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Abstract 
This paper studies what we call normal multimodal 
logics, which are general modal systems with an 
arbitrary set of normal modal operators. We em- 
phasize the importance of non-simple systems, for 
which some interaction axioms are considered. A 
list of such acceptable axioms is proposed, among 
which the induction axiom has a special behavior. 
The class of multimodal logics that can be built 
with these axioms generalizes many existing 
modal, temporal, dynamic and epistemic systems, 
and could also suggest new formalizations using 
modal logics. The main result is a general deter- 
mination theorem for these multimodal systems, 
which establishes a correspondence between our 
axioms and conditions over Kripke frames; this 
should avoid the need for showing determination 
each time a new system is considered. 

1 (Introduction 

I.1 Presentation 

During the last decade, it has been widely shown 
how modal logics provide suitable tools for various 
theoretical formalizations in computer science. In 
fact, many modal systems can be found in the litera- 
ture, and there are a number of areas where such 
logics are used. Most popular readings of the modal 
formula q a are, for example, “0~ is necessarily frue” 
(standard modal logic), “a will always be true” 
(temporal logic), “X knows fhaf a” or “X believes that 
a” (epistemic logic), or “after executing some pro- 
gram a, a will be frue” (dynamic logic), etc. 

In general, only one fype of modality is considered, 
i.e. only one aspect (time, knowledge, programs, . ..) 
is treated at a time. But relatively few attempts have 
been made to employ all these systems simultane- 
ous/y; on the other hand, if modal logics are to be of 
any practical interest, and especially in Al, it seems 
very natural to ask whether these different 
modelizations can be “put together”, so we could talk 
about necessify. time, know/edge, belief, actions, 
plans, deterministic programs, concurrent programs, 
obligations, conditionals, etc, wwithin the same lan- 
guage. 

Thus, attempting to define a rigorous and unified 
framework for such systems, which can be called 
mu/f/modal logics {an abbreviation for multiple modal 
logics), is the initial motivation for our work. There- 
fore, our first task is to define syntactic, axiomatic 

and semantic bases for these systems. However, a 
very desirable feature of multimodal systems lies in 
their ability to represent some interrelations between 
the different aspects (i.e. between modalities lJ,,Cl, 
. ..). such as the well-known “If X knows that a, then 
X believes that a” of epistemic logic. Therefore, 
some questions that naturally arise in considering 
multimodal logics are: 

1. Which combinations of modal systems should be 
examined? 

2. What kinds of interactions between these systems 
make sense? Should they be specified seman- 
tical/y or axiomatically? 

3. Can we develop a systematic approach to these 
multimodal systems, and extend standard tech- 
niques developed for traditional modal logic? 

It is without the scope of this paper to provide ap- 
propriate answers to points (1) and (2), since it de- 
pends very much on the intended formalizations, and 
moreover these questions may be subject to philo- 
sophical discussions. The only thing we can say is 
that some particular combinations, such as know- 
/edge and belief, or know/edge and time, are certainly 
of primary interest, especially to Al. 

So we will focus on point (3), and try to follow a 
systematic approach, as in [Chellas, 19801 for 
standard modal logic. Though multimodal logics 
could be entirely defined by their semantics, in a 
model-theoretic way, as in [Thomason, 19841 or 
[Halpern and Shoham, 19861 (and this approach 
seems particularly relevant when time is consid- 
ered), we prefer a more axiomatic approach. To be- 
gin with, we propose a first class of interaction 
axioms Gv~,~.~J’, with some examples. Then, a general 
determination theorem is given for the normal multi- 
modal systems generated by these axioms; the proof 
uses an extension of the canonical model method for 
modal logics. To handle induction, however, this 
method fails, and we have to use the Fischer-Ladner 
filtration method, as will be indicated. 

? .2 Expressiveness: examples 

One main feature of multimodal languages is their 
ability to express complex modalities, obtained by 
composing modal operators of different types or, 
more generally, by using forma/ operations over 
modalities. For example, “Bob knows if will be the 
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case that” or “Bob knows it is impossible for Alice to 
believe that” are such complex modalities. 

To give a very simple example, let us consider a 
bi-modal epistemic system L, with two agents A/ice 
and Bob, and two belief operators K, and KIL: 

K,a : “A/ice believes a” 
K,a : “Bob believes a” 

Suppose that Alice and Bob have, as in real life, 
different ways of reasoning about their beliefs; for 
example, Alice may be good at both positive and 
negative introspection, whereas Bob never performs 
any kind of introspection. With the traditional 
epistemic approach, K, is then a KD45 modal opera- 
tor, whereas K, is simply a KD operator. Suppose 
also that the following assertion holds: 

“A/ice believes everything Bob believes”, 
for example if Alice is a little bit naive, or if she is 
deeply in love with Bob (despite his lack of 
introspection capabilities!). Then, we would like the 
axiom scheme j-(K,a --+ K,a) to hold in our system 
L. In short, in our terminology the resulting bi-modal 
system will be not homogeneous (since K, is of type 
KD45 and K, of type KD) and with interactions (since 
the above axiom links K, and K2). 

Other examples of interaction principles can be 
given in considering: 

knowledge and belief: 
“If X knows that Y knows that a, then X knows that 
a” 
“If X believes cc, then X believes fhat he knows CI” 
knowledge and time ([Halpern and Vardi, 1986)): 
“lf X knows that in the next state a will be true, 
then in the next state he will know thaf CI is true” 
belief and time ([Lehmann and Kraus, 1986)): 
“If X believes that tomorrow a will be true, then 
he believes that tomorrow he will still believe that 
a is true” 

As we will see, our 
action axioms. 

results apply to such 

1.3 Related work 

Dynamic logic ([Parikh, 19811, [Harel, 19841) and 
process logic ([Harel, Kozen and Parikh, 19811) al- 
ready use families of modal operators, denoted by 
[a], where a represents a program. Also, epistemic 
logics ([Halpern and Moses, 19851, [Halpern, 19861) 
provide modal languages with several operators 
K,,K, . . . K,. Both are, in fact, multimodal logics; but 
both make the two following important restrictions: 
0 they are homogeneous systems, which means 

that every modal operator ([a] or KJ belongs to 
the same system of traditional modal logic (e.g. 
T, S4, S5, . ..) 

* they form systems without any interactions, which 
means that, roughly speaking, each modal oper- 
ator [a] or K, is totally independent (axiomatically 
or semantically) of the others. 

Temporal logics, in both their linear or branching- 
time versions, can also be viewed as special cases 
of multimodal logics, since many operators are in- 
volved in the language. In fact, these operators 
(some of which being not normal) are linked by very 

special connections, generally indicated by the se- 
mantics; for example, operators 0 (“next”) and Cl 
(“always”) of linear-time logic simply interact by a 
transitive-closure correspondence. 

Beside these well-known types of iogics, some 
other multimodal systems have been explored; the 
reader is referred to [Cohen, 19601, [Rennie, 19701, 
[Farifias, 19831, [Thomason, 19841, [Fariiias and 
Orlowska, 19851, [Lucas and Lavendhomme, 19851, 
[Lehmann and Kraus, 1986], [Halpern and Vardi, 
19861, [Halpern and Shoham, 19861, [Fischer and 
Immerman, 19871. Most of them fall within the scope 
of the multimodal systems we consider here, as the 
reader may verify. 

2 Formal syntax and semantics 

2.1 Language 

A propositional multimodal language ZE’ is deter- 
mined by a set a0 of propositional variables p,q . . . . a 
set C, of atomic parameters A, B . . . . “U” (union) and 
“;” (composition) operations over parameters, the 
boolean connectives 1 A v -+ ++ and, finally, the 
“[I” construct for modal operators. We also distin- 
guish an element A in C, to be the neutral element for 
the composition of parameters, i.e. to be the identity 
parameter. The set C of all abstract parameters is 
built from C, and the “U” and “;” operations, and the 
set cf, of all formulas is built from aO, the boolean 
connectives, and the rule “if a is a parameter and a 
a formula, [ala is a formula”. As usual, <a > =.@f 
-[al-a. 

The set OPS, of atomic modal operators contains 
operators [A] and <A > for AEC,; in the following, 
q EOPS, means that Cl =[A] with Ad,, and JZ’(O) 
will designate the sub-language of %built from (A) 
instead of C,. We also define 8 = [i] = <A > as being 
the identity operator. 

To capture finite sets OPS,= (El ,,O, . . . Cl_,.,), we let 
&={I,2 . . . n), writing q i instead of [I]; usual 
epistemic systems can be obtained in this way. To 
get traditional modal logic, we simply let C,= {I). 
To get dynamic logic, we just add the Il*,, (iteration) 
and “?” (test construction) operations to the lan- 
guage. Further extensions, as proposed in 
[Berman, 19791, could also be incorporated. 

Depending on the desired interpretations, some 
subsets of parameters in C, can be used to represent 
various concepts such as rational agents, programs, 
actions or even space or time dimensions. Also, a 
fundamental remark is that Kleene operations “;” and 
“u”, along with (3, are always definable with regard to 
modal operators, using: 
: I”d” =Def o! 

,; . . . ;,,,)a g,-&f 0, . . . &a 

. (,, , i_, . . . t, q &t =Def q ,a ,-, . . . A Ona 

Thus, we can always assume the presence of these 
operations in the language and it allows us, for ex- 
ample, to consider that formulas 0 Oa or (Cl, q ,a A 
q ,a A a) can always be represented by < I;1 >a and 
[(1;2) U 3 U A]cf respectively. 
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2.2 Systems of multimodal logics 

If L denotes a multimodal language .-%’ with an 
axiomatization, i.e. a set Ax of axioms and inference 
rules, then, for q EOPS,, we define L(O) to be the set 
(a E Z(O) / a is a theorem of L) and Ax(O) to be the 
subset of Ax containing the axioms and rules of Ax 
which are either non-modal or involve only formulas 
belonging to .ZZ’(Cl). 

The first problem is to know whether L(U) can in- 
deed be viewed as a “sub-system” of L, i.e. to know 
whether L(U) can be axiomatized, and whether 
AX(U) can be used for this purpose. Conversely, can 
we >just “put together” separate axiomatizations for 
each sub-system L(D); to get an axiomatization of 
L? A notion of separ;abilify is therefore needed: 
Definition: 

An axiomatization Ax is said to be separable if, for 
each cl EOPS,, L(U) =TH(Atc(O)), where 
TH(Ax(IJ)) is the setI of theorems generated by 
the> axiom and inference rules of AX(O). 

An example of non-separable axiomatization is: 
; $=+%+ (0 ,a - cl ,P) 

&(a ---, 8; -+ (&a -+ fJ,P) 
I&%-, El a 

since Cl,& + a is i’n L(0,) but is not derivable from 
Ax(CI,), which only contains axiom (3). This point will 
not-be fully examined here (see [Catach, 19881). 

Using separable axiomatizations, we will take each 
sub-system L(O) as being at least normal, so we al- 
wa-ys have axioms q lcl ++ 7 () 7 cc and K. lJ(a -+ 
p) --+ (Oa -+ LIP), and also the rule of necessitation 
RN. “if b then boa” for atomic modal operators. 
Using definitions of “;” and “u”, it can easily be shown 
that this also holds for all operators [a], a&Z. Such 
multimodal systems can be called normal. Note that 
classical sub-systems ([Chellas, 19801) can also be 
considered ([Catach, 1988)). 

The important point is that the sub-systems L(0) 
may be normal systems of different types, as in the 
Alice-and-Bob example. If all the sub-systems L(0) 
are identical to a given system L, of traditional modal 
logic, we say that L is a homogeneous multimodal 
system, based on L,. 

2,3. Axioms 

In addition to axioms for ,I and Kleene operations: 
[d]a f) 0! 
[a;b]a * [a][b]a 
[a U b]a f-, ([ala A [b]a) 

our class of multimodal logics is obtained by consid- 
ering systems axiomatized by any finite number of 
axioms schemes of the following type: 

<a> [b]a --+ [c]<d>a 

where a, b, c, d denote arbitrary parameters. If we 
refer to axiom Gh~‘~mJ?. OkCl’a -+ q mOna of modal 
logic ([Chellas, 1980]), our axiom will be noted 
Ga,b,c~d and called the “a,b,c,d-incesfuality” axiom. 
Note that Ga+!‘~cld is equivalent to Gcvd+lb. 

The fact that a, b, c, d may be complex parameters 
(i.e. built from atomic ones, using “;” and “U”) make 
axioms Ga,b,c,d very general. In particular, Ga,b,c,d 
covers GkJJ)J, and therefore covers the traditional 
D, T, B, 4, 5 axioms of modal logic ([Chellas, 19801). 
For example, if a=b=A and c=d=A, we get the 
symmetry axiom B for Cl =[A]. Consequently, each 
normal sub-system L(0) can be any of the fifteen 
well-known modal systems generated by D, T, B, 4 
and 5, e.g. KD, KT, KT4 (S4), KTB4 (S5), KD45, etc. 

If the axiomatization Ax of L consists only in the 
superposition of all the axiomatizations Ax(O) of the 
sub-systems L(O), we say that L is a simple multi- 
modal logic, and Ax is separable. If X,=(1,2 . . . n), 
examples of non-simple systems can be given by 
considering the following Gasb.csd interaction axioms: 

* q l2a-+Cl,a (inclusion) 
e q ,a -+ (O,a --+ q l,a) (relative inclusion) 
* lJ2a++C.l,a (equivalence) 
0 a-+ q ,(),a (semi-adjunc tion) 
* q l,a -+ (),a (common seriality) 
* q ,O,a-, q i20,a (semi-commutativity) 
@ q l,a +-+ (O,a A q l,a) (union) 
l q l,a+-+ q l,O,a (composition) 

Finally, we also consider the following pair: 

Cbla -+ (Cala A CalCblrv-1 
VW -+ Cala) -+ (Cala -+ PIa) 

called the a,b-induction axioms. Taking b=a*, we 
get the Segerberg axioms for PDL ([Kozen and 
Parikh, 19811, [Harel, 19841). Taking a=1 U 2 U . . . U 
n, we get the axiom for common operators C or D of 
epistemic logics ([Halpern and Moses, 19851, 
[Lehmann and Kraus, 19861). We can also get the 
induction axioms of temporal logics in this way. Note 
that the first one, written [b]a -+ [a U (a;b)]a, is of 
type G3.blcJ’. 

Thus, the above axiom schemes cover many ex- 
isting systems of modal or multimodal logic. Also, 
they make the generation of a large class of new 
ones possible; our Alice-and-Bob story provides such 
an example. 

2.4 Notations 

The standard notations of Lemmon can be easily ex- 
tended to multimodal systems, by indexing the sub- 
systems L( Cl). For example, our Alice-and-Bob 
system will be noted (KD45), (KD), K,,, , if K,., denotes 
q ,a -+ Cl ,a. Similarly, (KD45)p) (KD)$m) would desig- 
nate a simple multimodal system with n operators of 
type KD45 and m operators of type KD. Note that, for 
any integer n>O, K(“) is the smallest normal n-modal 
system (simple or not). 

2.5 Models 

Kripke semantics easily extends to multimodal log- 
its. A multi-(relational) frame is a pair F = < W,.% >, 
where W is a set of possible worlds and ,692 is a set 
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of binary relations over W; in that case, F is said to 
be the join of the frames < W,R> with RE@. If C,, 
c 2 . . . C, is a family of classes of frames, the join of 
these classes is the class c of multi-frames 
c W,{R,,R, . . . R,) > such that <W,R, > belongs to Ci 
for each Is&n. 

If L is a normal multimodal system, F= <W,,@> is 
said to be a multi-frame for L if there exists a map- 
ping p from C to a satisfying: 
+ p(d) = i 
* p(a U b) = p(a) U FMO 
l p(a;N = p(a) I ~(4 
where i = ((w,w) / WEW} is the identity (or diagonal) 
relation over W, and “u” and “I” denote the usual 
union and composition of binary relations. 

Multi-models M = < W,.@,V> are defined, as ex- 
pected, by introducing an assignment function V from 
Wxd[>, to (0,l). Truth of formulas in worlds of multi- 
models, written (M,w) b a, is defined inductively as 
usual; thus, for every parameter a and formula a, we 
have: 

(M,w) b [ala it7 (M,w’) /= a for every w’ such 
that (w,w’)Ep(a) 

Satisfiability and validity in multi-models, multi- 
frames and classes of multi-frames, for formulas or 
sets of formulas, are defined in the usual way. We 
omit details. In the following, multi-frames and 
multi-models are defined directly as <W,p > and 
< W,p,V > respectively. 

3 Determination 

We use the usual operations “c” (inclusion), n-lrr 
(converse), “U” (union), “1” (composition) and N+N 
(transitive closure) over binary relations. If < W,p > 
is a multi-frame for L, and if a, 6, c, d are parameters 
in ZZ;, we define a,b,c,d-incestuality as being the fol- 
lowing property: 

if (w,w’)EP(a) and (w,w”)ep(c), then there exists 
w”’ such that (w’,w”‘)~p(b) and (w”,w”‘)q(d). 

Formally, this yields P(a)-’ 1 p(c) c p(b) 1 p(d)-‘, which 
can be pictured as follows: 

Theorem: 
Let L be a normal multimodal system built from 
a finite set of axioms Ga,b,c,d. Then L is deter- 
mined by the class of multi-frames having the 
corresponding a,b,c,d-incestual properties. 

As usual, soundness is easily obtained. To show 
completeness, we use the proper canonical (multi-) 
frame Fc = <WC@> of L, defined as follows: 

1. WC is the set of all maximal consistent sets of L, 

2. for every V, V’ E WC and a E C, p’(a) is defined by: 
(V,V’)Epc(a) iff ( a / [a]aEV } c V’ 

and we show that (i) Fc is a frame for L, and (ii) if 
Ga.b.cJ is an axiom of L, then Fc is an a,b,c,d-incestual 
frame. See [Catach, 19881 for a detailed proof. 

As an example, the above theorem shows that our 
Alice-and-Bob system (KD45),(KDXK,,, is determined, 
as expected, by the class C of multi-frames 
<W,(R,,R,) > where R, is serial, transitive and 
euclidean, R, is serial, and R, c R,. Note that, as far 
as soundness is concerned, we can give a very gen- 
eral result for all simple multimodal logics: 

Theorem (Soundness): 
Let L be a simple multimodal system, such that for 
every q IEOPS,, L(0) is sound with respect to a 
class C, of frames. Then L is sound with respect 
to the join C of the classes C, , 

4 Induction 

We expect that multimodal systems containing one 
or more pairs of a,b-induction axioms (see 2.3) 
should be determined by the classes of multi-frames 
< W,p > where p(b) =p(a)+. Soundness can indeed 
be stated for these multimodal systems, i.e. a,b-in- 
duction axioms are always valid in multi-frames 
<W,p > where p(b) =P(a)+. But completeness can- 
not be obtained using the proper canonical model; 
all we can show is that if an a,b-induction holds in L, 
then p’(a)+ E pc(b), and Segerberg axioms are not 
strong enough to capture transitive closure, i.e. to 
show the converse p’(b) c p”(a)+. In fact, there exist 
(infinite) sets of formulas which are consistent in a 
system L containing an a&induction axiom but 
which cannot be satisfied in any model for which 
p(b) c p(a)+. This result was already known for dy- 
namic logics with the a*rr operator, using results from 
dynamic algebras ([Parikh, 19811, [Harel, 19841). 

The easier way to handle induction is to extend the 
Fischer-Ladner filfrafions method for dynamic logic 
([Fischer and Ladner, 19791, [Harel, 1984]), which 
does yield completeness results (and also 
decidability and complexity ones at the same time) 
for some multimodal systems. But no general result 
can be enounced easily, the problem being that 
a,b,c,d-incestuality is not always preserved during 
filtration, as in DPDL ([Ben-Ari, Halpern and Pnueli, 
19821). The reader is referred to [Catach, 1988) for 
a more careful study of multimodal systems with in- 
duction axioms. 

5 Other topics 

* As mentioned above, extending the filtrations 
method to multimodal logics yields several re- 
sults, namely the finite model property, 
decidability, and even complexity. As for the last 
one, we expect that the complexity of the validity 
problem should be PSPACE-complete for multi- 
modal systems without any induction axioms, and 
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EXP7/ME-complefe if at least one induction axiom 
is considered. Complexity should also depend 
very much on the considered formulas. 
The Lindenbaum algebra associated with a multi- 
modal logic is a boolean algebra with unary op- 
erators, in the sense of [Jonsson and Tarski, 
19511. Therefore, studying multimodal algebras 
yields many interesting results, such as an ele- 
gant proof of determination in some cases. 
Other types of frames and models can be consid- 
ered for normal multimodal logics, namely multi- 
dimensional ones <WlxW2x . . . xW~,{R,,R, . . . 

R”3 ‘. Protocols, as defined in [Fischer and 
Immerman, 19871, are examples of such models. 

Conclusion 

This paper presents some formal developments of 
multimodal logics, which are general modal systems 
with arbitrary sets of modal operators. A class of 
axioms, and especially of interaction axioms, has 
been proposed, generating a wide class of systems, 
for which a general determination theorem has been 
given. Problems when dealing with induction axioms 
have also been indicated. Many other aspects of 
multimodal logics remain to be investigated, as has 
already been done for standard modal logics; some 
of them are studied in [Catach, 19881. 
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