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Abstract 

James Allen defined a calculus of time intervals in [A1183], 
as a representation of temporal knowledge that could be 
used in AI. We shall call this the Interval Culculus. In 
his paper, Allen investigated specification and constraint 
satisfaction in the Interval Calculus. Other constraint- 
satisfaction algorithms for intervals have considered sub- 
classes of Boolean formulas only. The methods herein ex- 
tend consistency-checking and constraint-satisfaction pro- 
cedures to finitely many arbitrary quantified formulas in 
the Interval Calculus. We use a first-order theory from 
[LadMad87.1, LadMad88.11, that precisely corresponds to 
Allen’s calculus. We show that every first-order constraint 
expressible in this theory is equivalent to a Boolean con- 
straint of a particular restricted form. We use this result to 
obtain a procedure for detecting consistency of arbitrary 
quantified formulas, and finding intervals that satisfy ar- 
bitrary consistent formulas of the Interval Calculus. 

1 Introduction 

We are concerned here with constraint satisfaction in the 
Interval Calculus defined in [A6183]. Allen’s calculus en- 
compassed an approach to temporal specification and the- 
orem proving new to AI, though his thirteen basic rela- 
tions had been used elsewhere (e.g. [vvBen83J. Allen con- 
tributed a constraint satisfaction algorithm, which used 
the composition table for the relations to infer path-incon- 
sistencies in interval constraint graphs. Interval represen- 
tations were subsequently used for representing time for 
automated planning e.g. [AZl84, AZZKau85, PeZAZb871. 

In [LadMad87.1, LadMad88.l]we obtained results which 
show that the calculus is the complete theory of intervals 
over the rational numbers, and has only this one countable 
model, up to isomorphism. Thus we may use semantic 
techniques to satisfy constraints in the calculus. 

In this paper, we present procedures for quantifier- 
elimination, consistency checking (and therefore deciding), 
and providing satisfying assignments for consistent formu- 
las in the full first-order theory of the Interval Calculus. 
Thus arbitrary quantified formulas in the Interval Calcu- 
lus may be handled with the methods described here. Pre- 
vious constraint-satisfaction procedures have only consid- 
ered subclasses of the formulas without quantifiers [AJJ83, 
MacFre85, Va187, Be187]. 

Briefly, by the results of [LadMud88.1] we can trans- 
late a sentence in the interval theory into a sentence in 
the theory of unbounded dense linear order that expresses 
the ‘same’ constraint. We may now eliminate quantifiers 
in the formula in the theory of unbounded dense linear 
order, and translate the formula back into an interval for- 
mula. The translation from atomic formulae in the theory 
of unbounded dense linear order does not introduce any 
quantifiers, so the resulting interval formula is quantifier- 
free, and equivalent to the original formula. The resulting 
quantifier-free formula has a certain restricted form, and 
may be checked for consistency by a variety of known tech- 
niques that operate directly on restricted quantifier-free 
interval formulae. However, an intuitively better method 
for checking consistency stops with the quantifier-free for- 
mula in the theory of dense unbounded linear order and 
checks this formula directly for consistency, by a simple 
test, without translating back to intervals. 

There is practical interest not just in checking con- 
straints for consistency alone, but in trying to satisfy the 
constraints, i.e. find an interpretation of the free variables 
in the constraining formula that will render this formula 
true in the intended model. We show that we may combine 
quantifier-elimination with a simple assignment procedure 
to obtain an assignment to free variables of a consistent 
interval formula that satisfies the formula. We call such a 
procedure a satisfaction procedure. The satisfaction proce- 
dure utilises the translation into the rational ordering and 
the quantifier-elimination there. If the formula is consis- 
tent, a collection of rationals is found which satisfies the 
quantifier-free formula. These rationals are then used as 
endpoints for intervals which satisfy the original interval 
formula. 

It is a matter for further research to decide between the 
various available techniques for satisfying Boolean formu- 
las in the interval theory. Our contribution to this research 
is to present not just a consistency algorithm but a sat- 
isfaction algorithm for a much larger class of constraints 
than has been considered before in the context of interval 
theories. Proofs of our results may be found in [Lad87.5]. 

1.1 Definitions 

A structure is a set of objects, along with with relations 
on those objects and total functions on the set, with all 
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arguments and values in the set, and distinguished objects 
called constants. We denote structures in the usual way, 
using angle brackets. The rational numbers & with the 
relation of less-than on the rationals is denoted by (Q, <). 
We call this structure RAT. 

INT(&) is the structure in a language with equal- 
ity with thirteen binary relation primitives, introduced in 
[LadMad&?. 11, and below. (We shall sometimes refer to 
1INT(Q) as 1NT.) The domain of INT(&) is 

and the primitive relations are the relations defined by 
Allen [A1183]. Th e b inary relations are thus sets of pairs of 
pairs of rationals. The following definitions of the relations 
are from LLadMad88.11, (Allen defined them over R, not 
Q, but it doesn’t matter [LadMad87.1, LadMad88.lfi. 

Id(L) = (((qy), (x’, y’)) : x = x’ < y = y’ E Q) 

Id(L) is the identity relation on the domain L. The 
following six relations are primitives: 

P = {((x, Y), (x’, Y’)) : x < Y < 8’ < Y’ E &I 

D = {((x> Y>, (~‘3 Y’>> :x'<x<y<y'~Q} 

o = {((x, y), (x’, y’)) : x < 2’ < Y < Y' E &I 

M = (((x, y>, (x’, y’)) : x < Y = x’ < Y' E Ql 

5 = (((x, y), (x’, y’)) : x = 2’ < Y < Y' E Q> 

F = (((2, y), (x’, y’)) : x’ < x < Y = Y’ E &I 

The conuerse of a binary relation R is 
R” = ((y, x) : (x, y) E R}. The remaining six relations 
are the conuerse relations of the above six, 
so INT(Q) h as d omain L and relations Id(L), P, D, 0, 
M, S, F, P-, D-, 0’, M-, S-, F-. 

We use the notation 

M k 4(x1 + al, . . . . . . xra t a,} 

where the free variables of 4 are included in the list x1, . . , xn , 

and al, .,., a, are elements of the domain of M, to mean 
that the formula 4 is true in structure M under all as- 
signments that assign al to ~1, . . . , ara to x,. We shall 
implicitly assume that the variables x1, . . . . . . x, are all dis- 
tinct. 

The theory of the model M, denoted by Th(M), is the 
set of all sentences in the language of M that are true in 
M. Th(M) is complete (by definition!), and of course M is 
a model for Th(M). 

Given an interval i = (x, y) in the domain of INT(Q), 
we define iL = x and iR = y to be the projections of i onto 
its left and right endpoints in Q. 

The Axiomatisation of Th(lNT(Q)) 

In [LadMad8?‘.1, LadMad88.11 we gave a collection of ax- 
ioms for Allen’s calculus, in a first-order language with 
equality and 13 binary relation symbols. We showed that 
the theory T defined by the axioms is countably categor- 
ical, hence complete and decidable, and ‘the’ countable 
model is INT(Q) (i.e. all models are isomorphic to this 
model). From this is follows that T = Th(INT(Q)), so 
we may use semantic techniques from the theory of dense 
unbounded linear order to derive constraint satisfaction 
algorithms for the interval calculus. 

2 The Translations 

We introduce a translation (-*) from formulae of the lan- 
guage of INT to formulae of the language of RAT, and 
another translation (-t) from Boolean formulae of the lan- 
guage of RAT to Boolean formulae of the language of INT 
that preserves satisfiability, and furthermore such that ob- 
jects satisfying the image of a formula C$ under one of these 
mappings are easily computable from objects satisfying 4. 

2.1 From INT to RAT 

We define a translation (-* ) from a formula r$ in the lan- 
guage of INT to a formula CJ~* in the language of Q such 
that 

INT I= 4{~1 + 6, . . ...) z tin} n 

iff 

RAT k 

+*(X1 + (ii)L, --.-, Xn + (in)L, Yi + (il)R, ---., 

Yn + (in>rz} 
where the xi and yi are new variables not occurring in 4. 

For convenience, we use three infinite sequences of dis- 
tinct variables el, .., en, .., fi, .., fn, .., $1, ..,gn, .., We shall 
consider formulas in the language of INT to contain vari- 
ables only from the list of e,, and formulas in the language 
of RAT only to contain variables from the two other lists. 
The intuitive reason for the three different lists of variables 
is that we shall be translating assertions about intervals 
into assertions about their left and right endpoints, and 
vice versa, and so we shall associate each interval variable 
en with corresponding variables fn for its left endpoint, 
and gn for its right endpoint. This is a useful piece of 
bookkeeping. We use the metavariables z, UI to range over 
the list of e,‘s, metavariables x, x’ to range over the list of 
fn ‘s, and metavariables y, y’ to range over the list of g, ‘s. 

Roughly speaking, we are translating an assertion about 
. 

in INT into an assertion about the endpoints 
t:i jL:?.., (i& (ii)R , . . ..(in)R in RAT. The translation is 
given by looking at the definition of the relations above. 
The defining formula in each of the relation definitions is 
a formula SX4R(x, y, x’, y’) in the language of RAT, for each 
of the thirteen primitive relations R of IA. 
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Hence two intervals ;, j in IiVT($) are in the relation 
R iff the predicate +~(x, y, x’, y’) is true for the endpoints 
of i and j. We use this fact to define the translation (-*) 
for the atomic formulas. 

o If q5 is an atomic formula R( z, w), then 4* is 
q5R(x,y,x’,y’), (where if z = e,, then x = fn and 
y=gta, andifu,=e,, thenx’=f, andy’=g,) 

l If 4 = (+) then fl = (+*). 

l If q5 = ($ A p) then 4* = ($* A p*). 

o If q5 = (II, V p) then 4* = ($* V p*). 

l If 4 = ($J + p) then $+ = (+* + p*). 

l If 4 = (Vz)$ and z = era then 
q5* = (VxVy)(x < y + $*) 
where x = fn and y = gra 

o If 4 = 3zlc, and z = e, then 
q5* = (3z3y)(x < y A $J*> 
where x = fn and y = gn 

Lemma 1 Let C$ be a formula in the language of INT. 

Then 

INT I= d{el + G, . . ...) en t Gal 

if 

RAT b 

4*{fi + (G)L, . . . . . , fn + (i&,gl + (G3, . . . . . . 
gn + (ita)R) 

2.2 From RAT to INT 

First, we state a normal form theorem from [ChaKei73]for 
formulas in the language of RAT. Define an order reZation 

to be a formula of the form 

Uil < uia < . . . . . . 6 Uik 

where the iterated < is shorthand for the conjunction of 
atomic formulas involving adjacent variables, and each uij 
is either some fm or some gn. Say a formula is in rational 

order normaI form (RONF for short) if it is a disjunction 
of order relations. 

Theorem 1 (standard:) Every formula (p in the language 
of RAT is equivalent in Th(RAT) to a formula @ in 

RONF; furthermore there is an algorithm for obtaining 
such a RONF formula 4# from an arbitrary formula 4 in 

the language of RAT, and the free variables of 4# are a 
subset of those of 4, and possibly a proper subset. 

We now consider the translation of atomic formulas in 
the language of RAT into Boolean formulas of the language 
of INT. We use the notation i(R1 + R2 + .,.. + Rp)j to 
assert that the interval i is in one of the relations R, to j. 

The following statements about RAT and INT are easy 
to check: 

e iL<jL u i(P + M + 0 + F’ + Dw)j 

l iR<jR trs i(P + 0 -I- S + D)j 

l iL < jR e i (P + M + 0 + Id(L) + S + 

F + D)j 

l iR<jL % iPj 

l in = jL ($ i (S + Id(L) + S’) j 

l iR=jR e i(F+Id(L)+F’)j 

l iL =jR U iM”j 

l iR =jL e iMj 

We use these truths to define a translation (-t) from 
atomic formulas 4 in the language of RAT into formulas 4t 
in the language of INT. We use the small roman letters, 
some with superscripts, 

p,d,o,m,s,f,p’,d”,o’,m”,s”,f’ 

along with =, to denote the thirteen primitive predicate 
symbols in the language of INT. 

If 4 = (fm < fn) then 
4t = (p(e 7d%d Vm(e,,e,) V o(e,,e,) V fv(em,e,) 
V d’(e,, en)) 

If 4 = (gm < gn) then 
4t = (de nay%) V o(e,, en) V S(em,e,) V d(em, e,)) 

If 4 = (fm < gn) then 
4t = (p(e m,%) V m&d,) V O(e,a,en) V s(em,e,) 
V erra =en V f(em,en) V d(e,,e,)) 

If 4 = (gm < fn) then 4t = p(enar e,) 

If 4 = (fm = fn) then 
4t = (s(e nay%) V ena =% V S”(e,,e,)) 

If 4 = (gna 
4t = 

= gn) then 
(f(e m9 en) V e, = era V f-(e,,e,)) 

If 4 = (fm = gn) then 
4t = m-(e na,en) 

If4=(gna= fn) then 
4t = m(e,,e,) 

We give an example of how this translation works. 

RAT b (g, < gdgna + iR,gra + jR) 

iR < jR 

* 

i (P + 0 + S + D) j 

e 
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INT # 

(p(ern 9 e,) V o(e,, en) V s(e,, en> V d(h, en)) 
{em + i,ers 41 

e 
INT b qbt(em + i, en + j} 

We extend the translation to all of the Boolean formu- 
lae of the language of RAT: 

e If 4 = (+) then 4t = (+t). 

e If 4 = (Ic, A p) then dt = (tit Apt). 

l If 4 = ($ V p) then $+ = (tit V pt). 

o If 4 = (Ic, --) p) then @ = (et + pt). 

If the assignments of iL, id, j,, and jR to fna, fn, g,, and 

g,, and i, j to ena,en are made in accordance with our 
convention, we call such a pair of assignments mutzlaldy 
acceptable. If o is a mutually acceptable pair of assigments, 
let BRAT be the assignment in the language of RAT, and 
LINT be the corresponding assignment in the language of 
INT. We have the following lemma: 

Lemma 2 For every Boolean formula 4 of the language 

of RAT, for every mutually acceptable pair of assignments 

a, 
RAT+ ~(~RAT) * INT~$+{~INT} 

We shall not need to extend the translation to quantified 
formulae of RAT. 

We define a uniform disjunction of atomic formulae in 
the language of INT to be a disjunction of atomic formulae 
of the language of INT involving the same two variables 

erra,en occurring in the same order in each subformula. 
Examples of uniform disjunctions are the formulae 4t cor- 
responding to the atomic formulae 4 in the language of 
RAT. In the case that 4 is an order relation, 4t will be 
a conjunction of uniform disjunctions, and thus if 4 is a 
disjunction of order relations, +t will be a disjunction of 
conjunctions of uniform disjunctions. 

3 The Algorithms 

3.1 Quantifier-Elimination in Th(INT) 

We have defined two translations, (-*) from formulas in 
the language of INT to formulas in the language of RAT, 

and (-t ) from Boolean formulas in the language of RAT to 
Boolean formulas. in the language of INT, which preserve 
satisfiability - in fact, which preserve satisfaction by mutu- 
ally acceptable assignments. From these two translations, 
along with the quantifier-elimination procedure II, I-+ (@) 
from Th( RAT), we may define a quantifier-elimination 
procedure for Th( INT). 

The variables in our translations from INT to RAT 
and vice versa, and the assignments in the satisfaction re- 
lation, have been fairly carefully controlled to ensure the 
preservation of satisfaction as we move back and forth from 
INT to RAT. We need to ensure that the translation -fl 
in Th(RAT) is equally careful. We may choose -fl so that 
the free variables of 4fl are a subset of the free variables 
of its input formula 4. This ensures that the satisfaction 
relation is preserved. 

The Quantifier-Elimination Algorithm: 
Given a formula 4 in the language of INT, compute ((4”)d)t. 

End of Algorithm. 

Lemma 3 For any formula q5 in the language of INT, 

((~$*)fl)t is a disjunction of conjunctions of uniform dis- 

$ncti;;kj4;zd INT b (b i--) ((qS*)#)t and thus Th(INT) l- 
c+ 

The lemma guarantees the correctness 
which obviously always terminates. 

of the algorithm, 

3.2 Consistency Algorithms 

Allen’s algorithm [AZZ83] checked conjunctions of uniform 
disjunctions for consistency. We call a conjunction of uni- 
form disjunctions an Allen formula. Let us call an algo- 
rithm for checking consistency of Allen formulae a complete 

AIlen algorithm. Our first consistency algorithm will use 
a complete Allen algorithm for checking arbitrary first- 
order constraints in Th(INT) by combining it with the 
quantifier-elimination procedure. 

The quantifier-elimination method takes as input a for- 
mula 4 of the language of INT, and produces an equivalent 
quantifier-free formula $4 = ((4*)fl)t, which is a disjunc- 
tion of Allen formulae. Given that Allen formulae may 
be checked for consistency, a disjunction of Allen formulae 
may be checked for consistency by checking each of them 
in parallel. 

Consistency Algorithm I: 
Given a formula 4 of the language of INT 

1) Find ++(= ((4*)fl)t). 
2) $4 is a disjunction of Allen formulae. Apply a complete 
Allen algorithm to each disjunct of $4. 
End of Algorithm. 

The algorithm terminates and is correct modulo an 
appropriate choice of complete Allen algorithm. This al- 
gorithm is not necessarily the easiest way to check con- 
sistency. Given a formula d, in Th(INT), the formula 
(4*)“) is a disjunction of order relations. Since the trans- 
lation 4 w (4*)# p reserves satisfaction, we may check 
consistency of 4 by checking the consistency of (4*)I) in 
Th(RAT). (+*)# is a disjunction of order relations. We 
shall say an order relation 0 is in (qS*)n if and only if 0 
is one of the disjuncts of (4*)fl. (4*)I is consistent if and 
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only if some order relation in (4*)fl is satisfiable. We may 
thus use the following lemma [ChaKei73Jfor an improved 
algorithm: 

Lemma 4 An order relation uil c uiz < . . . . . . < uik is 

satisfiable if and only if it contains only a single occurrence 

of each free variable uij (1 5 j < lc). 

Consistency Algorithm II: 

Given a formula 4 of Th(lNT), 
1) Compute (4*)fl); 
2) Check each order relation in (4*)“) for consistency (this 
may be accomplished in parallel); 
3) Return consistent if one order relation is consistent, 
inconsistent if they are all inconsistent. 
End of Algorithm. 

Algorithm II omits the final translation (-t) back into 
the language of IN?‘, and substitutes a double-occurrence 
check on each order relation in the reduced formula in 
Th(RAT), so it should be clear that Algorithm II is at 
least as efficient as Algorithm I, and it doesn’t use a com- 
plete Allen algorithm, but a simple check instead. 

3.3 A Satisfaction Procedure 

The techniques used in Consistency Algorithm Iand Con- 

sistency Algorithm II may be used to yield more infor- 
mation about the formula 4. A consistent order relation 
ui, < U& < . . ...* < uik may be satisfied by any increasing 
sequence of rational numbers, say the integers 1, . . . . . . k:. Let 
an integer assignment be an assignment of increasing con- 
secutive integers, starting with 1, to each variable in some 
order relation in (4*)fl. Th ese integers will then represent 
assignments of integers to variables representing the end- 
points of interval variables in 4. Thus, intervals with these 
endpoint assignments can be assigned to the interval vari- 
ables of ((4*)fi)t), and by the mutual satisfiability property 
of the translation (-t), the conjunction of uniform disjunc- 
tions that corresponds to the satisfied order relation will 
be satisfied by these intervals, so ((4*)#)t) will be satis- 
fied, so 4 will be satisfied by this assignment also. We can 
summarise this in the following satisfaction algorithm: 

The Satisfaction Algorithm 

Given 4 in the language of INT, 
1) Compute (f$*)#). 
2) Make an integer assignment to the first (either in terms 
of order, or in terms of time) consistent order relation in 
(b*)#). If there is no such relation, return inconsistent. 

Suppose this order relation is 0. 
3) Suppose fia has been assigned integer p, and g, does 
not appear in 0. Assign p + 1 to gn . Similarly, suppose g, 
has been assigned integer p + 1, and fn does not appear in 
0. Assign p to fn. Do this for all such fn and g, . 
4) For each interval variable e, such that fn or g, appear 
in 0. SUDDOSe f,, and clfi have been assigned integers P and 

Q respectively. Assign the interval (p, q) to era. 
5) Assign an arbitrary interval, say (0, l), to each free 
variable e, of 4 such that neither fm nor gna appear in 0. 
End of Algorithm. 

The correctness of the algorithm is straightforward. We 
have noted already the purpose of steps 1 and 2. Suppose 
46 is consistent with Th(INT). Steps 3 and 4 construct 
a pair of mutually acceptable assignments. The purpose 
of step 3 is to make an assignment to the other endpoint 
of intervals which have had only one endpoint assigned. 
The choice of this other endpoint is arbitrary, consistent 
with the requirement that ih < iR for each interval i. Step 
4 makes the assignment of the appropriate pair to an in- 
terval variable. Finally, step 5 completes the assignment 
to all the free variables of 4. Since 0 and thus ((4*)fl)t) 
is satisfied by a subassignment of the appropriate assign- 
ment of this mutually acceptable pair, it follows that 4 is 
satisfied by the assignment constructed by the satisfaction 
procedure. 

4 Summary 

We have introduced two translations -* from the language 
of the interval theory to the language of the theory of un- 
bounded dense linear order, and -t in the other direction, 
which preserve satisfiability of formulas. By composing 
these with the quantifier-elimination method for the theory 
of unbounded dense linear order, we obtained a quantifier- 
elimination method for Th(INT). We gave consistency 
algorithms for formulas in Th(INT). Finally, we showed 
how a procedure for constructing a satisfying assignment 
for a consistent interval formula 4 could be designed by 
combining the quantifier-elimination algorithm with a sim- 
ple assignment procedure for consistent order relations in 
Th(RAT), and finding a mutually acceptable pair of as- 
signments from this. 

We have noted that the contribution of this work is to 
extend satisfaction procedures to arbitrary quantified for- 
mulas, and hence finite collections of such, in the Interval 
Calculus. 
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