
Explanation-Based Indexing of Cases 

Ralph Barletta and William Mark 
Lockheed AI Center 

2710 Sand Hill Rd. 
Menlo Park, CA 94025 

(415) 354-5226 
Mark@VAXA.ISI.EDU 

Abstract 

Proper indexing of cases is critically important 
to the functioning of a case-based reasoner. In 
real domains such as fault recovery, a body of do- 
main knowledge exists that can be captured and 
brought to bear on the indexing problem-even 
though the knowledge is incomplete. Modified 
explanation-based learning techniques allow the 
use of the incomplete domain theory to justify 
the actions of a case with respect to the facts 
known when the case was originally executed. 
Demonstrably relevant facts are generalized to 
form primary indices for the case. Inconsisten- 
cies between the domain theory and the actual 
case can also be used to determine facts that are 
demonstrably irrelevant to the case. The remain- 
ing facts are treated as secondary indices, subject 
to refinement via similarity based inductive tech- 
niques. 

1 htroduction . 

Case-based reasoning is an approach to problem-solving 
based on retrieving and applying stored solution exam- 
ples or “cases” (e.g., see [Schank 821, [Kolodner 881). This 
problem-solving methodology brings up a variety of re- 
search issues-How are new cases acquired over time? What 
happens if the chosen case fails to accomplish the goal? 
What knowledge is needed to adapt a case to a new prob- 
lem? How should case memory be organized in order to 
select cases relevant to new problems? 

Our research focuses on the last of these issues: how 
to determine the set of storage indices that enable a case 
to be retrieved “most appropriately” in the future. The 
system must determine a set of index predicates (called 
simply “indices” from now on) whose values differentially 
select cases in memory when applied to incoming problem 
descriptions. The goal is to determine indices that select 
exactly those cases that are applicable to-i.e., will result 
in a solution of-the new problem. 

For example, in our domain of fault recovery in auto- 
mated machinery, the system must infer relevant indices 
for recovery procedures based on observed fault recovery 
cases. The system records the series of actions that were 
used to recover from a fault, indexing it in memory accord- 
ing to features that are relevant to retrieving it again. The 
indexing problem is to determine which of the observed 
features were really relevant to performing the particular 
series of actions that make up the case. Was the time 

Initial Observables 

ambient temperature (42 dea 
time-of-day [14:30] 

part-material [metal] 
last-maintained [34 days] 

shift [l] 

Actions 

Figure 1: Problem Situation (The Case) 

since the last tool change relevant? The current machine 
operator? Time of day? Temperature and humidity? 

Automatically determining appropriate indices is a 
learning task: the system must infer relevant indices for 
a case by generalizing the initial conditions of this specific 
problem-solving instance. The indexing mechanism has 
available to it: 

0 The problem situation: the given case and the cir- 
cumstances of the case’s application. The case con- 
sists of the series of actions that led to recovery from 
a particular fault; the circumstances of the case’s ap- 
plication are the values of certain observables when 
the series of actions was initiated. For example (see 
Figure l), the operator of a robotic fabrication cell 
hears the motor “loading up” (i.e., straining) as it is 
cutting a part. He shuts down the cell and performs a 
series of diagnostic and recovery actions that result in 
the problem being fixed (only the first three actions- 
checking the air inlet gauge, turning the tool by hand, 
and re-running the machine’s program-are shown in 
Figure 1; the actual case continues). 

8 A domain theory: for fault recovery, a description 
of cause-effect relationships within the machine. E.g., 
“low motor temperature is indicative of lubricant that 
is too cool, indicating that the lubricant viscosity is 
too high, causing the motor to slow down”. As in 
most real domains, the available cause-effect theory is 
incomplete. 

e Actions: 
and their 

The set of actions 
preconditions and 

the operator can perform 
results. 
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This paper discusses our current work in combining 
these sources of information to guide the indexing of cases. 
The focus is on adapting explanation-based learning tech- 
niques [Mitchell 86; DeJong 861 to identify relevant indices 
from a set of features. 

2 Indexing 
The success of a case-based reasoning system relies on the 
selection of the most applicable stored case. Selection of 
the wrong case can be very expensive; much more so than 
selecting the wrong rule to fire in a rule-based system. It 
is therefore most important for the system to determine 
indices that most effectively indicate (or contra-indicate) 
the applicability of a stored case (cf. [Bareiss and Porter 
W)* 

Indices must be selected from knowledge about the state 
of the world when the case occurred. Unfortunately, ev- 
erything the system knows about the state of the world 
when the case occurred might be relevant to its applica- 
bility. Thus, if a fault recovery case occurred when the 
ambient temperature was 44 degrees F, that temperature 
might somehow be relevant. 

Second, indices must be generalized [DeJong 81; Kedar- 
Cabelli 871. 0th erwise, only an exact match can be the 
criterion for case applicability. For example, if ambient 
temperature really is a relevant indicator for a case, we 
would want to index the case on a range of temperature 
values. Without this generalization, the case would only 
be deemed applicable when it happened to be exactly 44 
degrees again. On the other hand, indices should not be 
over-generalized. A case that is a good choice at 44 degrees 
may be a very poor choice at 34 degrees. 

What is needed, then, is a method for indexing that 
wades through the large quantity of world state knowl- 
edge, most of which is irrelevant to the case’s applicability, 
to find the truly relevant initial conditions-and then gen- 
eralizes these conditions just enough but not too much. 

Previous approaches have relied on inductive methods 
[Kolodner 83; Schank 821 to reduce the index set and gen- 
eralize the resulting indices. This approach has achieved a 
rudimentary level of success in early case-based reasoning 
systems [Kolodner and Simpson 881. There are, however, 
some major problems that inductive methods have with 
respect to indexing. Many cases must be observed before 
the relevant indices can be induced. Also, induction allows 
irrelevant indices to be put into memory, and remain there, 
until they are incrementally weeded out by the induction 
process. 

Additionally, coincidental occurrences can cause the gen- 
eration of erroneous indices. For example, if the system 
sees five fault recovery cases where the same problem oc- 
curred and the operator on duty was the same for all five, 
then the name of the operator might be chosen as a rele- 
vant index. Although this could be an appropriate index, 
it is more likely just a coincidence. 

This leads to the final problem with any inductive 
method: induction can use only the evidence available to 
the system. It would be much better if index selection 
could be based on theories of the domain that are derived 
from widely held principles of how the world works. This 
seems like a very reasonable goal to attain given the fact 
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that most real world domains are in fact understood (at 
least at some level) in terms of physical properties, cause- 
effect, etc. Of course, this is the fundamental insight of 
explanation-based learning approaches. 

3 Explanatisn- 
The task in case indexing is to find relevant features to look 
for in future problems to decide whether or not the stored 
case is applicable. This sounds like an explanation-based 
learning problem: create an explanation of what makes 
a case applicable to a problem description, and consider 
as relevant those features required for the explanation (cf. 
Koton 19881). In the domain of fault recovery, we will be 
looking at explanations that answer the question: what 
was it about that state of the world that prompted the 
given sequence of diagnostic and repair actions? Thus the 
“goal concept” [Mitchell 861 in explanation-based learn- 
ing terms is the sequence of actions in the case, and the 
reasoning is aimed at justification [DeJong 831, not vali- 
dation [Hammond 86; Keller 871 or classification [Bareiss 
and Porter 8’71. In other words, we are not attempting to 
explain the final diagnosis of the case with respect to the 
initial conditions (validation), but instead in justifying the 
choice of the actions taken in the case with respect to those 
conditions. 

3.1 Using an Incomplete Domain 
Theory 

One consequence of an incomplete domain theory is that 
the system will not be able to show that every feature is 
either relevant or irrelevant. This means that in addition to 
deriving explanations for which features are relevant, the 
system must also derive explanations for which features 
are irrelevant (cfi [H ammond and Hurwitz 19881). And, 
the system will have to do something with those features 
that cannot be explained as either relevant or irrelevant. 

In our Explanation-Based Indexing (EBI) process, the 
system uses the case and the domain theory to categorize 
features as “known to be relevant”, “known to be irrele- 
vant”, and “possibly relevant” (i.e., neither relevant nor 
irrelevant according to the domain theory). “Known to 
be relevant” features may be either indicative or contra- 
indicative with respect to applying the case. 

These features are then made into indices to store the 
case in memory. Known to be relevant features are gener- 
alized to form the main organization of primary indices- 
necessary conditions for case applicability. Known to be 
irrelevant features are dropped from consideration as in- 
dices. Possibly relevant features are used as secondary 
indices. When a new problem comes in, the primary in- 
dices are used to determine a set of applicable cases, and 
the secondary indices are used to choose among those cases. 
Secondary indices are refined by induction as more and 
more cases are observed. 

3.2 Justification 
The EBI justification process used to determine the rel- 
evance of features must be driven by the purpose of the 
problem solver (cf, [Kedar-Cabelli 19871). In the fault 
recovery domain, the purpose is some form of “fix the ma- 
chine”, which may include “find the problem”, “make the 



machine safe for investigation”, etc. Cases are triggered 
by a “presenting symptom”, i.e., observable evidence that 
something is wrong. The goal of the EBI process is to 
justify all actions in the case in terms of their role in relat- 
ing symptoms and observables to “causes”, i.e., correctable 
problems, and/or their role in correcting those problems. 
(Actions whose effect is to establish prerequisites for later 
actions do not require this justification; they are consid- 
ered to be “covered” if the later actions can be justified.) 
Thus, if the effect of an action is to provide additional ob- 
servables, the system will examine its domain theory to 
see how the additional information must have been used 
to reduce the number of possible causes, increase certainty 
about a cause, etc. Deriving what the actual cause turned 
out to be is not necessary for this justification. In fact, 
an important aspect of this work is that the system can 
justify the actions even if it cannot validate the result. 

3.3 Assumptions 
In developing the justification process, we have made sev- 
eral simplifying assumptions concerning the fault recovery 
activity. One is that the goal of the case is to recover from 
the fault, not to do exhaustive testing to find all possible 
causes of the fault. This is what allows us to reason about 
relevancy based on reducing the number of possible causes, 
etc. Second, we assume that the actions in the case are 
there solely for the purpose of fault recovery. Thus, all ac- 
tions are justified strictly in terms of their contribution to 
the fault recovery goal (though their contribution may con- 
sist of setting up prerequisites for later actions). Third, we 
assume that each action in the case really does contribute 
to fault recovery-even if the system cannot see how. This 
means that in case of doubt, we will believe the operator; 
this is important in determining irrelevant features, as we 
will see. 

Finally, we have a set of assumptions about the com- 
pleteness of the system’s knowledge. Knowledge of opera- 
tor actions is expected to be “complete” in the sense that 
the operator is not doing things to affect the machine that 
are not included in the case (a reasonable assumption in 
this domain). The system’s domain theory of causal knowl- 
edge is expected to be incomplete. If the system is unaware 
of relevant observables (e.g., if the the system is unaware 
that the operator makes decisions based on whether or not 
there is a burning smell), indexing will be be incomplete, 
but it will still be effective with respect to the set of observ- 
ables that are known. Similarly, if the system is unaware 
of certain cause-effect relationships, an index that should 
have been primary may end up as secondary, and certain 
irrelevancies will go undetected, but the system will still 
be effective in finding primary indices in the context of its 
known theory. 

3.4 Available Knowledge 
The knowledge available to the system consists of the case, 
the set of observable facts, the domain theory and the oper- 
ator actions. The observable facts consist of those available 
initially, including the presenting symptom (top of Figure 
l), and those “discovered” via actions in the case-e.g., the 
fact that air inlet pressure = 85 psi (bottom of Figure 1). 
The domain theory consists of some causal knowledge re- 
lating functions and states of the machine. For example, 

the theory in Figure 2 shows (at the top) a basic functional 
structure consisting of an air compressor that drives a mo- 
tor, which turns a tool, which cuts a part. In addition, 
the theory defines some state information that is relevant 
to the functioning and malfunctioning of the machine. For 
example the figure shows that “high internal friction” in- 
dicates “slow turning of the motor”; that “‘low quantity of 
lubricant” indicates “high internal friction”; and so on. 

The theory also relates observables-both those available 
initially and those discovered via actions-with the states 
they indicate. In Figure 2 the observables are shown in 
boxes, with discovered observables in thicker boxes. The 
discovered observables are the results of the actions that 
discover them, as shown at the bottom of Figure 2. (Re- 
member that the system has available to it all of the actions 
the operator can perform.) Note that different values of 
an observable may be connected to different states: e.g., 
“tool resists steadily” indicates the state of high internal 
friction, while “tool turns normally” indicates normal in- 
ternal friction; similarly only motor temperatures less than 
150 degrees indicate the state of the lubricant being too 
cold. 

3.5 The 33 Process 

Given the assumptions and the available knowledge de- 
scribed above, the EBI process constructs indices from the 
initial observables. Only the initial observables are used 
for indexing because they will be all that is available the 
next time a similar problem arises. 

The EBI process consists of three steps. Step 1 identifies 
all of the initial observables that can possibly be relevant to 
justifying the actions. These will be the observables that 
connect to all of the hypotheses (causal explanations) that 
can possibly explain the behavioral states relevant to the 
case. The domain theory represents all known hypotheses 
that explain all known behavioral states. The goal of Step 
1 is therefore to find that subset of the domain theory that 
applies to the case at hand. By assumption, this part must 
be the set of hypotheses that explain the behavioral states 
indicated by: 

Q the presenting symptoms (because the “why” of per- 
forming the case has been defined to be “to recover 
from the presenting symptoms”); or 

the observables that can be discovered by any of the 
actions in the case (because, due to the incompleteness 
of the theory, the system may not be able to under- 
stand how some of the actions help to recover from 
the presenting symptoms). 

The procedure for Step 1 is therefore to find all sub- 
networks of the domain theory that contain either a pre- 
senting symptom or an observable that can be discovered 
by one of the case actions. These sub-networks are in fact 
trees (explanation trees) whose roots are behavioral states 
and whose leaves are observables (see Figure 3). Explana- 
tion trees represent all known causal explanations of the 
behavioral states that are known to be important for the 
case. 

For example for the case in Figure 1 all initial observ- 
ables that can be connected (through any number of “in- 
dicative of’ links in Figure 2) to the state “motor turns 
slow” are marked as possibly relevant, because this is the 
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Causal Model 

pveilable Actions 
Check Air Filter 

Po*db,e res”lfs: 
- Filter Clean 

i - Filter Clogg d 
- Filter Damaged 

Manually Rotate Tool 

- Tool won’t turn 
- Tool turns normally 

Figure 2: Domain Knowledge 

‘4 

Figure 3: Explanation Tree 

root of the (single) presenting symptom “sounds like mo- 
tor loading”. Thus, “motor temperature less than 150 de- 
grees” is included in the round-up because it indicates lu- 
bricant too cold, which indicates “high lubricant viscosity”, 
which indicates “high internal friction”, which indicates 
“motor turns slow”. Figure 3 shows the explanation tree 
for the case of Figure 1 and the domain theory of Figure 
2. The computational demand on producing this tree can 
be reduced by caching pre-computed sub-trees or by us- 
ing parallel computation; we are currently looking at both 
alternatives. 

& It is important to note that because of the incomplete- 
ness of the domain theory, more than one explanation tree 
can be created. This happens when there is no known re- 
lationship between the behavioral states at the root nodes 
of the separate trees. The existence of these disjoint trees 
prevents validation of the final result of the case, because 
for validation, all actions in the case must be understood 
with respect to their role in recovering from the present- 
ing symptoms. This can only be accomplished if all actions 

are understood in terms of a connected causal explanation, 
i.e., a single explanation tree. Justification is still possi- 
ble because subsets of actions in a case can be understood 
in terms of their role in eliminating branches of a single 
(disjoint) explanation tree. 

Step 2 of the EBI process is to reason with the explana- 
tion trees in order to determine the relevance or irrelevance 
of each observable in the trees. Following our assumptions, 
the only reason to perform an action is to “prune” the tree 
by eliminating one or more of its hypothesis-branches. As 
was previously stated, if there are more than one explana- 
tion trees, each can be treated separately for this justiflca- 
tion reasoning. 

Once the trees have been formed, the process can pro- 
ceed to determine which observables are relevant and ir- 
relevant to the action to be justified. Relevance and irrel- 
evance are determined according to the following rules: 

0 An observable is relevant and indicative with respect 
to an action if: 

- The presence of the observable removes some of 
the possible competing hypotheses. 

* An observable is relevant and contra-indicative with 
respect to an action if: 

- A different value of the observable would have 
eliminated the hypotheses that would have been 
resolved by taking the action. 

- Some other value of the observable would have 
determined a different hypothesis as the cause of 
the presenting symptom. 

e An observable is irrelevant if all values of the observ- 
able have no bearing on taking or not taking all ac- 
tions of the case. Because of the inherent incomplete- 
ness of the model this condition is very hard to show. 
However, we can demonstrate the irrelevance of an 
observable if: 

- the observable suggested not taking the action, 
and it was taken anyway. Since (by assump- 
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tion), we believe that the operator acted COI- 
rectly, the domain theory must be missing the 
causal paths that would render that observable 
irrelevant. Thus, in addition to showing the ob- 
servable to be irrelevant, this rule also pinpoints 
places in the theory in which there is missing in- 
formation. 

Note that all actions must be justified in the context 
in which they were originally initiated (see [Keller 19871). 
That is, knowledge about the problem being solved changes 
as the case progresses, because actions discover new infor- 
mation, which influences future actions. So, as each action 
in the case is justified, the actual result of that action may 
cause branches of the explanation tree to be pruned. This 
incremental updating of the explanation tree with infor- 
mation from the actual case allows us to maintain the ap- 
propriate context for justifying each action in the case. For 
example, after we justify the Check Air Gauge action, 
we use the fact that air pressure equals 85 psi to prune the 
“low inlet pressure hypothesis” from the explanation tree, 
and then proceed to justifying the next action in the case, 
Manually Rotate Tool. 

Step 3 of the EBI process is to make the features into 
indices. All features not included in the explanation trees 
become secondary indices. Irrelevant features are elided. 
The relevant features are generalized using the ranges sup- 
plied in the theory: since the justification reasoning has 
been solely in terms of the ranges specified in the theory, 
we can certainly generalize to that level. These general- 
ized relevant features become the primary indices of the 
case-necessary conditions for retrieving the case. The sec- 
ondary indices are sufficient conditions for retrieving the 
case. In general there will be a “family” of cases indexed 
under any set of primary indices; they are differentiated 
within the family by their secondary indices. 

4 ExampIle 
To clarify these ideas, we describe an example of the EBI 
process for the case in Figure 1. For simplicity, we will fo- 
cus on the single action Manually Rotate Tool. So, for 
our example, the justification question is: “why is it rea- 
sonable to perform the action Manually Rotate Tool, 
given the currently known observables (i.e., including the 
fact that the air gauge has been checked and the inlet pres- 
sure found to be 85 psi) ?” 

The, explanation tree has already been constructed, as 
shown in Figure 3. The EBI process is therefore at Step 
2. The system examines Manually Rotate Tool to see 
which hypotheses are impacted by taking the action. For 
Manually Rotate Tool, these are the hypothesis that 
confirm or deny “high internal friction”. 

For the Manually Rotate Tool action, tool change is 
relevant and indicative. We know that the tool was last 
changed at 1 o’clock and the model tells us that if the 
tool was changed within two hours we can conclude that 
external friction was normal. This situation matches the 
relevant and indicative rule which says an observable is 
relevant if it eliminates a competing hypothesis. 

“Casing leak” is relevant and contra-indicative. Be- 
cause, if the casing were leaking, we would conclude that 
the quantity of lubricant is low and therefore that internal 

friction is high. This would make it unnecessary to per- 
form Manually Rotate Tool. So, knowing there is no 
leak justifies (in part) taking the action. 

Motor temperature is irrelevant. The actual tempera- 
ture was 110 degrees. According to the theory, this indi- 
cates that the lubricant is too cold, making the lubricant 
viscosity too high, which indicates high internal friction. 
This means that it is not necessary to perform the Man- 
ually Rotate Tool action. But we know this action was 
taken anyway. Since we assume that the operator acted 
correctly, it must be that the theory is missing the infor- 
mation that would show that motor temperature is in fact 
irrelevant. Note that motor temperature has so far been 
shown to be irrelevant only to Manually Rotate Tool. 
In order to be shown irrelevant to the entire case, it must 
be shown to be irrelevant to all of the actions. 

The final result of the EBI process applied to all of the 
actions of the case is the following set of indices: 

Q irrelevant 
- Motor temperature 
. 

* primary indices 
- Sounds like motor loading (indicative) 
- Tool changed less than 2 hours ago (indicative) 
- Casing leak (contra-indicative) 
- Maintained more than 3 months ago (contra- 

indicative) 
8 secondary indices 

- all other features at the values shown in Figure 1 

We have tried to show that explanation-based learning 
techniques can be applied to the indexing problem, even 
in the face of an incomplete domain theory. The existence 
of the case turns the learning problem into one of justifi- 
cation, which we believe is more tractable when domain 
knowledge is incomplete. The EBI process differs from 
previous explanation-based approaches primarily in terms 
of what happens after the explanation trees have been 
formed. As we have seen, relevance and irrelevance must 
be determined by reasoning about eliminating branches, 
etc., not by simply examining the leaf nodes of the tree. 

The system described in this paper is currently under 
construction. In addition to the many unexpected issues 
that will arise during the implementation, we have al- 
ready noted several places for required extensions of our 
method. In particular, we must have a mechanism for 
dealing with uncertainty-i.e., for domain theory links that 
express “might indicate” rather than “indicates”. We must 
also weaken some of our assumptions to allow the fact that 
any diagnostic process contains actions that have more 
to do with “standard procedure” than with confirming or 
denying any particular hypothesis. Our goal is to explore 
these issues in the context of a building a working fault 
recovery system. 
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