modal operators.
Using definitions of ”;” and "y”, it can easily be shown
that this aiso holids for aii operaiors [aj, aeZ. Such
multimodal systems can be called normal. Note that
classical sub-systems ([Chellas, 1980]) can also be
considered ([ Catach, 1988]).

The important point is that the sub-systems L{[])
may be normal systems of different types, as in the
Alice-and-Bob example. If all the sub-systems L({J)
are identical to a given system L, of traditional modal
logic, we say that L is a homogeneous muitimodal
system, based on L,

CCE =

(O — O,8)

-

Anviunht
ucH (81

2.3. Axioms
In addition to axioms for A and Kleene operations:

AJe <«

[a;bJa «» [a][blx

[a U b]oc - ([a]oc A [b]oc)
our ciass of multimodal logics is obtained by consid-
ering systems axiomatized by any finite number of

axioms schemes of the following type:
<a>[bla —» [c]l<d>a

where a, b, ¢, d denote arbitrary parameters. If we
refer to axiom GkLmr Ok[Qlg — I"ImA"rv of modal

logic ([Chellas, 19807), our axiom will be noted

G2be9 and called the ”a,b,c,d-incestuality” axiom.
Note that Gab.c.d jg equivalent to God.2.b,

The faci that a, b, ¢, d may be compiex parameiers
{i.e. built from atomic ones, using ”;” and "U"”) make
axioms G2P<d vyery general. In particular, G2.b.c.d
covers Grimi and therefore covers the traditionai
D, T, B, 4, 5 axioms of modal logic ll'(“hpllac. 10801\
For example if a=b=A and ¢c= d A, we get the
symmetry axiom B for OO =[A]. Consequently, each
normal sub- e\/cfnm L{C]Y can be any of the fifteen

well-known modal s;éthé;n;—ger;evra“ted by D'T!5~4
and 5, e.g. KD, KT, KT4 (S4), KTB4 (S5), KD45, etc.

1If tha aviemalisoaline Ay ~AF | ~nnni anly in tha

11 LT aAalivHiauLauivll A vl . \;UIIOIS{D vty it lIIU
superposition of all the axiomatizations Ax([J) of the
sub-systems L([]), we say that L is a simple multi-
modai logic, and Ax is separabie. If Z,={1,2 ... n},
pynmnlo: of non- mmnlp systems can be gl\lPh h\l

consrdermg the follownng Ga.b.d interaction axioms:

O — O

O — (O,x — Oy

[

)
(relative inclusion)

]

e oo O (equivalence)

- PUSERPEEN soe B G fonmai arlisessmtinm)

- & — Ly 1 \/2(1 \sCrili-alyjuricuuii)

o Oou— Qu (common seriality)

e O,0,0 - 0,0« (semi-commutativity)
¢ Do {(Oana O (union)

e Oy« 0,0, (composition)

Finaliy, we aiso consider ihe foiiowing pair:

[bJa — ([a]x A [a][b]o)
[bJ(x = [aJa) — ([a]ox — [D])

called the a,b-induction axioms. Taking b=a", we
get the Segerberg axioms for PDL [Kozen and
Parikh, 193‘!], [Harei, 1934]). |dr\|ng a=1uU2vu ..U
n, we get the axiom for common operators C or D of
epistemic logics ([Halpern and Moses, 1985]
{Lehmann and Kraus, 1886]). We can aiso get the
induction axioms of temporal logics in this way. Note
that the first one, written [b]x — [a U (a;b)]x, is of
lyTJE G2bed,

Thus, the above axiom schemes cover many ex-
isting systems of modal or multimodal logic. Also,
they make the generalion of a large ciass of new
ones possible; our Alice-and-Bob story nrn\ndpq such

an example.

2.4 Notations

The standard notations of Lemmon can be easily ex-
tended to multimodal systems, by indexing the sub-
systems L(J). For exampie, our Alice-and-Bob
system will be noted (KD45), (KD), K, , , if K;; denotes
Dzoc - O, Slmllarly, (KD45)§"’(KD)§"" would desig-
nate a simple multimodal system with n operators of

hlno KDA45 and m onorataors of h/no KD. Note that for
W40 anG m operaielrs o) AN wote thai, 1o}

any integer n>0, K" is the smanest normal n-modal
system (simple or not).

2.5 Models

Kripke semantics easily extends to multimodal log-
ics. A multi-(relational) frame is a pair F= <W &>,
where W is a set of nnc:clhlp worlds and 2 is a set



of binary relations over W; in that case, F is said to
be the join of the frames <W,R> with Re®. If C,,
C, ... C, is a family of classes of frames, the join of
these classes is the class C of multi-frames
<W,{R.,R, ... R.}> such that <W,R,> belongs to C,
for each 1<i<n.

If L is a normal multimodal system, F= <W, 2> is
said to be a multi-frame for L if there exists a map-
ping p from X to & satisfying:

* ph) =i

° pl{aub) = pla) U pb)

* p(ab) = p(a) | p(b)

where i={{w,w) / weW} is the identity (or diagonal)
relation over W, and “"U” and ”|” denote the usual
union and composition of binary relations.

Multi-models M= <W Z,V> are defined, as ex-
pected, by introducing an assignment function V from
Wx®, to {0,1}. Truth of formulas in worlds of multi-
models, written (M,w) E «, is defined inductively as
usual; thus, for every parameter a and formula a, we
have:

Mw) | [ale  iff (Mw) kE o for every w’ such
that (w,w’)ep(a)

Satisfiability and validity in multi-models, multi-
frames and classes of multi-frames, for formulas or
sets of formulas, are defined in the usual way. We
omit details. In the following, multi-frames and
multi-models are defined directly as <W,p> and
<W,p,V> respectively.

3 Determination

We use the usual operations “€” (inclusion), "1~
(converse), "U” (union), ”|” (composition) and ”+”
(transitive closure) over binary relations. If <W,p>
is a multi-frame for L, and if a, b, ¢, d are parameters
in Z, we define a,b,c,d-incestuality as being the fol-
lowing property:

if (w,w’)ep(a) and (w,w"’)ep(c), then there exists
w”” such that (w’,w””)ep(b) and (w”’',w’")ep(d).

Formally, this yields p(a)! | p(c) < p(b} | p{d)"!, which
can be pictured as follows:

pla) w' o pb)
/ ~ -
w wlll
Pad
-
plc) w'  pld)
Theorem:
Let L be a normal multimodal system built from
a finite set of axioms G269 Then L is deter-
mined by the class of multi-frames having the
corresponding a,b,c,d-incestual properties.

As usual, soundness is easily obtained. To show
completeness, we use the proper canonical (multi-)
frame F¢ = <Wepe> of L, defined as follows:

1. We is the set of all maximal consistent sets of L,
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2. forevery V,V’ e Weand ae X, p<(a) is defined by:
(V.V')epc(a) iff {a/[alaeV }cV’

and we show that (i) Fc is a frame for L, and (ii) if
Gab.cd js an axiom of L, then Fe is an a,b,c,d-incestual
frame. See [Catach, 1988] for a detailed proof.

As an example, the above theorem shows that our
Alice-and-Bob system (KD45)(KD)K, , is determined,
as expected, by the class C of multi-frames
<W.{R.R,}> where R, is serial, transitive and
euclidean, R, is serial, and R, € R,. Note that, as far
as soundness is concerned, we can give a very gen-
eral result for all simple multimodal logics:

Theorem (Soundness):
Let L be a simple multimodal system, such that for
every [JeOPS,, L([1) is sound with respect to a
class Cp, of frames. Then L is sound with respect
to the join C of the classes Cj .

4 Induction

We expect that multimodal systems containing one
or more pairs of a,b-induction axioms (see 2.3)
should be determined by the classes of multi-frames
<W.,p> where p(b)=p(a)*. Soundness can indeed
be stated for these muitimodal systems, i.e. a,b-in-
duction axioms are always valid in multi-frames
<W,p> where p{b)=p(a)*. But completeness can-
not be obtained using the proper canonical model;
all we can show is that if an a,b-induction holds in L,
then ps(a)* < p<(b), and Segerberyg axioms are not
strong enough to capture transitive closure, i.e. to
show the converse p(b) < p<(a)*. In fact, there exist
(infinite) sets of formulas which are consistent in a
system L containing an a.,b-induction axiom but
which cannot be satisfied in any model for which
p(b) € p(a)*. This result was already known for dy-
namic logics with the "*” operator, using results from
dynamic algebras ([Parikh, 1981], [Harel, 19847).

The easier way to handle induction is to extend the
Fischer-Ladner filtrations method for dynamic logic
([Fischer and Ladner, 19791, [Harel, 19847]), which
does vyield completeness results {and also
decidability and complexity ones at the same time)
for some multimodal systems. But no general result
can be enounced easily, the problem being that
a,b,c,d-incestuality is not always preserved during
filtration, as in DPDL ([Ben-Ari, Halpern and Pnueli,
1982]). The reader is referred to [Catach, 1988] for
a more careful study of multimodal systems with in-
duction axioms.

5 Other topics

® As mentioned above, extending the filtrations
method to multimodal logics yields several re-
sults, namely the finite model property,
decidability, and even complexity. As for the last
one, we expect that the complexity of the validity
problem should be PSPACE-complete for multi-
modal systems without any induction axioms, and



EXPTIME-complete if at least one induction axiom
is considered. Complexity should also depend
very much on the considered formulas.

e The Lindenbaum algebra associated with a multi-
modal logic is a boolean algebra with unary op-
erators, in the sense of [Jonsson and Tarski,
1951]. Therefore, studying multimodal algebras
yields many interesting resuits, such as an ele-
gant proof of determination in some cases.

® Other types of frames and models can be consid-
ered for normal multimodal logics, namely multi-
dimensional ones <W xW,x xW L {R,R, ...
R,}>. Protocols, as defined in [Fischer and
Immerman, 1987], are examples of such models.

Conclusion

This paper presents some formal developments of
multimodal logics, which are general modal systems
with arbitrary sets of modal operators. A class of
axioms, and especially of interaction axioms, has
been proposed, generating a wide class of systems,
for which a general determination theorem has been
given. Problems when dealing with induction axioms
have also been indicated. Many other aspects of
muitimodal logics remain to be investigated, as has
already been done for standard modal logics; some
of them are studied in [Catach, 1988].
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