
Satisfying First-Order Constraints About Time Intervals

Peter B. Ladkin
Kestrel Institute

1801 Page Mill Road
Palo Alto, Ca 94304-1216

Abstract

James Allen defined a calculus of time intervals in [A1183],
as a representation of temporal knowledge that could be
used in AI. We shall call this the Interval Culculus. In
his paper, Allen investigated specification and constraint
satisfaction in the Interval Calculus. Other constraint-
satisfaction algorithms for intervals have considered sub-
classes of Boolean formulas only. The methods herein ex-
tend consistency-checking and constraint-satisfaction pro-
cedures to finitely many arbitrary quantified formulas in
the Interval Calculus. We use a first-order theory from
[LadMad87.1, LadMad88.11, that precisely corresponds to
Allen’s calculus. We show that every first-order constraint
expressible in this theory is equivalent to a Boolean con-
straint of a particular restricted form. We use this result to
obtain a procedure for detecting consistency of arbitrary
quantified formulas, and finding intervals that satisfy ar-
bitrary consistent formulas of the Interval Calculus.

1 Introduction

We are concerned here with constraint satisfaction in the
Interval Calculus defined in [A6183]. Allen’s calculus en-
compassed an approach to temporal specification and the-
orem proving new to AI, though his thirteen basic rela-
tions had been used elsewhere (e.g. [vvBen83J. Allen con-
tributed a constraint satisfaction algorithm, which used
the composition table for the relations to infer path-incon-
sistencies in interval constraint graphs. Interval represen-
tations were subsequently used for representing time for
automated planning e.g. [AZl84, AZZKau85, PeZAZb871.

In [LadMad87.1, LadMad88.l]we obtained results which
show that the calculus is the complete theory of intervals
over the rational numbers, and has only this one countable
model, up to isomorphism. Thus we may use semantic
techniques to satisfy constraints in the calculus.

In this paper, we present procedures for quantifier-
elimination, consistency checking (and therefore deciding),
and providing satisfying assignments for consistent formu-
las in the full first-order theory of the Interval Calculus.
Thus arbitrary quantified formulas in the Interval Calcu-
lus may be handled with the methods described here. Pre-
vious constraint-satisfaction procedures have only consid-
ered subclasses of the formulas without quantifiers [AJJ83,
MacFre85, Va187, Be187].

Briefly, by the results of [LadMud88.1] we can trans-
late a sentence in the interval theory into a sentence in
the theory of unbounded dense linear order that expresses
the ‘same’ constraint. We may now eliminate quantifiers
in the formula in the theory of unbounded dense linear
order, and translate the formula back into an interval for-
mula. The translation from atomic formulae in the theory
of unbounded dense linear order does not introduce any
quantifiers, so the resulting interval formula is quantifier-
free, and equivalent to the original formula. The resulting
quantifier-free formula has a certain restricted form, and
may be checked for consistency by a variety of known tech-
niques that operate directly on restricted quantifier-free
interval formulae. However, an intuitively better method
for checking consistency stops with the quantifier-free for-
mula in the theory of dense unbounded linear order and
checks this formula directly for consistency, by a simple
test, without translating back to intervals.

There is practical interest not just in checking con-
straints for consistency alone, but in trying to satisfy the
constraints, i.e. find an interpretation of the free variables
in the constraining formula that will render this formula
true in the intended model. We show that we may combine
quantifier-elimination with a simple assignment procedure
to obtain an assignment to free variables of a consistent
interval formula that satisfies the formula. We call such a
procedure a satisfaction procedure. The satisfaction proce-
dure utilises the translation into the rational ordering and
the quantifier-elimination there. If the formula is consis-
tent, a collection of rationals is found which satisfies the
quantifier-free formula. These rationals are then used as
endpoints for intervals which satisfy the original interval
formula.

It is a matter for further research to decide between the
various available techniques for satisfying Boolean formu-
las in the interval theory. Our contribution to this research
is to present not just a consistency algorithm but a sat-
isfaction algorithm for a much larger class of constraints
than has been considered before in the context of interval
theories. Proofs of our results may be found in [Lad87.5].

1.1 Definitions

A structure is a set of objects, along with with relations
on those objects and total functions on the set, with all

5 I 2 Knowledge Representation

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

arguments and values in the set, and distinguished objects
called constants. We denote structures in the usual way,
using angle brackets. The rational numbers & with the
relation of less-than on the rationals is denoted by (Q, <).
We call this structure RAT.

INT(&) is the structure in a language with equal-
ity with thirteen binary relation primitives, introduced in
[LadMad&?. 11, and below. (We shall sometimes refer to
1INT(Q) as 1NT.) The domain of INT(&) is

and the primitive relations are the relations defined by
Allen [A1183]. Th e b inary relations are thus sets of pairs of
pairs of rationals. The following definitions of the relations
are from LLadMad88.11, (Allen defined them over R, not
Q, but it doesn’t matter [LadMad87.1, LadMad88.lfi.

Id(L) = (((qy), (x’, y’)) : x = x’ < y = y’ E Q)

Id(L) is the identity relation on the domain L. The
following six relations are primitives:

P = {((x, Y), (x’, Y’)) : x < Y < 8’ < Y’ E &I

D = {((x> Y>, (~‘3 Y’>> :x'<x<y<y'~Q}

o = {((x, y), (x’, y’)) : x < 2’ < Y < Y' E &I

M = (((x, y>, (x’, y’)) : x < Y = x’ < Y' E Ql

5 = (((x, y), (x’, y’)) : x = 2’ < Y < Y' E Q>

F = (((2, y), (x’, y’)) : x’ < x < Y = Y’ E &I

The conuerse of a binary relation R is
R” = ((y, x) : (x, y) E R}. The remaining six relations
are the conuerse relations of the above six,
so INT(Q) h as d omain L and relations Id(L), P, D, 0,
M, S, F, P-, D-, 0’, M-, S-, F-.

We use the notation

M k 4(x1 + al, xra t a,}

where the free variables of 4 are included in the list x1, . . , xn ,

and al, .,., a, are elements of the domain of M, to mean
that the formula 4 is true in structure M under all as-
signments that assign al to ~1, . . . , ara to x,. We shall
implicitly assume that the variables x1, x, are all dis-
tinct.

The theory of the model M, denoted by Th(M), is the
set of all sentences in the language of M that are true in
M. Th(M) is complete (by definition!), and of course M is
a model for Th(M).

Given an interval i = (x, y) in the domain of INT(Q),
we define iL = x and iR = y to be the projections of i onto
its left and right endpoints in Q.

The Axiomatisation of Th(lNT(Q))

In [LadMad8?‘.1, LadMad88.11 we gave a collection of ax-
ioms for Allen’s calculus, in a first-order language with
equality and 13 binary relation symbols. We showed that
the theory T defined by the axioms is countably categor-
ical, hence complete and decidable, and ‘the’ countable
model is INT(Q) (i.e. all models are isomorphic to this
model). From this is follows that T = Th(INT(Q)), so
we may use semantic techniques from the theory of dense
unbounded linear order to derive constraint satisfaction
algorithms for the interval calculus.

2 The Translations

We introduce a translation (-*) from formulae of the lan-
guage of INT to formulae of the language of RAT, and
another translation (-t) from Boolean formulae of the lan-
guage of RAT to Boolean formulae of the language of INT
that preserves satisfiability, and furthermore such that ob-
jects satisfying the image of a formula C$ under one of these
mappings are easily computable from objects satisfying 4.

2.1 From INT to RAT

We define a translation (-*) from a formula r$ in the lan-
guage of INT to a formula CJ~* in the language of Q such
that

INT I= 4{~1 + 6,) z tin} n

iff

RAT k

+*(X1 + (ii)L, --.-, Xn + (in)L, Yi + (il)R, ---.,

Yn + (in>rz}
where the xi and yi are new variables not occurring in 4.

For convenience, we use three infinite sequences of dis-
tinct variables el, .., en, .., fi, .., fn, .., $1, ..,gn, .., We shall
consider formulas in the language of INT to contain vari-
ables only from the list of e,, and formulas in the language
of RAT only to contain variables from the two other lists.
The intuitive reason for the three different lists of variables
is that we shall be translating assertions about intervals
into assertions about their left and right endpoints, and
vice versa, and so we shall associate each interval variable
en with corresponding variables fn for its left endpoint,
and gn for its right endpoint. This is a useful piece of
bookkeeping. We use the metavariables z, UI to range over
the list of e,‘s, metavariables x, x’ to range over the list of
fn ‘s, and metavariables y, y’ to range over the list of g, ‘s.

Roughly speaking, we are translating an assertion about
.

in INT into an assertion about the endpoints
t:i jL:?.., (i& (ii)R ,(in)R in RAT. The translation is
given by looking at the definition of the relations above.
The defining formula in each of the relation definitions is
a formula SX4R(x, y, x’, y’) in the language of RAT, for each
of the thirteen primitive relations R of IA.

Ladkln 513

Hence two intervals ;, j in IiVT($) are in the relation
R iff the predicate +~(x, y, x’, y’) is true for the endpoints
of i and j. We use this fact to define the translation (-*)
for the atomic formulas.

o If q5 is an atomic formula R(z, w), then 4* is
q5R(x,y,x’,y’), (where if z = e,, then x = fn and
y=gta, andifu,=e,, thenx’=f, andy’=g,)

l If 4 = (+) then fl = (+*).

l If q5 = ($ A p) then 4* = ($* A p*).

o If q5 = (II, V p) then 4* = ($* V p*).

l If 4 = ($J + p) then $+ = (+* + p*).

l If 4 = (Vz)$ and z = era then
q5* = (VxVy)(x < y + $*)
where x = fn and y = gra

o If 4 = 3zlc, and z = e, then
q5* = (3z3y)(x < y A $J*>
where x = fn and y = gn

Lemma 1 Let C$ be a formula in the language of INT.

Then

INT I= d{el + G,) en t Gal

if

RAT b

4*{fi + (G)L, , fn + (i&,gl + (G3,
gn + (ita)R)

2.2 From RAT to INT

First, we state a normal form theorem from [ChaKei73]for
formulas in the language of RAT. Define an order reZation

to be a formula of the form

Uil < uia < 6 Uik

where the iterated < is shorthand for the conjunction of
atomic formulas involving adjacent variables, and each uij
is either some fm or some gn. Say a formula is in rational

order normaI form (RONF for short) if it is a disjunction
of order relations.

Theorem 1 (standard:) Every formula (p in the language
of RAT is equivalent in Th(RAT) to a formula @ in

RONF; furthermore there is an algorithm for obtaining
such a RONF formula 4# from an arbitrary formula 4 in

the language of RAT, and the free variables of 4# are a
subset of those of 4, and possibly a proper subset.

We now consider the translation of atomic formulas in
the language of RAT into Boolean formulas of the language
of INT. We use the notation i(R1 + R2 + .,.. + Rp)j to
assert that the interval i is in one of the relations R, to j.

The following statements about RAT and INT are easy
to check:

e iL<jL u i(P + M + 0 + F’ + Dw)j

l iR<jR trs i(P + 0 -I- S + D)j

l iL < jR e i (P + M + 0 + Id(L) + S +

F + D)j

l iR<jL % iPj

l in = jL ($ i (S + Id(L) + S’) j

l iR=jR e i(F+Id(L)+F’)j

l iL =jR U iM”j

l iR =jL e iMj

We use these truths to define a translation (-t) from
atomic formulas 4 in the language of RAT into formulas 4t
in the language of INT. We use the small roman letters,
some with superscripts,

p,d,o,m,s,f,p’,d”,o’,m”,s”,f’

along with =, to denote the thirteen primitive predicate
symbols in the language of INT.

If 4 = (fm < fn) then
4t = (p(e 7d%d Vm(e,,e,) V o(e,,e,) V fv(em,e,)
V d’(e,, en))

If 4 = (gm < gn) then
4t = (de nay%) V o(e,, en) V S(em,e,) V d(em, e,))

If 4 = (fm < gn) then
4t = (p(e m,%) V m&d,) V O(e,a,en) V s(em,e,)
V erra =en V f(em,en) V d(e,,e,))

If 4 = (gm < fn) then 4t = p(enar e,)

If 4 = (fm = fn) then
4t = (s(e nay%) V ena =% V S”(e,,e,))

If 4 = (gna
4t =

= gn) then
(f(e m9 en) V e, = era V f-(e,,e,))

If 4 = (fm = gn) then
4t = m-(e na,en)

If4=(gna= fn) then
4t = m(e,,e,)

We give an example of how this translation works.

RAT b (g, < gdgna + iR,gra + jR)

iR < jR

*

i (P + 0 + S + D) j

e

5 14 Knowledge Representation

INT #

(p(ern 9 e,) V o(e,, en) V s(e,, en> V d(h, en))
{em + i,ers 41

e
INT b qbt(em + i, en + j}

We extend the translation to all of the Boolean formu-
lae of the language of RAT:

e If 4 = (+) then 4t = (+t).

e If 4 = (Ic, A p) then dt = (tit Apt).

l If 4 = ($ V p) then $+ = (tit V pt).

o If 4 = (Ic, --) p) then @ = (et + pt).

If the assignments of iL, id, j,, and jR to fna, fn, g,, and

g,, and i, j to ena,en are made in accordance with our
convention, we call such a pair of assignments mutzlaldy
acceptable. If o is a mutually acceptable pair of assigments,
let BRAT be the assignment in the language of RAT, and
LINT be the corresponding assignment in the language of
INT. We have the following lemma:

Lemma 2 For every Boolean formula 4 of the language

of RAT, for every mutually acceptable pair of assignments

a,
RAT+ ~(~RAT) * INT~$+{~INT}

We shall not need to extend the translation to quantified
formulae of RAT.

We define a uniform disjunction of atomic formulae in
the language of INT to be a disjunction of atomic formulae
of the language of INT involving the same two variables

erra,en occurring in the same order in each subformula.
Examples of uniform disjunctions are the formulae 4t cor-
responding to the atomic formulae 4 in the language of
RAT. In the case that 4 is an order relation, 4t will be
a conjunction of uniform disjunctions, and thus if 4 is a
disjunction of order relations, +t will be a disjunction of
conjunctions of uniform disjunctions.

3 The Algorithms

3.1 Quantifier-Elimination in Th(INT)

We have defined two translations, (-*) from formulas in
the language of INT to formulas in the language of RAT,

and (-t) from Boolean formulas in the language of RAT to
Boolean formulas. in the language of INT, which preserve
satisfiability - in fact, which preserve satisfaction by mutu-
ally acceptable assignments. From these two translations,
along with the quantifier-elimination procedure II, I-+ (@)
from Th(RAT), we may define a quantifier-elimination
procedure for Th(INT).

The variables in our translations from INT to RAT
and vice versa, and the assignments in the satisfaction re-
lation, have been fairly carefully controlled to ensure the
preservation of satisfaction as we move back and forth from
INT to RAT. We need to ensure that the translation -fl
in Th(RAT) is equally careful. We may choose -fl so that
the free variables of 4fl are a subset of the free variables
of its input formula 4. This ensures that the satisfaction
relation is preserved.

The Quantifier-Elimination Algorithm:
Given a formula 4 in the language of INT, compute ((4”)d)t.

End of Algorithm.

Lemma 3 For any formula q5 in the language of INT,

((~$*)fl)t is a disjunction of conjunctions of uniform dis-

$ncti;;kj4;zd INT b (b i--) ((qS*)#)t and thus Th(INT) l-
c+

The lemma guarantees the correctness
which obviously always terminates.

of the algorithm,

3.2 Consistency Algorithms

Allen’s algorithm [AZZ83] checked conjunctions of uniform
disjunctions for consistency. We call a conjunction of uni-
form disjunctions an Allen formula. Let us call an algo-
rithm for checking consistency of Allen formulae a complete

AIlen algorithm. Our first consistency algorithm will use
a complete Allen algorithm for checking arbitrary first-
order constraints in Th(INT) by combining it with the
quantifier-elimination procedure.

The quantifier-elimination method takes as input a for-
mula 4 of the language of INT, and produces an equivalent
quantifier-free formula $4 = ((4*)fl)t, which is a disjunc-
tion of Allen formulae. Given that Allen formulae may
be checked for consistency, a disjunction of Allen formulae
may be checked for consistency by checking each of them
in parallel.

Consistency Algorithm I:
Given a formula 4 of the language of INT

1) Find ++(= ((4*)fl)t).
2) $4 is a disjunction of Allen formulae. Apply a complete
Allen algorithm to each disjunct of $4.
End of Algorithm.

The algorithm terminates and is correct modulo an
appropriate choice of complete Allen algorithm. This al-
gorithm is not necessarily the easiest way to check con-
sistency. Given a formula d, in Th(INT), the formula
(4*)“) is a disjunction of order relations. Since the trans-
lation 4 w (4*)# p reserves satisfaction, we may check
consistency of 4 by checking the consistency of (4*)I) in
Th(RAT). (+*)# is a disjunction of order relations. We
shall say an order relation 0 is in (qS*)n if and only if 0
is one of the disjuncts of (4*)fl. (4*)I is consistent if and

Ladkin 515

only if some order relation in (4*)fl is satisfiable. We may
thus use the following lemma [ChaKei73Jfor an improved
algorithm:

Lemma 4 An order relation uil c uiz < < uik is

satisfiable if and only if it contains only a single occurrence

of each free variable uij (1 5 j < lc).

Consistency Algorithm II:

Given a formula 4 of Th(lNT),
1) Compute (4*)fl);
2) Check each order relation in (4*)“) for consistency (this
may be accomplished in parallel);
3) Return consistent if one order relation is consistent,
inconsistent if they are all inconsistent.
End of Algorithm.

Algorithm II omits the final translation (-t) back into
the language of IN?‘, and substitutes a double-occurrence
check on each order relation in the reduced formula in
Th(RAT), so it should be clear that Algorithm II is at
least as efficient as Algorithm I, and it doesn’t use a com-
plete Allen algorithm, but a simple check instead.

3.3 A Satisfaction Procedure

The techniques used in Consistency Algorithm Iand Con-

sistency Algorithm II may be used to yield more infor-
mation about the formula 4. A consistent order relation
ui, < U& <* < uik may be satisfied by any increasing
sequence of rational numbers, say the integers 1, k:. Let
an integer assignment be an assignment of increasing con-
secutive integers, starting with 1, to each variable in some
order relation in (4*)fl. Th ese integers will then represent
assignments of integers to variables representing the end-
points of interval variables in 4. Thus, intervals with these
endpoint assignments can be assigned to the interval vari-
ables of ((4*)fi)t), and by the mutual satisfiability property
of the translation (-t), the conjunction of uniform disjunc-
tions that corresponds to the satisfied order relation will
be satisfied by these intervals, so ((4*)#)t) will be satis-
fied, so 4 will be satisfied by this assignment also. We can
summarise this in the following satisfaction algorithm:

The Satisfaction Algorithm

Given 4 in the language of INT,
1) Compute (f$*)#).
2) Make an integer assignment to the first (either in terms
of order, or in terms of time) consistent order relation in
(b*)#). If there is no such relation, return inconsistent.

Suppose this order relation is 0.
3) Suppose fia has been assigned integer p, and g, does
not appear in 0. Assign p + 1 to gn . Similarly, suppose g,
has been assigned integer p + 1, and fn does not appear in
0. Assign p to fn. Do this for all such fn and g, .
4) For each interval variable e, such that fn or g, appear
in 0. SUDDOSe f,, and clfi have been assigned integers P and

Q respectively. Assign the interval (p, q) to era.
5) Assign an arbitrary interval, say (0, l), to each free
variable e, of 4 such that neither fm nor gna appear in 0.
End of Algorithm.

The correctness of the algorithm is straightforward. We
have noted already the purpose of steps 1 and 2. Suppose
46 is consistent with Th(INT). Steps 3 and 4 construct
a pair of mutually acceptable assignments. The purpose
of step 3 is to make an assignment to the other endpoint
of intervals which have had only one endpoint assigned.
The choice of this other endpoint is arbitrary, consistent
with the requirement that ih < iR for each interval i. Step
4 makes the assignment of the appropriate pair to an in-
terval variable. Finally, step 5 completes the assignment
to all the free variables of 4. Since 0 and thus ((4*)fl)t)
is satisfied by a subassignment of the appropriate assign-
ment of this mutually acceptable pair, it follows that 4 is
satisfied by the assignment constructed by the satisfaction
procedure.

4 Summary

We have introduced two translations -* from the language
of the interval theory to the language of the theory of un-
bounded dense linear order, and -t in the other direction,
which preserve satisfiability of formulas. By composing
these with the quantifier-elimination method for the theory
of unbounded dense linear order, we obtained a quantifier-
elimination method for Th(INT). We gave consistency
algorithms for formulas in Th(INT). Finally, we showed
how a procedure for constructing a satisfying assignment
for a consistent interval formula 4 could be designed by
combining the quantifier-elimination algorithm with a sim-
ple assignment procedure for consistent order relations in
Th(RAT), and finding a mutually acceptable pair of as-
signments from this.

We have noted that the contribution of this work is to
extend satisfaction procedures to arbitrary quantified for-
mulas, and hence finite collections of such, in the Interval
Calculus.

516 Knowledge Kepresentation

A1183 : Allen, J.F., Maintaining h7nowledge about Tem-

poral Intervals, Comm. A.C.M. 26 (ll), November
1983, 832-843.

Bibliography

All84 : Allen, J.F., Towards a General Theory of Action
and Time, Artificial Intelligence 23 (2), July 1984,
123-154.

AllKau85 : Allen, J.F. and Kautz, H., A Model of Naive
Temporal Reasoning, in Hobbs, J.R. and Moore, R.C.,
editors, Formal Theories of the Commonsense World,

Ablex 1985.

Be187 : Bell, C.E., Representing And Reasoning With

Disjunctive Temporal Constraints In A Point-Based
Model, preprint, University of Iowa, Department of
Management Sciences.

ChaKei73 : Chang, C.C., and Keisler, H.J., Model The-
ory, North-Holland, 1973.

Lad87.5 : Ladkin, P-B., Constraint Satisfaction in Time
Interval Structures I: Convex Intervals, Kestrel In-
stitute Technical Report KES.U.87.11, 1987.

LadMad87.1 : Ladkin, P.B. and Maddux, R.D., The
Algebra of Convex Time Intervals, Kestrel Institute
Technical Report KES.U.87.2.

LadMad88.1 : Ladkin, P.B. and Maddux, R.D., Rep-
resentation and Reasoning with Convex Time Inter-

vals, Kestrel Institute Technical Report KES.U.88.2.

MacFre85 : Mackworth, A.K., and Freuder, E.C., The

Complexity of Some Polynomial Network Consistency

Algorithms for Constraint Satisfaction Problems, Ar-
tificial Intelligence 25, 65-74, 1985.

PelA1187 : Pelavin, R., and Allen, J.F., A Model For

Concurrent Actions Having Temporal Extent, Pro-
ceedings of AAAI-87, the Sixth National Conference
on Artificial Intelligence, Morgan Kaufmann 1987,
246-250.

Va187 : Valdes-Perez, R.E., The Satisfiabidity of Temporal

Constraint Networks, Proceedings of AAAI-87, the
Sixth National Conference on Artificial Intelligence,
~~256-260, Morgan Kaufmann 1987.

vBen83 : van Benthem, J.F.A.K., The Logic of Time,

Reidel 1983.

VilKau86 : Vilain, M., and Kautz, H., Constraint Propa-
gation Algorithms for Temporal Reasoning, Proceed-
ings of AAAI-86, 377-382, Morgan Kaufmann, 1986.

Ladkln 517

