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Abstract 

The traditional approach to problem solving exam- 
ines a current situation in isolation, ignoring the ex- 
istence of previous experience. More recent analog- 
ical approaches look for previous, similar cases and 
attempt to infer further similarity from existing sim- 
ilarity. What has been overlooked is the power that 
identifying a disanalogy provides. Identifying dis- 
analogies enables one to learn and reason by focusing 
on what is different between two similar situations, 
rather than on what is the same. This paper de- 
scribes a technique called difference-based reasoning 
which exploits differences found between two other- 
wise identical situations to focus search and generate 
plausible hypotheses. The technique’s power and di- 
versity is demonstrated with implemented examples 
from theory formation, diagnosis, and failure expla- 
nation in planning. 

1 Introduction 

The predominate view of analogy in AI depicts a mecha- 
nism for the importation of knowledge from one domain or 
situation to another, based upon some form of underlying 
similarity between the two. What has been overlooked is 
the power that identifying a disanalogy provides. Identify- 
ing disanalogies enables one to learn and reason by focusing 
on what is different between two similar situations, rather 
than on what is the same. This paper describes a technique 
called diflerence-based reasoning which exploits differences 
found between two otherwise identical situations to focus 
search and generate hypotheses. 

For example, consider the two situations illustrated in 
Figure 1. In case (a), the ball will never stop bouncing 
once set in motion (i.e., it stops when time reaches infin- 
ity) . However, in case (b) the ball will stop bouncing in 
finite time. Why? Obviously, the answer must be related 
to the difference in angle of the incident wall, for the two 
situations are otherwise identical. The problem solving 
power achieved by detecting and focusing on this differ- 
ence, and using it to ultimately arrive at an explanation, 
embodies the essence of difference- based reasoning. 

This paper introduces difference-based problem solving 
and learning as an explicit technique and analyzes when 
it is applicable. Several examples from theory formation 
and revision, diagnosis, and failure explanation in planning 
demonstrate the technique’s diversity. We conclude with a 
discussion of relevant work and issues for future research. 

2 Difference-Based Reasoning 
Difference-based reasoning (DBR) facilitates the resolution 
of expectation failure. Expectations may take on many 
forms, such as an expectation that two instances will be- 
have the same (e.g., the pendulum example) or that a given 
inst ante will produce the desired consequence (e.g., plan- 
ning, design, diagnosis, theory revision, etc.). It‘is negative 
centered in that it analyzes failure through the situation’s 
differences with non-failing cases. This contrasts with the 
more traditional positive centered view of problem solv- 
ing, which examines each situation in isolation, or using 
anilogical methods, looks for previous similar cases and 
attempts to infer further similarity from existing similar- 
ity. Positive centered approaches ask questions like “How 
may this be solved?“, “How was it solved before?“, and 
“How did this fail before?“. DBR capitalizes on questions 
of the form “How is the current case different from others 
that I’ve seen?” and “What did I change since the last 
time this worked?” 

The key insight is that a significant amount of problem 
solving information may be obtained by analyzing differ- 
ences between examples believed to be instances of the 
same concept, but which 
cusing on differences, we 

produce different results. By fo- 
may quickly determine the char- 

acteristics relevant to the source of the problem. For exam- 
ple, if something doesn’t work properly, people will often 
refer to a working example if one is available before resort- 
ing to first principles or cases of previous failures. 

For a situation to be amenable to this technique, the 
following must be available: 

a Domain theory. Sufficient axioms and vocabulary to 
draw meaningful conclusions. 

e Target example. A description of the anomalous situ- 
ation and the unexpected results it produces. 

(4 (b) 

Figure 1: Two instances of the bouncing ball pendulum. 
In (a) the pendulum will never stop while in (b) the pendulum 
will stop in finite time. The impact of the pendulum’s mass is 
assumed to be inelastic such that its kinetic energy is decreased 
in a fixed ratio at each impact. 
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0 Positive exemplar. A description of an exemplar to 
compare against and the outcome it produces. 

DBR guides an explanation of the anomalous result by 
first determining how the target instance differs from the 
positive exemplar. It then considers how these differences 
may account for their unequal behavior. Given a current 
example description and its unexpected outcome, DBR 
may be applied when an example or analogue of the ex- 
pected behavior is available. The validity and utility of 
this procedure is based on the following theorem: 

Difference theorem. Given sets of axioms F,, and F,, 
in which G is derivable from FP but is not derivable from 
&, the cause of failure of Ft must necessarily be traceable 
to axioms E A, where A = (FP - Ft) U ( Ft - F,,). 

exact. Comparisons are more ones of similarity rather 
than of identicality, and the search for differences must 
reflect this. For analogical comparisons, we define 
the set A to be [F,, - AI,(FI,, F,)l U IF, - A,(F,,, F,)j, 
where &(&, F,) p re resents the elements from situa- 
tion i found in the analogical mapping used by the 
performance engine. Thus A is simply the set of ax- 
ioms from the two examples that were not placed in 
analogical correspondence. Note that this is incom- 
plete in that it ignores the more subtle differences be- 
tween items placed in analogical correspondence, an 
area where the analogical mapping itself may break 
down. This is a related, but unaddressed problem. 

2.2 Identifying the positive exemplar 

The proof follows easily from an assumption of mono- 
tonicity. The implication is that, when a positive exem- 
plar is available, no explanation procedure should ever 
waste time exploring hypotheses that are not traceable to 
the difference set A. In many situations, this can be a 
very powerful guide. However, this is only the minimum 
that detecting differences provides. Depending upon the 
reasoning technique, domain, and instances involved, sub- 
stantial information can also be obtained by examining 
the manner in which examples differ. Furthermore, the 
framework may be varied to create a constrained source of 
plausible conjecture rather than as part of a valid decision 
procedure. 

The utility of difference-based reasoning depends upon the 
availability of a useful exemplar and what the discernible 
differences are. First, there must be the expectation that 
the target example and the positive exemplar produce the 
same or analogous result. Second, the behavior of the two 
must differ in a detectable and usable manner. For exam- 
ple, when reasoning about physical systems, the behavioral 
difference must manifest itself in terms of observable quan- 
tities. Finally, the two instance descriptions must differ in 
a detectable and usable manner. For example, consider 
two circuit boards constructed from the same design spec- 
ification, one operating properly and one not. While they 
must necessarily differ in structure at some level of granu- 
larity, this difference would typically not be detectable. 

2.1 Variations on the difference set 
In general, A will be defined simply as the set of forms rep- 
resented by ( FP - F,) u ( Ft - &). However, there are some 
useful degrees of variability which should be considered. 

e Unidirectional. In some problem settings, it may be 
sufficient to a-priori decide that the relevant informa- 
tion relates solely to explicit statements removed (or 
added) from the positive exemplar (i.e., the set F’ - 
F,). However, these special cases must be considered 
in a domain dependent manner and are probably rare. 

We claim that having a prior example and an expecta- 

e Preferential ordering. In some circumstances, a de- 
cision procedure may be available to determine rel- 
evance or ordering within A. For example, in most 
domains it may be possible to ignore changes in color. 
The ability to focus on relevant differences is an im- 
portant component of DBR and will be examined fur- 
ther in Section 2.3. 

tion of similar function occurs in many cases of interest 
across diverse situations and domains. In some situations, 
the two contrasting examples will be explicitly presented, 
as in the statement of the pendulum problem. In ana- 
logical and case-based reasoning paradigms, the positive 
exemplar will already be present in the form of the base 
case or analogue. In many other situations, the positive 
exemplar must be accessed from a memory of previous in- 
stances or prototypes of the target concept. Note that this 
is typically much easier than the general analogical access 
problem, where one must retrieve-from a potentially vast 
memory an example that is similar in some way to a cur- 
rent target example. In DBR, access is more a matter of 
looking up a prototypical example of the specific situation 
under investigation. 

2.3 Using the Difference Set 

a Qualitative analysas. In physical domains, the set A There are several ways to focus on a relevant subset of dif- 
may be reformulated to represent the net effect on ferences or to use a given set of differences to guide problem 
each continuous quantity, rather than simply a collec- solving. The simplest model would use the differences to 
tion of axioms unique to each instance. For example, focus forward chaining of rules (or in means-ends-analysis). 
A may answer qualitative questions about what quan- This corresponds to the set-of-support strategy in resolu- 
tities increased or decreased. We may then consider tion theorem proving. However, there are a number of 
the instances as two states adjacent in time, and repre- standard, more sophisticated approaches available as well. 
sent the net change from state Sr, (positive exemplar) 
to state St (target example). This enables the use 
of standard qualitative reasoning techniques sue h as 
limit analysis (Forbus, 1984) and reduces the need for 
specific quantitative values. 

e Analogical comparisons. In analogical settings, A is 
less exact in the same manner that identicality is less 

o Domaan knowledge and heurzstzcs. In many problem 
domains, knowledge is available to rule out irrelevant 
differences and enumerate the likely types of things 
to suspect. For example, in attempting to explain 
a malfunctioning mechanical subsystem, the analvsis 
procedure should be able to distinguish .between par- 
tially relevant and irrelevant structural differences. In 
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a mechanical fault, the difference must be functionally theory’s predictions are empirically contradicted, compar- 
related to the area of failure. ing how the anomalous situation differs frotn experiences 

e Establishing context. Many reasoning systems are able 
selectively apply domain knowledge to a situation by 
identifying a current context during problem solving. 
If a difference is detected in one aspect of a situation, 
reasoning may be focused on that subarea. 

Q Associative knowledge base. Differences may be used 
as a source of knowledge to trigger remindings of rel- 
evant schemas, fault models, and problems associated 
with particular categories of change to a situation. 

a Interaction with other methods. DBR is perhaps best 
viewed as an additional source of knowledge to be used 
in conjunction with existing techniques. For example, 
a diagnostic engine may query the difference set to 
see which candidate fault hypotheses are consistent 
with what is known. Alternatively, hypothesizing a 
particular fault model may create a query to look for a 
specific difference as confirming evidence, rather than 
a-priori obtaining all possible differences between two 
situations. 

consistent with the theory can help to identify the fringes 
of a theory’s applicability and assign blame to its faulty ele- 
ments. This is a standard component of traditional empir- 
ical learning techniques, but applied here in a knowledge- 
intensive framework. 

In addition, analyzing differences provides a mechanism 
for base level conjectures when the domain theory is too 
weak or the observation too incomplete to attempt full 
explanation. If a b h e avior is seen to change with the in- 
troduction of a new relation, it would be reasonable to 
conjecture that the relation caused the change in behavior. 
The underlying mechanism may then be left for future the- 
ory generation. 

3.1.1 Example: The bouncing pendulum 

Consider the pendulum problem introduced in Section 1. 
The pendulum st,riking the vertical wall will never stop in 
finite time, while it will stop when striking the inclined 
wall. Many people approach this example with the expec- 
tation that both pendulums will behave the same. 

To examine how DBR may assist in explaining this phe- 

3 Issues and examples 
Difference-based reasoning has two basic computational re- 
quirements. First, there must be a means to compare two 
situations and ascertain their difference. Second, an infer- 
ence engine is required to apply domain knowledge to the 
explanation of failure and analysis of differences. 

nomenon, we have constructed a prototype implementa- 
tion based upon Doyle’s (1986) technique of layered sp- 
proximation. The system’; default model of the pendulum 
is highly abstract and simply predicts that both will oscil- 
late forever (i.e., Zeno’s paradox). Thus, the finite oscilla- 
tion of the inclined case violates the system’s expectation. 

To satisfy the first requirement, the Structure-Mapping 
Engine (SXE) (F lk h a en ainer, Forbus, & Gentner, 1986, 
1987) is used to identify similarity or identicality. SFIE 
is a general tool for performing various types of analog- 
ical mappings. Given descriptions of two situations, SBIE 
identifies the best set of correspondences between them by 
analyzing their structural similarities. The difference set 
is then defined to be those aspects that failed to be placed 
in correspondence. 

For the examples described in this section, two different 
inference engines were used. The first example uses For- 
bus’ (1986) Qualitative Process Engine (QPE) to predict 
physical behaviors using models expressed in Qualitative 
Process theory (Forbus, 1984). The remaining two exam- 
ples use a controllable, forward chaining rule system built 
atop an AT-MS. In each example, we focus on the role of 
difference-based reasoning for aiding explanation of failure, 
and ignore the related issues of failure detection, repair, 
and storage. 

DBR is intended for any failure explanation task that 
would benefit by having a working version to compare the 
failure against. .Just how it is to be used can depend upon 
the reasoning task bein g considered. In the remainder of 
this section, we discuss examples from theory formation, 
diagnosis, and failure-driven learning in planning. 

The system begins with structural descriptions of the 
two situations. Since the inclined pendulum violates the 
system’s default model, it is given the inclined pendulum 
as the target example and the vertical pendulum as the 
positive exemplar. In the first stage of the analysis, St.IE 
is invoked to determine how the two situations differ. It 
responds with 

Removed: Equal-to(Contact-Thetacballl), zero) 
Added: Greater-than(Contact-Theta(ba1 ll), zero) 

The removed relations are those present in the positive 
exemplar but missing in the target example, while the 
added relations are those uniquely part of the target exam- 
ple. The system’s focus of attention is then aimed at the 
ball’s contact angle by the rule “if an inequality between a 
quantity and zero changes, focus on that quantity”. With 
this new focus of attention, the system reanalyzes the situ- 
at.ion. This time, more detailed models are invoked which 
successfully predict different behaviors for the two pendu- 
lums. These predictions are shown in Figure 2. 

In the simplest terms, recall that an oscillator will ai- 
ternate aboltt a central equilibrium point. In vertical case 
(a), the equilibrium point s)ccurs at the exact point of con- 
tact, and thus half of the cycle will take place when the 
position is greater than the contact position. En inclined 
case (b), the zero force point is within the compression 
region, that is. the position of the ball is less than the con- 
tact position. This means that oscillation can take place 
without the ball ever leaving the surface of the wdi and 
thus have no visible motion. In Figure 2(b), the cycles 
containing the two central paths correspond to no visible 
movement, with the oscillation taking place solely within 

3.1 Theory formation and revision 
Theory formation and revision attempts to develop and 
repair causal explanations of observed behavior. Within 
this framework, DBR may serve two purposes. First, it 
has the ability to focus hypothesis generation. When a 
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(4 (b) 
Figure 2: Alternate behaviors for the bouncing ball pendu- 
lum. In (a), there is no path to the stopped state. In (b), 
the cycles containing the two central paths correspond to 
no visible movement, with all of the oscillation occurring 
within the compressed region. 

the compressed region.’ 
This example and its implementation has brought up 

a number of important issues that still must be resolved. 
First, the implemented example is overly simplistic and 
work on a more realistic version is in progress. Second, the 
type of flexible, dynamic reasoning about geometry needed 
for a more robust treatment is beyond current qualitative 
reasoning techniques, with or without the ability to focus 
on the problem’s relevant characteristics. 

3.2 Diagnosis 
The literature on diagnosis centers around two techniques. 
The traditional approach is to store an explicit set of fault 
models for a device and attempt to determine which fault 
type applies to the current situation (see Davis, 1984 for a 
review). However, this requires all possible faults be antic- 
ipated in advance, and the number of applicable fault mod- 
els may be extremely large. An alternate approach is to 
identify failed components by analyzing where the device’s 
physical behavior deviates from the predictions of its cor- 
responding model (e.g., Davis, 1984; DeKleer & Williams, 
1987). However, model-based approaches assume a com- 
plete model, which is not always available. Each of these 
methods approach diagnosis by focusing solely on the cur- 
rent situation, where previous experience only appears in 
the form of fault models or probability distributions. For 
electrical circuits and many other complex domains, this is 
reasonable and about the best that one can expect. How- 
ever, for domains readily characterizable by structural de- 
scriptions matching the granularity level of their faults, 
these methods fail to take advantage of all potentially avail- 
able information. 

Difference-based reasoning in the context of diagnosis 
reflects the comnion troubleshooting technique of consult- 

‘This phenomenon, attributed to Meissner, is analyzed us- 
ing Lienard’s construction in (Stoker, 1950). Presented here is 
my personal qualitative explanation, which I arrived at by con- 
sidering what effect the angle might have on the ball’s behavior. 
Since I’m currently not certain of the explanation’s nccurscy, 
this example nlso demonstrates the potential for plausible hy- 
pothesis generation in difference-based reasoning and the usual 
problems that implies. 

ing a working example for comparison. It recognizes that 
the structural flaw producing the deviant behavior may be 
identified by comparison to a correctly functioning exam- 
ple. For example, consider attempting to figure out why 
the driver’s door on your car won’t close all the way. It may 
be something blocking the hinges, bent hinges, something 
blocking the lock latch, a stuck lock latch, a bent door, 
bent lock latch, ice, etc. One method would be to enumer- 
ate all the possibilities and carefully examine the door for 
the existence of each. However, this is rather tedious and 
the number of possibilities is far too large. Furthermore, 
our model of the door is incomplete. While we have gen- 
eral knowledge of the door, we could not enumerate every 
piece and its relation to every other piece from memory. 
An alternative approach, using difference-based reasoning, 
would be to compare the door to one that is known to work 
properly - for example, the passenger door. 

3.2.1 Example: The car door latch 
In this section, we examine a simple difference-based di- 

agnostic procedure capable of identifying and explaining 
why the car door fails to close.’ We assume the existence 
of a full diagnostic system that is currently considering how 
the door latch might be at fault. A set of simplified do- 
main rules for geometric reasoning are used. These rules 
represent specific knowledge about the latch mechanism, 
such as qprop- (theta, Al), which expresses that the an- 
gle of the latch’s displacement is inversely proportional to 
LVl (i.e., when Wl decreases, theta increases). 

The DBR system is initially given a structural descrip- 
tion of the driver’s door latch and the task of explaining 
how it may prevent the door from closing. The system 
first retrieves a description of anot,her latch that is known 
to work (i.e., the passenger door latch). These two latches 
are illustrated in Figure 3, with (a) being the suspected 
driver’s door latch and (b) being the working passenger 
door version. After analyzing the two descriptions, SME 
finds that a piece of rubber is present in the working ver- 
sion, but missing in the driver’s door latch. Furthermore, 
this piece of rubber is attached to the right end of the 
metallic part of the latch. The domain rules are then ap- 
plied to analyze the net effect of adding the rubber piece. 
These rules enable the system to conclude that adding the 
piece of rubber increases the maximum angle achievable by 
the latch. Conversely, since the driver’s door latch is miss- 
ing the piece of rubber, its maximum angle is less than that 
for the working exemplar. The door’s malfunction could 
be explained if the maximum angle for the driver’s door 
mechanism had fallen below the threshold needed to latch. 

The car door fault demonstrates several important ben- 
efits of difference-based diagnosis., First, the number of 
potential faults is extremely large, making a methodical 
analysis prohibitive. Even when focusing on the latch 
mechanism alone, there sre many potentially relevant hy- 
potheses. DBR’s ability to focus the reasoning mecha- 
nism’s attention on the relevant aspects makes the anal- 
ysis tractable. Second, maintaining a set of prototypical 
examples can greatly facilitate isolating faults. Imagine 
the plausibility of a system proposing that a piece of rub- 
ber was missing if it had never encountered a working 
version! However, this must be carefully conditioned on 

*The problem with the door is taken from Actual experience. 
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teractions a new situation might cause. 

3.3.1 Example: The flat soufle 
Hammond (1987) d escribes an example in which his pro- 

gram CHEF constructs a plan to make strawberry soufle by 
adding strawberries to iis existing vanilla soufle recipe. 1; 
this example, the plan fails because the soufle did not rise 
as expected. To explain the failure, CHEF analyzes the sit- 
uation and the planning steps performed in isolation. It, 
finds that the soufle fell because the 2.4 teaspoons of liquid 
and 60 teaspoons of whipped stuff represented an imbal- 
ance between the liquid and leavening in the recipe. There 
are several problems here. First, such detailed measure- 

Figure 3: Car door latch. (a) The door only closes part 
way. (b) Properly functional door. 

the type of domain under consideration. Structural differ- 
ences must, be easily recognizable and relevant to poten- 
tial faults. Third, it is unreasonable to expect that a full 
model of the door is available for detailed analysis. Rather, 
having a prototype enables knowledge to be dynamically 
drawn from the exemplar on demand. Unfortunately, this 
example suffers from a need for geometric reasoning that 
AI systems still find quite difficult. Since the purpose is 
demonstration, the example has been greatly simplified. 
For example, the two dimensional 
pressed in one-dimensional terms. 

geometry has been ex- 

3.3 Failure explanation 
Failure-driven learning recognizes that a useful way to 
schedule learning tasks is to wait until existing knowl- 
edge fails in some task (Hayes-Roth, 1983; Gupta, 1987; 
Hammond, 1987). Explaining this failure may then help 
prevent its reoccurrence in the future. Thus, it provides 
a reasonably focused and goal-driven method of learning. 
In this context, failure refers to a procedure that did not 
produce the desired outcome. The most straight forward 
approach is to resort, to first-principles and heuristics in 
time of error (e.g., Hayes-Roth, 1983; Gupta, 1987). Un- 
fortunately, given a sufficiently large set of interactions, 
explaining why a plan failed can become as difficult as the 
general diagnosis task. Hammond (1987) discusses the ef- 
ficiency of accessing stored explanations of similar failures. 
However, the typical problems of associative memory ac- 
cess apply to retrieving similar failures. In addition, the 
number of previously explained failures and fault types 
grows with the breadth of the system’s experiences, slow- 
ing failure explanation as more is learned. 

In the context of explaining procedure failures, DBR 
seeks a previous success rather than a previous failure. It 
captures the notion that when a procedure fails, a useful 
heuristic is to focus on how the current situation differs 
from past examples of correct application. Locating pre- 
vious failures has the drawback that the set of applicable 
failures is potentially large or potentially empty. Retriev- 
ing a successful instance should in general be easier than 
retrieving a negative instance. Having a successful instance 
simply means the procedure has worked in the past. How- 
ever, the two approaches may still be used in concert, with 
differences from successful cases used to suggest, previous 
failure explanations and guide their application to the cur- 
rent situation. Furthermore, there is potential for failure 
anticipation by constraining search into what possible in- 

ments are rarely available. Secondly, by examining the 
failed plan or previous similar failures, in isolation from 
the base case used to form the plan, valuable focusing in- 
formation is lost. The only difference between the vanilla 
soufle and the strawberry soufle recipes is the strawberries. 

In this section, a difference-based approach to explain- 
ing the strawberry soufle failure is described. The system 
was presented with descriptions of both cooking situations. 
This included the recipe used (e.g., 5 egg whites, etc.), the 
time and day, and the weather status. Furthermore, a 
statement of how the target strawberry soufle recipe failed 
was provided (i.e., Texture(souf le, flat , SZ)). SME 
was used to analyze descriptions of the two recipes and 
determined that the time, day and weather had changed, 
and strawberries were added as a new ingredient.3 After 
applying several rules, the system was able to conclude 
that the recipe’s liquid content was increased due to the 
strawberries.- Rather than having to know how much liq- 
uid and leavening is present, we may then compare the two 
situations and derive the relevant information with the fol- 
lowing rule: 

c-balance(q1, q2, al) A equal[V(ql, 811, V(q1, s2>] 
A greaterN(q2, al), V(q2, 9213 

=k x-balance(q1, q2, 92) 

This rule states that if there is a chemical balance between 
two quantities in state Sl, and only one of the quantities 
is greater in state S2, then there cannot be a chemical 
balance between them in S2. The lack of balance between 
the liquid and leavening quantities in the strawberry soufle 
explains why its texture was flat. An alternative approach 
would have combined the knowledge that too much liquid 
can leave a soufle flat with the knowledge that the added 
strawberries contain liquid. 

4 Related Work 
Oppenheimer (1956) stressed the importance of identify- 
ing disanalogies to find unifying abstractions and refine 
scientific theories developed from analogy. This is cer- 
tainly important to scientific theory formation, and DBR 
stems from the development, of PHIplEAS, a program de- 
signed to investigate analogical theory formation and re- 
vision (Falkenhainer, 1987). DBR is a natural comple- 
ment to analogical learning, which suffers from potential 

3Given a complete case-based problem solver, the differences 
would be explicit in the transformations used to modify the 
original vanilla soufle recipe. In this example, we simply use 
SME to automatically provide the equivalent information. 
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inaccuracies that require refinement. However, the general 
difference-based reasoning mechanism goes far beyond ab- 
straction formation and theory revision in applicability. 

Weld’s (1987) comparative analysis technique is a pro- 
cedure for determining the effects of qualitative changes to 
a system’s contimious parameters. It is not applicable to 
structural modifications, additions, or deletions. However, 
under these limiting conditions, it, would be extremely use- 
ful for the second stage in DBR, where the effects of a given 
difference set are analyzed. 

Identifying similarities and differences has its strongest 
machine learning roots in inductive, empirical methods. 
These methods form characteristic or discriminant descrip- 
tions for conceptual classification. Differences in this sense 
are features or relations that, may be used to prevent 
overlap among elements of distinct conceptual categories. 
Among the empirical methods, DBR is most like Winston’s 
(1975) near miss approach, which focuses on differences in 
example descriptions to hypothesize changes to a devel- 
oping concept description (e.g., adding MUST-IJOT-ABUT if 
the two supports touch in a negative example of an arch). 
However, these differences were never used in conjunction 
with domain knowledge for problem solving. 

5 iscussion 

Difference-based reasoning is applicable to a wide range 
of domains and reasoning tasks. This has been demon- 
strated by examples from theory formation, diagnosis, and 
planning failure explanation. It is relevant to situations in 
which an expectation was violated and an instance of the 
desired performance is available. It, may be used in purely 
deductive settings to guide the explanation process or in 
inductive settings as a source of focused conjecture. When 
the domain vocabulary is too unconstrained to identify the 
problem from first principles, the technique may become 
an absolute necessity. 

There are still many issues to be explored. For example, 
we have yet to examine specialized methods for analyzing a 
given set of differences. DBR has potential relevance for a 
much broader range of problems than currently examined. 
More examples from new problem domains are needed to 
better understand how it may be used. 

The next phase of research will be to fully integrate 
the method with existing theory revision techniques in 
PHINEAS (F lk h a en ainer, 1987). This will provide a compre- 
hensive framework to further investigate its role in large 
learning tasks, particularly how it can assist in repairing 
faulty analogies. For example, Falkenhainer SC Rajamoney 
(1988) describe how an observation of liquid in a closed 
container violated their model’s expectation that all con- 
tained liquids evaporate. They show how its revision may 
be facilitated by examining analogous behaviors, such as 
dissolving stopping due to saturation. However, that ap- 
proach looked solely at the anomalous behavior and never 
noticed how the situation differed from the previous ob- 
servation. Specifically, the only difference was the use of a 
closed container - an indication that, one’s models of finite 
capacity may be applicable. 
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