
Subratx3 oy and Jack ostow
Rutgers University Computer Science Department

New Brunswick, NJ 08903, USA
ARPAnet address: suroy@paul.rutgers.edu, Mostow@aramis.rutgers.edu

Abstract

The grain size of rules acquired by explanation-
based learning may vary widely depending on
the size of the training examples. Such varia-
tion can cause redundancy among the learned
rules and limit their range of applicability. In
this paper, we study this problem in the context
of LEAP, the “learning apprentice” component
of the VEXED circuit design system. LEAP ac-
quires circuit design rules by analyzing and gen-
eralizing design steps performed by the user. We
show how to reduce the grain size of rules learned
by LEAP by using “synthetic parhzg” to extract
parts of the manual design step not covered by ex-
isting design rules and then using LEAP to gener-
alize the extracted parts. A prototype implemen-
tation of this technique yields finer grained rules
with more coverage. We examine its effects on
some problems associated with the explanation-
based learning technique used in LEAP.

‘II

A knowledge-based approach to design, as explored by
many researchers (e.g. [Mitchell et al., 1985b; Kowalski
and Thomas, 1983]), requires explicit representation ofvar-
ious kinds of design knowledge. In order to build such a
system, one needs to decide on the granularity or the level
of detail at which the design knowledge is represented. Ide-
ally the grain size should be coarse enough to allow efficient
reasoning and yet fine enough to make important distine-
tions. The problem of deciding proper grain size manifests
itself in different forms depending on the method of ac-
quiring design knowledge. In this paper we investigate the
grain size problem for the case in which knowledge is ac-
quired by explanation-based learning [Mitchell et al., 1986;
Dejong and Mooney, 19861 from examples supplied by the
user.

Engineering design is well-suited for EBL as many de-
sign domains possess a detailed theory about the behav-
ior of the structural components and their combinations.

*This work is supported by NSF under Grant Number DMC-
86-10507, by Rutgers CAIP, and by DARPA under Contract
Numbers N00014-81-K-0394 and N00014-85-K-0116. The opin-
ions expressed in this paper are the authors’ and do not rep-
resent the policies, either expressed or implied, of any granting
agency.
We are grateful to the other members of the Rutgers AI/Design
Project for the stimulating and helpful climate in which this
work was conceived.

Note that this knowledge is more suitable for analyzing
the performance of a given design rather than synthesiz-
ing a design from primitive structural components. Mence
it would be useful for a design automation system to use
EBL to learn knowledge suitable for synthesizing artifacts.
Variants of EBL have been used to learn circuit design
rules in [Mitchell et arl., 1985a; Ellman, 19851.

In this paper we address the problem of the large grain
size of rules learned by EBL. We demonstrate the use of
parsing as an approach to the problem and identify its
promises and limitations. Our vehicle of experimentation
is LEAP [Mitchell et csl., 1985a], the learning apprentice
component of VEXED [Mitchell et cal., 1985b; Steinberg,
19871.

To begin with, we give a brief description of VEXED and
LEAP in the following section. The example introduced
to illustrate the operation of LEAP and VEXED is used
throughout the paper. Section 3 describes the nature of
the grain size problem and Section 4 illustrates our tech-
nique with a circuit design example. Section 5 analyzes
our approach.

LEA

VEXED is an interactive knowledge-based design aid for
VLSI circuits. It embodies a model of design based on
“top-down refinement plus constraint propagation” [Stein-
berg, 19871. The knowledge for synthesizing circuits based
on their functional specifications, called synthesis knowl-
edge, is embodied in a set of refinement rules. VEXED also
has analysis knowledge for verifying the correctness of a
circuit implementation. A refinement rule is used to refine
an unimplemented circuit specification (a generic module)
into a set of primitive components and generic modules.
The following is an English paraphrase of a typical refine-
ment rule.

RuleI:
If the specification of module output has the form
(IF (Bool-fnl > Bool-fn2) THEN Bool-fn3

ELSE Bool-fn4)
Then refine it to the circuit in Figure 1.

The refinement rule essentially decomposes the original
problem into subproblems represented by generic modules.
The interactions between subproblems are taken care of by
symbolic constraint propagation (more details are available
in [Mitchell et arl., 1985b]). The design is considered to be
completed when all generic modules have been refined into
primitive circuit components.

At each intermediate stage of the design the system sug-
gests a set of applicable refinement rules and applies the

.

Roy and Mostow 547

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

Composed Specificatim :
(or (and (AND Bool-fnl (NOT Bool-fn2))

Bool-fn3)
(and (not (AND Bool-fnl

This Box implements
(AND Bool-fnl

(NOT (Bool-fn2))

I I
I
* Bool-frill

I

i Bool-fn2 :
I I
I- , I
L-I-------------------~

Identifiers of4he form Bool-fnl represent any boolean function.

Figure 1: Result of a refinement rule

one chosen by the user. The user may alternatively choose
to refine the circuit by hand. In this case LEAP, the learn-
ing apprentice component of VEXED, generalizes the man-
ual refinement step into a new refinement rule. LEAP
uses a variant of explanation-based learning (called ver$-
cation based learning [Mitchell et al., 1985a]). The example
manual refinement is “explained” by constructing a proof
for the correctness of the circuit using analysis knowledge.
The proof is then generalized to construct a general refine-
ment rule which adds to the synthesis knowledge.

To illustrate, consider the task of implementing a
modified 2-to-1 multiplexer controlled by the condition
(Key1 > Key2). Key1 and Key2 are l-bit binary val-
ues. Hence (Key1 > Key2) is equivalent to (AND Key1
(NOT Key%)). D p d’ g e en in on the value of (Key1 > Key 2)
either (Port1 OR Port2) or (Port1 AND Port2) is con-
nected to the output. Hence the output specification for
the multiplexer is

Specl: IF (Key1 > Key%) THEN (Port1 OR Port2)
ELSE (Port1 AND Port2)

Suppose the user chooses to manually refine the module
into the circuit in Figure 2.

LEAP explains the manual refinement in Figure 2 by
proving that the composed specification constructed by
“symbolically executing” the circuit on its inputs is equiva-
lent to the desired specification Specl. The proof (Figure
4(A)) uses the rules of equivalence of boolean expressions
in Figure 3. These rules are expressed as rewrite rules in
which the precondition expression can be replaced by the
postcondition expression.

The proof in Figure 4(A) is then generalized by abstract-
ing away details not tested by the preconditions of the rule.
The generalized proof tree is shown in Figure 4(B). The
learned rule extracted from the generalized proof is Rulel,
presented earlier as an example of a refinement rule. Next
time a similar circuit is being designed, VEXED would
suggest this newly learned rule.

This box implements
(AND KeyI (NOT Key2))

Figure 2: A manual refinement

RI.:
PRE
POST

B2:
PBE

POST

(or (and

(and

(or (and

(and

(or (and

(and

= (AND Bool-fnl (NOT (Bool-fn2)))
= (Bool-frill > Bool-fn2)

= (OR (ILND Bool-fnl Bool-fn2)
(AND (NOT Bool-fnl) Bool-fn3))

= (IF Bool-frill THEN Bool-fn2
ELSE Bool-fn3)

Figure 3: Verification rules

(and Key1
(not Key2))

(or (and (and Bool-fnl
(not Bool-fn2))

(Port1 or PortP))
(not (and Key1

Boo1 -fn3)
(and (not (and Bool-fnl

(not Key2)))
(Port1 and Port2)))

Bool-fn4)(not Bool-fn2)))

\1 \1
RI

RI

(Key1 > Key2) (or (and (Bool-fnl > Bool-fn2)

(Port1 or Port2)) Bool-fn3)

(not (and Key1 (and (not (and Bool-fnl

(not Ke 2)))
(Port1 and Port27)

(not Bool-fn2)) >

RI
RI

(Key1 > Key2)
(Port1 or Port2)

(or (and (Bool-fnl > Bool-fn2)

(not (Key1 > Key2))
Bool-fn3)

(Port1 and Port2)))
(and (not (Bool-fnl > Bool-fn2))

Bool-fnq))

(If (Key1 > key2)
Then (Port1 or Port2)

(If (Bool-fnI.> Bool-fn2)
Then Boo1 -f n3

Else (Port1 and Port2)) Else Bool-fn4)

PROOF
(A)

GENERALfZFD PROOF

The rules apply to the boldfaced parts of the expression.

Figure 4: Proofs constructed by LEAP

548 Learning and Knowledge Acquisition

3 Grain size problem in LEAP
The learning architecture of LEAP causes a problem which
limits the usefulness of learned rules in VEXED. This has
been identified as the grain size problem in [Mitchell et
al., 1985a]. LEAP always learns a single refinement rule
from a manual refinement. However, the learned rule may
actually be composed of several finer grained rules. For
example, Rule1 can be considered to be composed of

Rule2:
If the specification of the module output has the form
(IF Bool-fnl THEN Bool-fn2

ELSE Bool-fn3)
Then refine it to the circuit in figure 5.
and
Rule3:
If the specification of the module output has the form
(Bool-fnl > Bool-fn2)
Then refine it to the circuit in box B2 in Figure 1.

A refinement rule em r is considered to be of larger grain
size than another refinement rule E, if we can construct
a tree of rules i! containing E such that application of t
produces the same result as a single application of P. For
example, de2 followed by BuIe3 will produce the same
result as a single application of ulel. Hence de1 is of
larger grain size than both Rule2 and BPnPe3. Due to the
varying size of the manual refinements, the rules learned
by LEAP will be of varying grain size. This leads to the
following problems limiting the usefulness of the learned
rules in VEXED, the performance system.

Less coverage: Firstly, a large grained rule is not
applicable in many situations, even though it contains
all the relevant information. For example, consider the
specification:

Spec2: IF (Key1 = Key%) THEN (Port1 OR Port2)
ELSE (Port1 AND Port2)

Pkulel does not apply to Spec2, even though it is
almost the same as Specl and could be implemented
simply by changing the components in box B2 in Fig-
ure 2. Secondly, larger grained rules may not be able
to produce alternative designs. Alternative implemen-
tations of the specification (BooI-fnl > Bool-fn2)
will not get used if Rule1 is the only rule available
for refining Specl.

eduudaney: Rules of varying grain size often over-
lap. For example Rule2 can be considered to be a
part of Rulel. If rules are redundant then more rules
must be acquired to achieve the same coverage.

Efficieucy: If the rules used by the performance sys-
tem are too fine grained then a large number of rules
need to be applied to complete a design. For inter-
active systems like VEXED, this means that the user
has to make too many choices.

etic arsin
The first two effects of the grain size problem as identified
in the previous section suggest that the rules should ‘be

Canposed Specification :

(or (and (Bool-fnl) Bool-fn2)
(and (not (Bool-fnl))

Bool-fnl M2

i

Figure 5: THEN part of a refinement rule

as fine grained as possible. However the last effect sug-
gests use of larger grained rules. This apparent conflict
can be resolved by splitting the rule learning process into
two phases.

In Phase 1 we try to learn as much as possible from
the single training example, i.e. learn rules which apply
in more cases and produce a larger range of designs when
used along with other existing rules. Hence in this phase
the system should try to learn as fine grained a rule as
possible. We propose the technique of “synthetic pursing”
to extract fine grained rules from the manual refinement.

In Phase 2 the objective is to increase the efficiency
of the performance system. In interactive systems like
VEXED this means that the user has to make fewer control
decisions. So we need to reorganize the rules to produce
rules of larger grain size. This may be done by forming
macro-steps by composing finer grained rules [Huhns and
Acosta, 19871 or by storing design plans and “replaying”
[Mostow and Barley, 19871 them when necessary.

Our current work implements a prototype for Phase 1.
If a manual refinement step corresponds to a large step,

one way to extract a fine grained rule from it is to deter-
mine which parts of the step can be accounted for by the
existing rules. The part that cannot be accounted for by
any existing rule is isolated and generalized into a new rule
using LEAP.

Parsing a manual refinement is the process of finding a
hierarchy of refinement rules which when applied to the
initial module will decompose it into the same circuit as
the manual refinement. The hierarchy of existing rules
found is called a pwse tree. If the hierarchy of rules is
allowed to contain newly synthesized rules, then the pro-
cess is called synthetic parsing and the hierarchy of rules
is called a synthetic parse tree.

We assume the user chooses to refine a module manu-
ally only if none of the applicable rules refines it toward
the desired circuit. Thus the parse tree for the module
will require a new rule at the top. So we use a simple
bottom-up parser which iteratively replaces a connected
set of modules (Ml...Mn) by a single module (M), if there
is a refinement rule which refines M to the group of con-
nected modules Ml...Mn. Given this scheme of parsing,
the following questions need to be answered to modify it

Roy and Mostow 549

PORT1 and PORT

(or (and Bool-fnl
Bool-fn2)

(and (not Bool-fnl)
Bool-fn3))

\1
R2

(If Bool-fnl
Then Bool-fn2
Else Bool-fn3)

PROOF
w

GENERALIZED PROOF
(B>

Figure 6: Proof trees for New-rule1

to implement synthetic parsing.

When to create a new rule? Whenever the basic pars-
ing scheme is in a state where it needs to backtrack,
we create a new rule to complete the parse tree.

How to create a new rule? The new rule created refines
the initial module specification to the partially parsed
circuit formed at the point when we decided to create
a new rule.

How to choose a good parse tree from which the newly
created rule is given to LEAP for further generaliza-
tion? Currently this is done manually.

In our implementation we have chosen to answer these
questions in the most simple manner, since our emphasis
in this work is to demonstrate the usefulness of the rule
extracted by synthetic parsing rather than the efficiency
of synthetic parsing. We have a PROLOG prototype im-
plementation of a synthetic parser whose output can be
processed by a simpler version of LEAP, also implemented
in PROLOG, which ignores some features of circuits such
as timing considered in the original LEAP.

To illustrate, let us assume that Rule3 is already known
to the system, and the user manually refines the specifica-
tion Specl to the circuit in Figure 2. Synthetic parsing
would use Rule3 to convert the circuit in box B2 of the
circuit in Figure 2 to a generic module with output spec-
ification (Key1 > Key). Since existing rules cannot parse
the circuit any further, synthetic parsing creates a new rule
New-rule1 which refines Specl to the partially parsed
circuit obtained by modifying Figure 2 as just mentioned.
New-rule1 is given to LEAP for further generalization.
LEAP verifies that the partially parsed circuit implements
its composed specification

(OR (AND (Key1 > Key2) (Port1 OR Port2))
(AND (NOT (Key1 > Key2)) (Port1 AND Port2)))

by creating the proof tree in Figure 6(A). The proof tree
in Figure 6(A) is generalized to the proof tree in Figure
6(B) from which LEAP creates the rule Rule2 presented
before.

[Dejong and Mooney, 19861 generalizes explanations by
replacing subtrees with abstract schemas, just as we parse
modules explained by existing synthesis rules. However,
the learned structures are used for concept recognition,
while LEAP’s design rules are used for generation.

As explained before, Rule2 is finer grained than RuleI, [Segre, 19871 g eneralizes explanations by dropping lower-
the rule that would have been learned by using LEAP di- level details based on a pre-specified measure of the desired
rectly on the manual refinement. Rule2 is more general
than Rulel, e.g., it applies to Spec2 as well as to Speck.

tradeoff between the operationality and generality of the
robot operator to be learned. In contrast, the grain size of

Rule2 is also less redundant as it captures only the knowl- a rule learned in our system is determined by the mismatch
edge missing from the previous set of rules. Thus this ex-
ample illustrates the use of synthetic parsing to learn rules

between the user’s example and the existing rules.

which are more general and less redundant.
SOAR [Laird et al., 19861 might be viewed as parsing

subproblem traces into chunks that “explain” (solve) parts

5 Discussion
Parsing can be viewed as explanation [Vanlehn, 19871.
Parsing allows synthesis knowledge (the refinement rules)
to explain part of the manual refinement and leaves the
rest to be verified by LEAP using its analysis knowledge.
Hence learned refinement rules can contribute to explana-
tion of future manual refinements when synthetic parsing
is added to LEAP. Parsing also affects some problems re-
lated to EBL [Mitchell et cal., 1985a] in LEAP.

Intractability of verification: Comparison of the
proof (Figure 4) for the complete refinement step and
that (Figure 6) of New-rule1 extracted by the syn-
thetic parser shows that the latter is much smaller.
Hence fine grained rules appear to be less expensive
to verify and generalize. However this may be offset
by the effort required to isolate the fine grained part
from the larger refinement step provided by the user.

Incomplete theory: LEAP needs to verify the man-
ual refinement completely before it can learn a new
rule. If the analysis knowledge is not complete, LEAP
may not be able to learn from a manual refinement,
even though most of the refinement step can be ver-
ified. By adding synthetic parsing the burden of ex-
planation is shared between analysis knowledge and
synthesis knowledge. Hence, even if a part of the
manual refinement cannot be explained by analysis
knowledge, LEAP still might be able to learn some-
thing, provided there is a refinement rule that parses
away the problematic part of the refinement step.

5.1 ellated work
Other similar systems differ in method, application do-
main, or purpose.

[Waters, 19851 parses LISP code in terms of program-
ming “cliches,” but does not attempt to learn new ones.
[Hall, 19861 uses existing rules to explain as much of a
circuit design as possible, and learns a new rule from the
remainder, but without generalizing. [Vanlehn, 19871 uses
existing rules to explain as much of a subtraction protocol
as possible, and generalizes the rest into a new rule by an
inductive step. In contrast, LEAP’s analysis knowledge
lets it use EBL for this step.

[Paezani, 19871 and [Rajamoney, 19881 also use existing
rules to explain part of an example. They then use weaker
rules to fill the gaps. While their purpose is to complete
the explanation in the face of an incomplete theory, ours
is to generalize the explanation by omitting parts already
explained by existing synthesis rules.

550 Learning and Knowledge Acquisition

of subsequent problems. Chunking simplifies future traces
by dropping certain subproblem details, such as the pref-
erence rules and subgoaling used to guide the search.

5.2 Limitations
In the example considered, the system actually produces
two different partial parses of which only one leads to learn-
ing Rule2. The second partially parsed circuit cannot be
verified by LEAP using the rules of equivalence in Figure
3 and hence does not lead to any new refinement rule. Ex-
periments with the prototype parser suggest that if the
the manual refinement is large compared to the grain size
of existing refinement rules, not only do we get a large
parse tree, but also more of them. With many parse trees
many new rules would be constructed and it is expensive
to identify the ones that are verifiable by LEAP and re-
sult in a finer grained rule. Moreover, since different parse
trees would bridge the gap in the existing set of refinement
rules in various ways, the rules learned are likely to over-
lap with each other. This defeats the objective of learning
non-redundant rules by parsing. These limitations suggest
that it would be useful to have heuristics capable of select-
ing “good” parse trees, perhaps based on the size of the
parse tree or the size of the unparsed part of the circuit.

Because a single rule is created for the unparsed portion
of the example, the grain size of the learned rule depends
on the mismatch between the example and the existing
rules. While this approach reduces the combinatorial num-
ber of ways in which the example could be decomposed into
finer-grained rules, it is sensitive to the order in which ex-
amples are presented. In our example, learning New-rule1
depends on already having acquired Rule3; otherwise syn-
thetic parsing will not help. To overcome this limitation
without decomposing the unparsed portion, one might try
to factor existing rules each time a new rule is acquired
[Hall, 19861.

We can draw the following conclusions from this work:

Q Synthetic parsing combined with LEAP can be used to
learn rules which are ffiner grained than those learned
by LEAP alone. Fine grained rules improve coverage
and reduce redundancy of refinement rules.

e Synthetic parsing allows the burden of explanation to
be shared between synthesis knowledge and analysis
knowledge. Hence incompleteness in analysis knowl-
edge may be compensated for by relevant synthesis
knowledge.

e Heuristics for selecting “good” parse trees from the
many generated by synthetic parsing would be very
useful.

[Dejong and Mooney, 19861 G. Dejong and R. Mooney.
Explanation-based learning: an alternative view. Ma-
chine Learning, 1(2):145-176, 1986.

[Ellman, 19851 Thomas Ellman. Generalizing logic circuit
designs by analyzing proofs of correctness. In IJ-
CAI85, pages 643-646, Los Angeles, CA, 1985.

[Hall, 19861 Robert J. Hall. Learning by failing to explain.
l[n Proceedings AAAI66, pages 568-572, University of
Pennsylvania, Philadelphia, Pa., 1986.

[Huhns and Acosta, 19871 M. N. Huhns and R. D. Acosta.
Argo: an analogical reasoning system for solving de-
sign problems. Technical Report AI/CAD-092-87,
MCC, Austin, Texas, March 1987.

[Kowalski and Thomas, 19831 T. J. Kowalski and D. E.
Thomas. The VLSI design automation assistant: first
steps. In 26th IEEE Computer Society International
Conference, pages 126-130, 1983.

[Laird et al., 19861 J. E. Laird, P. S. Rosenbloom, and A.
Newell. Chunking in SOAR: the anatomy of a general
learning mechanism. Machine Learning, l(l):ll-46,
1986.

[Mitchell et cal., 19861 T. M. Mitchell, R. M. Keller, and
S. T. Kedar-Cabelli. Explanation-based generaliza-
tion: a unifying view. Machine Learning, l(l):47-80,
1986.

[Mitchell et al., 1985a] T. M. Mitchell, S. Mahadevan, and
L. Steinberg. LEAP: A learning apprentice for VLSI
design. In IJCAI8.5, Los Angeles, CA., August 1985.

[Mitchell et QI., 1985b] T. M. Mitchell, L. Steinberg, and
J. Shulman. A knowledge-based approach to design.
IEEE Transactions, on Pattern Analysis and Machine
Intelligence, PAMI-7(5):502-510, September 1985.

[Mostow and Barley, 19871 J. Mostow and M. Barley. Au-
tomated reuse of design plans. In Proceedings of the
1967 International Conference on Engineering Design
(ICED% P a g es 632-647, American Society of Me-
chanical Engineers, Boston, MA, August 1987.

[Pazzani, 19871 M. J. Pazzani. Inducing causal and social
theories: a prerequisite for explanation-based learn-
ing. Pn Proceedings of the Fourth International Work-
shop on Machine Learning, pages 230-241, Morgan
Kaufmann Publishers Inc., University of California,
Irvine, 1987.

[Rajamoney, 19881 S. Rajamoney. Experimentation-based
theory revision. In Proceedings of AAAI Spring Sym-
posium Series- EBL, pages 7-11, Stanford, CA, 1988.

[Segre, 19871 A. M. Segre. On the operational-
ity/generality trade-off in explanation-based learning.
In Proceedings IJCAI-87, pages 242-248, Milan, Italy,
August 1987.

[Steinberg, 19871 L. Steinberg. Design as refinement plus
constraint propagation: the VEXED experience. In
Proceeding5 AAAI87, pages 830-835, July 1987.

[Vanlehn, 19871 K. Vanlehn. Learning one subprocedure
per lesson. Artificial Intelligence, 31(1):1-40, January
1987.

[Waters, 19851 R. Waters. The programmer’s apprentice:
a session with KBEMACS. IEEE Transactiona on
Software Engineering, SE-ll(ll):1296-1320, Novem-
ber 1985.

Roy and Mostow 551

