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Abstract 

This paper presents a theory of generalized tem- 
poral reasoning. We focus on the related prob- 
lems of 

1. Temporal Projection-determining all the 
facts true in a chronicle, given a partial de- 
scription of that chronicle, and 

2. Explanation-figuring out what went wrong 
if an unexpected outcome occurs. 

We present a non-monotonic temporal logic based 
on the notion that actions only happen if they 
are motivated. We demonstrate that this the- 
ory handles generalized temporal projection cor- 
rectly, and in particular, solves the Yale Shooting 
Problem and a related class of problems. We then 
show how our model lends itself to a very natu- 
ral characterization of the concept of an adequate 
explanation for an unexpected outcome. 

1 Introduction 
A theory of generalized temporal reasoning is a crucial 
part of any theory of commonsense reasoning. Agents who 
are capable of tasks ranging from planning to story un- 
derstanding must be able to predict from their knowledge 
of the past what will happen in the future, to decide on 
what must have happened in the past, and to furnish a 
satisfactory explanation when a projection fails. 

This paper present a theory that is capable of such rea- 
soning. We focus on the related problems of 

1. Temporal Projection-determining all of the facts 
that are true in some chronicle, given a partial de- 
scription of that chronicle, and 

2. Explanation-determining what went wrong if an un- 
expected outcome occurs. 

Most AI researchers in the area of temporal reasoning 
have concentrated their efforts on parts of the temporal 
projection task: in particular, on the problem of forward 
temporal projection, or prediction ([McCarthy and Hayes, 
19691, [McDermott, 19821, [Hayes, 19851, [Shoham, 19871). 
Standard logics are unsuitable for the prediction task be- 
cause of such difficulties as the frame problem. Straightfor- 
ward applications of non-monotonic logic to temporal log- 
its (suggested by [McDermott, 19821, [McCarthy, 19801) 
are also inadequate, as [Hanks and McDermott, 19861 
demonstrated through the Yale Shooting Problem. 

Several solutions to the Yale Shooting Problem, using 
extensions of default logic, have been proposed ([Shoham, 
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19861 [Shoham, 19871, [Kautz, 19861, [Lifschitz, 19861 [Lif- 
schitz, 19871, [Haugh, 19871). All of these solutions, how- 
ever, while adequate for the Yale Shooting Problem itself, 
handle either forward or backward projection incorrectly, 
and/or work only within a very limited temporal ontol- 
ogy. Thus, they cannot serve as the basis for a theory of 
generalized temporal reasoning. 

In this paper, we present a solution to the problems 
of both forward and backward temporal projection, based 
upon the concept that actions happen only if they have 
to happen. We then show how our model lends itself to a 
very natural characterization of the concept of an adequate 
explanation for an unexpected outcome. 

In the next section, we survey the solutions that have 
been proposed to the YSP, and explain why they can- 
not handle general temporal projection accurately. We 
then present our theory of default temporal reasoning and 
demonstrate that it can handle the Yale Shooting Problem 
as well as the problems that give other theories difficulty. 
Finally, we extend our theory of temporal projection to a 
theory of explanation. 

2 Previous Approaches to the 
Prediction Problem 

2.31 Default Reasoning and the Yale 
Shooting Problem 

The frame problem-the problem of determining which 
facts about the world stay the same when actions are 
performed-is an immediate consequence of the attempt to 
subsume temporal reasoning within first order logic. Mc- 
Carthy and Hayes first discovered this problem when they 
developed the situation calculus ([McCarthy and Hayes, 
19691); however, it is not restricted to the situation calcu- 
lus and in fact arises in all reasonably expressive tempo- 
ral ontologies ([McDermott, 19871). In order to deal with 
the frame problem, McCarthy and Hayes suggested using 
frame axioms to specify the facts that don’t change when 
certain actions are performed; critics (e.g. [McDermott, 
19841) have argued that such an approach is unsatisfactory 
given the difficulty of writing such axioms, the intractabil- 
ity of a theory containing so many axioms, and the fact 
that frame axioms are often false. This last point is es- 
pecially relevant for temporal ontologies which allow for 
concurrent actions. 

[McDermott, 19821 introduced the notion of a persis- 
tence: the time period during which a property typically 
persists. He argued that we reason about what is true in 
the world, not via frame axioms, but through our knowl- 
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edge of the persistences of various properties. Such rea- 
soning is inherently non-monotonic. 

These considerations led [McDermott, 19821 to argue 
that temporal reasoning is best formalized within a non- 
monotonic logic. The discovery of the Yale Shooting Prob- 
lem ([Hanks and McDermott, 1986]), however, demon- 
strated that this might not always yield desirable results. 

The Yale Shooting Problem can briefly be described as 
follows: Assume that a gun is loaded at time 1, and the 
gun is fired (at Fred) at time 5. We know that if one loads 
a gun at time j, it is loaded at time j+ll that if a loaded 
gun is fired at a person at time j, the person is dead at time 
j+l, that if a gun is loaded at j, it will typically be loaded 
at time j+l (“loaded” persists for as long as possible), and 
that if a person is alive at time j, he will typically be alive 
at time j+l (“alive” persists for as long as possible). 

We would like to predict that Fred is dead at time 6. Rel- 
ative to standard non-monotonic logics ([McDermott and 
Doyle, 19801, [McCarthy, 19801, [Reiter, 1980]), however, 
the chronicle description supports (at least) two models: 
the expected one, in which one reasons by default that the 
gun is loaded at time 5, and in which Fred is dead at time 6, 
and the unexpected model in which one reasons by default 
that Fred is alive at time 6, and in which, therefore, the 
gun must be unloaded at time 5. Standard non-monotonic 
logic gives us no way of preferring the expected, intuitively 
correct model to the unexpected model. 

Like the frame problem, the Yale Shooting Problem was 
first presented within the situation calculus framework, but 
is not restricted to that particular ontology ([McDermott, 
19871). 

2.2 Proposed Solutions to the YSP and 
Their Limitations 

In their original discussion of the Yale Shooting Problem, 
Hanks and McDermott argued that the second, unexpected 
model seems incorrect because we tend to reason forward 
in time and not backward. The second model seems to 
reflect what happens when we reason backward. Such rea- 
soning, they argued, is unnatural: the problem with non- 
monotonic logic is that there is no way of preferring the 
forward reasoning models to the backward reasoning mod- 
els. 

2.2.1 Chronological Minimization 

The first wave of solutions to the Yale Shooting Problem 
([Shoham, 19861, [Kautz, 19861, [Lifschitz, 19861) all inde- 
pendently set out to prove that such a preference could 
indeed be expressed in non-monotonic logic. We discuss 
Shoham’s work here: criticisms of his theory apply equally 
to the others in the group. 

Shoham defines the following preference relation on 
models: Ml is preferable to M2 if Ml and Mz agree 
up to some time point j, but at j, there is some fact known 
to be true in Mz, which is not known to be true in Ml. 
Ml is said to be chronologically more ignorant than Mz. 
This preference defines a partial order; models which are 
minimal elements under this ordering are said to be chrono- 
logically maximally ignorant. 

‘It is implicitly a ssumed that actions take unit time. 

The expected model-in which Fred is dead-is prefer- 
able to the unexpected model-in which Fred is alive, 
since, in the unexpected model, it would be known that 
at some point before 5, something happened to unload the 
gun. In fact, in all chronologically maximally ignorant 
models for this set of axioms, the gun is loaded at time 5, 
and therefore, Fred is dead. 

Solutions based upon forward reasoning strategies have 
two drawbacks. In the first place, agents perform both 
backward and forward reasoning. In fact, agents typically 
do backward reasoning when performing backward tempo- 
ral projection. Consider, for example, a modification of the 
Yale Shooting Problem, where we are told that Fred is alive 
at time 6. We should know that the gun must somehow 
have become unloaded between times 2 and 5; however, 
we should not be able to say exactly when this happened. 
In contrast to this intuition, the systems of Shoham and 
Kautz would predict that the gun became unloaded be- 
tween time 4 and time 5. This is because things stay the 
same for as long as possible.2 

A second objection to the strategy of chronological min- 
imization is that it does not seem to address the real con- 
cerns underlying the Yale Shooting Problem. We don’t 
reason that Fred is dead at time 6 because we reason for- 
ward in time. We conclude that Fred is dead because we 
are told of an action that causes Fred’s death, but are not 
told of any action that causes the gun to be unloaded. 

2.2.2 Circumscribing Over Causes 

[Lifschitz, 19871 and [Haugh, 19871 independently pro- 
posed solutions which were not based upon forward rea- 
soning strategies. We present Lifschitz’s; again criticisms 
of his theory apply to both. Lifschitz’s solution is based 
on the intuition that “all changes in the values of flu- 
ents are caused by actions.” Lifschitz introduces a pred- 
icate causes(act,f,v), where action act causes fluent f to 
take on value v, and a predicate precond(f,act). Success 
is defined in terms of precond, affects in terms of causes 
and success. He circumscribes over both the causes and 
precond predicates; circumscribing over causes solves the 
frame problem. 3 Things are only caused when there are 
axioms implying that they are caused. Necessary pre- 
conditions for an action are satisfied only when the ax- 
ioms force this to be the case. Actions are successful ex- 
actly when all preconditions hold; actions affect the val- 
ues of fluents if and only if some successful action causes 
the value to change. Assuming, now, the following ax- 
ioms: causes(load,loaded,true), causes(shoot,loaded,false), 
causes(shoot,alive,false), precond(loaded,shoot), and a 
chronicle description stating that a load takes place at 1, 
a wait at 2,3, and 4, and a shoot at 5, we can predict that 
Fred is dead at time 6. There is no way that the wait action 
can cause the fluent loaded to take on the value false. 

This solution doesn’t force reasoning to go forward in 
time. Nevertheless, Lifschitz’s solution is highly problem- 
atic. It works only within rigid formalisms like the sit- 
uation calculus, and cannot be extended to-and in fact 
yields incorrect results in-a more flexible, realistic theory. 

2This point was noted by Kautz when he first presented his 
solution to the Yale Shooting Problem. 

3Li&chitz introduces the precond predicate in order to solve 
the qualification problem, which we don’t discuss here. 
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ivloreover, a closer exammaclon OI tne solution shows that 
it does not address one of the major intuitions underlying 
the Yale Shooting Problem. 

It is crucial to realize that the causes predicate over 
which Lifschitz circumscribes ranges over action types as 
opposed to action instances. Circumscribing over causes 
thus entails that state changes will not happen sponta- 
neously, but does not in general entail that as little will 
change as possible. Since the situation calculus framework 
itself entails that as little as possible happens, the solution 
will work as long as we stay within this rigid framework. 
Problems arise, however, in frameworks in which not all 
actions are known. 

Consider what would happen in a world in which con- 
current actions were allowed, and in which we were to add 
the rule causes(unload,loaded,false) to the theory. We could 

, then have a model Ml where an unload occurs at time 2, 
the gun is thus unloaded, and Fred is alive at time 6. There 
would be no way to prefer the expected model where Fred 
dies to this model.4 This cannot in fact happen in Lifs- 
chitz’s formulation because in the situation calculus, con- 
current actions aren’t allowed. Since a wait action occurs 
at times 2, 3, and 4, nothing else can occur, and unload 
actions are ruled out. 

Lifschitz’s solution thus works only in frameworks where 
all the acts in a chronicle are known. In these cases, cir- 
cumscribing the cause predicate gives us exactly what we 
want-it disables spontaneous state changes. The intuition 
underlying the Yale Shooting Problem, however, is that we 
can make reasonable temporal projections in worlds where 
concurrent actions are allowed, even if we aren’t necessar- 
ily told of all the events that take place in a chronicle. The 
fact is that even if we are given a partial description, we 
will generally not posit additional actions unless there is a 
good reason to do so. 

The temporal projection problem is thus a dual one: we 
must reason that actions don’t cause fluents to take on 

explanation. Our model formalizes the intuition that we 
typically reason that events in a chronicle happen only 
when they “have to happen”. We formalize the idea of a 
motivated action, an action that must occur in a particular 
model. 

3.1 The Formal Theory 
We begin by formally describing the concepts of a theory 
and a chronicle description. We work in a first order logic 
L, augmented by a simple temporal logic. Sentences are 
of the form True(j,f) w h ere t is a time point, and f is a 
fluent-a term representing some property that changes 
with time. True(j,+) iff lTrue(j,f). Occurs(act) and loaded 
are examples of fluents. If cp = True(j,f), j is referred to 
as the time point of 9, time(p). Time is isomorphic to the 
integers. Actions are assumed to take unit time. 

A theory, T, and a chronicle description, CD, are sets 
of sentences of L. The union of a theory and a chronicle 
description is known as a theory instantiation, TI. Intu- 
itively, a theory contains the general rules governing the 
behavior of (some aspects of) the world; a chronicle de- 
scription describes some of the facts that are true in a 
particular chronicle. A theory includes cuusaZ rules and 
persistence rules. A causal rule is a sentence of the form 
Q A p _ y, where: 

cy is a non-empty set of sentences of the form 
True(j,Occurs(act))-th e set of triggering events of the 
causal rule, 

fl is a conjunction of statements 
of the action, and 

stating the preconditions 

y describes the results of the action. 

Note that y can include sentences of the form 
True(j+l,Occurs(act)). W e can thus express causal chains 
of action. 

A persistence rule is of the form 

values in unexpected ways, and we must reason that un- 
expected events don’t in general happen. Lifschitz solved 

True(j,p)~p =+ True(j+l,p) 

the first of these problems; in the next section, we turn our where p includes a conjunction of statements of the form 
attention to the second. 

True(j,lOccurs(act)) 

3 Temporal Projection: A 
Theory of Motivated Actions 

In this section, we develop a model of temporal projec- 
tion which yields a satisfying solution to the Yale Shoot- 
ing Problem, and which lends itself nicely to a theory of 

4Haugh seems to address a related point in his paper. Haugh 
considers the case where we have an axiom stating that unload 
causes loaded to‘be false, and that the precondition for unload is 
that the performing agent knows how to perform the action (we 
recast into Lifschitz’s formalism here for ease of comparison). 
Then, if it is known that an unload(attempt) Occurs, there will 
be no way of preferring models where loaded is true to models 
where loaded is false. Haugh says that this is to be expected; 
if we know of an unload attempt, we do not want to conclude 
that loaded is true. This argument is really beside the point. It 
is quite clear that if we are told of an unload (attempt), we will 
not conclude that Fred is dead. The point of the YSP is that, 
if you are not explicitly- told of an unload, you will not seriously 
consider the possibility when making a prediction. 

These persistence rules bear a strong resemblance to frame 
axioms. In reality, however, they are simply instances of 
the principle of inertia: things do not change unless they 
have to. 

We have hand coded the persistence rules for this simple 
case, although it is not necessary to do so. They can in fact 
be automatically generated from the theory’s causal rules, 
relative to a closed world assumption on causal rules: that 
all the causal rules that are true are in the theory. This is 
indeed exactly what Lifschitz achieves by circumscribing 
over the causes predicate in his formulation. It is likely 
that such a strategy will be an integral part of any fully 
developed theory of temporal projection. Since the auto- 
matic generation of persistence rules is not the main thrust 
of this paper, we will not develop this here. 

It is important to note that all of the rules in any the- 
ory T are monotonic. We achieve non-monotonicity solely 
by introducing a preference criterion on models: in par- 
titular, preferring models in which the fewest possible ex- 
traneous actions occur. Typically, we will not be given 
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enough information in a particular chronicle description 
to determine whether or not the rules in the theory fire. 
However, because persistence rules explicitly refer to the 
non-occurrence of events, and because we prefer models 
in which events don’t occur unless they have to, we will 
in general prefer models in which the persistence rules do 
fire. The facts triggered by persistence rules will often al- 
low causal rules to fire as well. 

3.2 Motivated Actions 

Given a particular theory instantiation, we would like to be 
able to reason about the facts which ought to follow from 
the chronicle description under the theory. In particular, 
we would like to be able to determine whether a statement 
of the form True(j,p) is true in the chronicle. If j is later 
than the latest time point mentioned in CD, we call this 
reasoning prediction, or forward projection, otherwise, the 
reasoning is known as backward projection. 

Given TI= TlJ CD, we are thus interested in determin- 
ing the preferred models for 2’1. M(TI) denotes a model 
for TT: i.e., (VP E T.Z)[M(TI) + cp]. We define a pref- 
erence criterion for models in terms of motivated actions: 
those actions which “have to happen.” Our strategy will 
be to minimize those actions which are not motivated. 

Definition: Given a theory instantiation TI = T U CD, 
we say that a statement cp is motivated in M(TI_) if it 
is strongly motivated in M(TI) or weakly motivated 
in M(TI). 

A statement cp is strongly motivated with respect to TI 
if cp is in all models of TI, i.e. if (VM(TI))[M(TI) b 
cp]. If cp is strongly motivated with respect to TI, we 
say that it is motivated in M( TI), for all M( Tl). 

A statement cp is weakly motivated in M(TI) if there 
exists in TI a causal or persistence rule of the form 
cv A ,8 _ cp, Q is (strongly or weakly) motivated in 
M(TI), and M(TI) I= P. 

Intuitively, cp is motivated in a model if it has to be in 
that model. Strong motivation gives us the facts we have 
in CD to begin with as well as their closure under T. Weak 
motivation gives us the facts that have to be in a particular 
model relative to T. Weakly motivated facts give us the 
non-monotonic part of our model-the conclusions that 
may later have to be retracted. 

We now say that a model is preferred if it has as few 
unmotivated actions as possible. Formally, we define the 
preference relation on models as follows: 

Definition: Let cp be of the form True(j,Occurs(act)). 
Mi(TI) 9 Mj(TI) (Mi is preferable to Mj) if 
(Vp)[Mi(TI) b p A Mj(TI) l;t cp _ p is motivated 
in Mi(TI). 

That is, Mi(TZ) is preferable to Mj(T.2) if any action 
which occurs in Mi( Tl) but does not occur in Mj( Tl) is 
motivated in Mi(TI). Note that such actions can only be 
weakly motivated; if an action is strongly motivated, it is 
true in all models. 

Definition: 
If both Mi(TI) g Mj(TI) and Mj(TI) 4 Mi(TI), 
we say that Mi(T.2) 
(Mi(TI) w Mj(TI))- 

and Mj(TI) are e&ipreferabZe 

9 induces a partial ordering on acceptable models of 
TI. A model is preferred if it is a minimal element under 
9: 

Definition: M( T.2) is a preferred model for TI if 
M’(TI) a M(TZ) _ M’(TQ w M(TI). 

Since not all models are comparable under 9 , there 
may be many preferred models. Let M*(TI) be the union 
of all preferred models. 

We define the following sets: 

set of state- nM* = {p 1 (VM E M*(TI))[M b ‘p]}-the 
ments true in all preferred models of TI 

uM* = {‘p I(3M 
ments true in 

E M*(TI))[M b ‘p]}-the set of state- 
at least one preferred model of TI 

Consider, now, the relationship 
cp and TI. There are three cases: 

Case k p is in nM”(Tr). In this case, we say that TI 

projects cp. 

between any statement 

Case II: cp is in UM*(TI). In this case, we say that cp is 
consistent with TI. However, TIdoes not project cp. 

Case III: p not in UM*(TI~. In this case, we say that ‘p 

is inconsistent with TI. In fact, it is the case that TI 
projects 19. 

If TIprojects cp, and time(v) is later than the latest time 
point mentioned in TI, we say that TI predicts cp. 

3.3 Prediction: The Yale Shooting 
Problem, Revisited 

We now show that our theory can handle the Yale Shoot- 
ing Problem. We represent the scenario with the following 
theory instantiation: 
CD: 

True(l,alive) 

True( 1,load) 

True(5,shoot) 

T contains the causal rules for shoot, load, and 
as well as the persistences for loaded and alive: 

unload, 

T: Causal Rules: 

True(j,Occurs(load)) a True(j+l,loaded) 

True(j,Occurs(shoot)) A True(j,loaded) 

a True(j+l,lalive) 

True(j,shoot) ) True(j+l,+oaded) 

True(j,unload) =+ True(j+l,+oaded) 

Persistence Rules: 

True(j,alive) A (True(j,lOccurs(shoot)) 

V True(j,lloaded)) 

_ True(j+l,alive) 

True(j,loaded) /\ True(j,lOccurs(shoot)) 

A True(j,lOccurs(unload)) 

a True(j+l,loaded) 
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Let Ml be the expected model, where the gun is loaded 
at 5, and Fred is dead at 6; and let MZ be the unexpected 
model, where an unload takes place at some time between 
2 and 5, and therefore Fred is alive at 6. Both Ml and 
Ma are models for TI. However, we will see that Ml is 
preferable to M 2, since extra, unmotivated actions take 
place in Ma. 

We 
note that the facts True(l,alive), True(l,Occurs(load)), and 
True(5,0ccurs(shoot)) are strongly motivated, since they 
are in CD. The fact True(2,loaded) is also strongly moti- 
vated; it is not in CD, but it must be true in all models 
of TI. In Ml, the model in which the gun is still loaded 
at 5, True(G,-alive) is weakly motivated. It is triggered by 
the shoot action, which is motivated, and the fact that the 
gun is loaded, which is true in Mr. In Ma, the occurrence 
of the unload action is unmotivated. It is not triggered by 
anything. 

According to this definition, then, Ml is preferable to 
M2. There is no action which occurs in Ml that does not 
occur in Ma. However, M2 is not preferable to Ml: there 
is an action, unload, which occurs in Ma, but not in Mr, 
and this action is unmotivated. 

In fact, it can be seen that in any preferred model of 
TI, the gun must be loaded at time 5, and therefore Fred 
must be dead at time 6. That is because in a model where 
the gun is unloaded at 5, a shoot or unload action must 
happen between times 2 and 5, and such an action would 
be unmotivated. Since the facts that loaded is true at time 
5 and that Fred is dead at time 6 are in all preferred models 
of TI, TI projects these facts. 

Note that preferring models in which the fewest possible 
unmotivated actions occur is not equivalent to preferring 
models in which the fewest possible actions occur. Con- 
sider , e.g., a theory of message passing in which messages 
go through several checkpoints before completion. The 
message is passed as long as the control switch is open. 
An action is needed to close the switch. If we know that 
the message is started, we would like to predict that the 
switch remains open and the message completes. This is 
in fact what our preference criterion projects. However, 
since each stage of the message passing can be regarded 
as a separate action, a theory minimizing occurrences will 
predict that the switch is turned off, eliminating additional 
message passing segments. 

3.4 Backward Projection 

We now show that our theory handles backward projection 
properly. As an example, consider TI’, where Tl’ = TIu 
{True(G,alive)). Th t a is, Tl’ is the theory instantiation 
resulting from adding the fact that Fred is alive at time 
6 to the chronicle description of TI. Since we know that 
a shoot occurred at 5, we know that the gun cannot have 
been loaded at 5. However, we also know that the gun 
was loaded at 2. Therefore, the gun must have become 
unloaded between 2 and 5.5 Our theory tells us nothing 
more than this. Consider the following acceptable models 

5As we know, either an unload or a shoot will cause a gun 
to be unloaded. However, because we know that shooting will 
cause Fred to be dead, that dead persists forever, and that Fred 
is alive at 6, all acceptable models for TI’ must have an unload. 
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for Tl’: 

0 M:, where unload occurs at 2, the gun is unloaded at 
3,4, and 5 

@ M;, where unload occurs at 3, the gun is loaded at 3 
and unloaded at 4 and 5 

0 J% where unload occurs at 
and 4, and unloaded at 5. 

4, the gun is loaded at 3 

Intuitively, there does not seem to be a reason to prefer 
one of these models to the other. And in fact, our theory 
does not: Mi, ML, and M$ are equipreferable. Note, 
however, that both M’, and M$ are preferable to Mi, the 
model in which unload occurs at 2, load at 3, and unload at 
4. Mi is acceptable, but has superfluous actions. In fact, it 
can be shown that Mi, Mi, and M$ are preferred models 
for TI’. All that TI’ can predict, then, is the disjunction: 

True(2,0ccurs(unload)) V True(3,0ccurs(unload)) 

V True(4,Occurs( unload)) 

which is exactly what we wish. 

A theory of temporal reasoning that can handle both for- 
ward and backward projection properly is clearly a pre- 
requisite for any theory of explanation. Now that we have 
developed such a theory, we present a theory of explana- 
tion. 

Intuitively, the need to explain something arises when 
we are initially given some partial chronicle description 
accompanied by some theory, we make some projections, 
and then we subsequently discover these projections to be 
false. When we find out the true story, we feel a need 
to explain “what went wrong”-that is, why the original 
projections did not in fact hold true. 

Formally, we can describe the situation as follows: Con- 
sider a theory instantiation TIl = TU CDi, with nM*tTI1) 
equal to the set of facts projected by T1i. Consider now 
a second theory instantiation TI2 = T U CDs, where 
CD2 > CD1. That is, TIz is TIi with a more fleshed 
out description of the chronicle. We say that there is a a 
need for explanation of TI2 relative to TIl if there exists 
some fact K E CD2 such that TIl does not project K, i.e. 
if (3~ E CD,)[K ft nM*(,,.il)]. For any such K, we say that 
K: must be explained relative to TIl and TI,. 

The need for explanation may be more or less pressing 
depending upon the particular situation. There are two 
cases to be distinguished: 

Case I : 

n is not projected by TIl, i.e. K @ r-~~*(~~). How- 
ever K is consistent with T.&, i.e. rc E UM*(TI1). That 
is, K is true in some of the preferred models of 271, 
it just is not true in all of the preferred models. For 
example, consider TII = T U CDI, where T is the 
theory described in the previous section, and CD1 = 
{True(l,loaded),True(2,-loaded)), and TI2 = T U CD2, 
where CD2 = CD1 U {True(l,Occur(unload))}. 

The set of preferred models for T1i contains models in 
which the gun becomes unloaded via an unload action, and 
models in which the gun becomes unloaded via a shoot 
action. Neither action is in the intersection of the preferred 



models, so neither action is projected by T&. 7’11 will only 
project that one of the actions must have occurred; i.e. the 
disjunct True(,l,Occurs(shoot)) V True(l,Occur(unload)). 

The extra information in CD2 does not contradict any- 
thing we know; it simply gives us a way of pruning the set 
of preferred models. Intuitively, an explanation in such a 
case should thus characterize the models that are pruned. 

Case II : 

tc, is not projected by TIl. In fact, n is not even consistent 
with T1r, i.e. K: @ UJZ/~*(TI,). In this case, it is in fact the 
case that 1~ E nM*(rI1), i.e., TIl projects 1~. 

Such a situation is in fact what we have in the Yale 
Shooting Scenario, if we find out, after predicting Fred’s 
death, that he is indeed alive at time 6. This is the sort of 
situation that demonstrates the non-monotonicity of our 
logic, for T11 projects True(G,lalive), while TI:! > TIl 
projects True(6,alive). Here the need for explanation is 
crucial; we must be able to explain why our early projec- 
tion went awry. 

Intuitively, an informal explanation of what went wrong 
in this case must contain the facts that an unload occurred 
and that the gun was thus unloaded at time 5. That is, an 
adequate explanation is an account of the facts leading up 
to the discrepancy in the chronicle description. 

We formalize these intuitions as follows: Given TIl, TI2, 
and a set of facts Q which are unprojected by T&, we define 
an adequate explanation for the set of facts Q relative to 
TIl and T1z as the set difference between the projections 
of TI:! and the projections of TIr: 

Definition: Let Q = {K I K E CD2 A K G! %4*(m)) 

An adequate explanation for Q is given by f?M*(TI,) - 

“M*(TI,> 

As an example, let TIr = T U CD1 be the description 
of the Yale Shooting Scenario (as in the previous section); 
let TI2 = TU CD2, where CD2 = CD1 U (True(6,alive)). 
The explanation of True(6,alive) relative to T11 and T12 
would include the facts that an unload occurred either at 
time 2 or time 3 or time 4, and that the gun was unloaded 
at time 5-precisely the account which we demand of an 
explanation. 

5 sk 
We have developed a theory of default temporal reasoning 
which allows us to perform temporal projection correctly. 
Central to our theory is the concept that models with the 
fewest possible unmotivated actions are preferred. 

We have demonstrated that this theory handles both 
forward and backward temporal projection accurately. We 
have given an intuitive account of the ways in which the 
need for explanation arises, and have shown how we can 
define explanation in a natural way in terms of our theory 
of projection. 

We are currently extending the work described in this 
paper in two directions. We are examining several different 
characterizations of the explanation process, and deter- 
mining the relationships between these characterizations 
within our model. In addition, we are investigating the 
properties of a theory which minimizes unmotivated state 
changes, as opposed to unmotivated actions. Preliminary 

investigations suggest that such a theory would eliminate 
the need for both persistence r aules and the principle of 
inertia. 

We’d like to thank Ernie Davis, Tom Dean, Vladimir Lifs- 
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