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Abstract 

The grain size of rules acquired by explanation- 
based learning may vary widely depending on 
the size of the training examples. Such varia- 
tion can cause redundancy among the learned 
rules and limit their range of applicability. In 
this paper, we study this problem in the context 
of LEAP, the “learning apprentice” component 
of the VEXED circuit design system. LEAP ac- 
quires circuit design rules by analyzing and gen- 
eralizing design steps performed by the user. We 
show how to reduce the grain size of rules learned 
by LEAP by using “synthetic parhzg” to extract 
parts of the manual design step not covered by ex- 
isting design rules and then using LEAP to gener- 
alize the extracted parts. A prototype implemen- 
tation of this technique yields finer grained rules 
with more coverage. We examine its effects on 
some problems associated with the explanation- 
based learning technique used in LEAP. 

‘II 

A knowledge-based approach to design, as explored by 
many researchers (e.g. [Mitchell et al., 1985b; Kowalski 
and Thomas, 1983]), requires explicit representation ofvar- 
ious kinds of design knowledge. In order to build such a 
system, one needs to decide on the granularity or the level 
of detail at which the design knowledge is represented. Ide- 
ally the grain size should be coarse enough to allow efficient 
reasoning and yet fine enough to make important distine- 
tions. The problem of deciding proper grain size manifests 
itself in different forms depending on the method of ac- 
quiring design knowledge. In this paper we investigate the 
grain size problem for the case in which knowledge is ac- 
quired by explanation-based learning [Mitchell et al., 1986; 
Dejong and Mooney, 19861 from examples supplied by the 
user. 

Engineering design is well-suited for EBL as many de- 
sign domains possess a detailed theory about the behav- 
ior of the structural components and their combinations. 
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Note that this knowledge is more suitable for analyzing 
the performance of a given design rather than synthesiz- 
ing a design from primitive structural components. Mence 
it would be useful for a design automation system to use 
EBL to learn knowledge suitable for synthesizing artifacts. 
Variants of EBL have been used to learn circuit design 
rules in [Mitchell et arl., 1985a; Ellman, 19851. 

In this paper we address the problem of the large grain 
size of rules learned by EBL. We demonstrate the use of 
parsing as an approach to the problem and identify its 
promises and limitations. Our vehicle of experimentation 
is LEAP [Mitchell et csl., 1985a], the learning apprentice 
component of VEXED [Mitchell et cal., 1985b; Steinberg, 
19871. 

To begin with, we give a brief description of VEXED and 
LEAP in the following section. The example introduced 
to illustrate the operation of LEAP and VEXED is used 
throughout the paper. Section 3 describes the nature of 
the grain size problem and Section 4 illustrates our tech- 
nique with a circuit design example. Section 5 analyzes 
our approach. 

LEA 

VEXED is an interactive knowledge-based design aid for 
VLSI circuits. It embodies a model of design based on 
“top-down refinement plus constraint propagation” [Stein- 
berg, 19871. The knowledge for synthesizing circuits based 
on their functional specifications, called synthesis knowl- 
edge, is embodied in a set of refinement rules. VEXED also 
has analysis knowledge for verifying the correctness of a 
circuit implementation. A refinement rule is used to refine 
an unimplemented circuit specification (a generic module) 
into a set of primitive components and generic modules. 
The following is an English paraphrase of a typical refine- 
ment rule. 

RuleI: 
If the specification of module output has the form 
(IF (Bool-fnl > Bool-fn2) THEN Bool-fn3 

ELSE Bool-fn4) 
Then refine it to the circuit in Figure 1. 

The refinement rule essentially decomposes the original 
problem into subproblems represented by generic modules. 
The interactions between subproblems are taken care of by 
symbolic constraint propagation (more details are available 
in [Mitchell et arl., 1985b]). The design is considered to be 
completed when all generic modules have been refined into 
primitive circuit components. 

At each intermediate stage of the design the system sug- 
gests a set of applicable refinement rules and applies the 

. 

Roy and Mostow 547 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



Composed Specificatim : 
(or (and (AND Bool-fnl (NOT Bool-fn2)) 

Bool-fn3) 
(and (not (AND Bool-fnl 

This Box implements 
(AND Bool-fnl 

(NOT (Bool-fn2)) 

I I 
I 
* Bool-frill 

I 

i Bool-fn2 : 
I I 
I- , I 
L-I-------------------~ 

Identifiers of4he form Bool-fnl represent any boolean function. 

Figure 1: Result of a refinement rule 

one chosen by the user. The user may alternatively choose 
to refine the circuit by hand. In this case LEAP, the learn- 
ing apprentice component of VEXED, generalizes the man- 
ual refinement step into a new refinement rule. LEAP 
uses a variant of explanation-based learning (called ver$- 
cation based learning [Mitchell et al., 1985a]). The example 
manual refinement is “explained” by constructing a proof 
for the correctness of the circuit using analysis knowledge. 
The proof is then generalized to construct a general refine- 
ment rule which adds to the synthesis knowledge. 

To illustrate, consider the task of implementing a 
modified 2-to-1 multiplexer controlled by the condition 
(Key1 > Key2). Key1 and Key2 are l-bit binary val- 
ues. Hence (Key1 > Key2) is equivalent to (AND Key1 
(NOT Key%)). D p d’ g e en in on the value of (Key1 > Key 2) 
either (Port1 OR Port2) or (Port1 AND Port2) is con- 
nected to the output. Hence the output specification for 
the multiplexer is 

Specl: IF (Key1 > Key%) THEN (Port1 OR Port2) 
ELSE (Port1 AND Port2) 

Suppose the user chooses to manually refine the module 
into the circuit in Figure 2. 

LEAP explains the manual refinement in Figure 2 by 
proving that the composed specification constructed by 
“symbolically executing” the circuit on its inputs is equiva- 
lent to the desired specification Specl. The proof (Figure 
4(A)) uses the rules of equivalence of boolean expressions 
in Figure 3. These rules are expressed as rewrite rules in 
which the precondition expression can be replaced by the 
postcondition expression. 

The proof in Figure 4(A) is then generalized by abstract- 
ing away details not tested by the preconditions of the rule. 
The generalized proof tree is shown in Figure 4(B). The 
learned rule extracted from the generalized proof is Rulel, 
presented earlier as an example of a refinement rule. Next 
time a similar circuit is being designed, VEXED would 
suggest this newly learned rule. 

This box implements 
(AND KeyI (NOT Key2)) 

Figure 2: A manual refinement 
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Figure 3: Verification rules 
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The rules apply to the boldfaced parts of the expression. 

Figure 4: Proofs constructed by LEAP 
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3 Grain size problem in LEAP 
The learning architecture of LEAP causes a problem which 
limits the usefulness of learned rules in VEXED. This has 
been identified as the grain size problem in [Mitchell et 
al., 1985a]. LEAP always learns a single refinement rule 
from a manual refinement. However, the learned rule may 
actually be composed of several finer grained rules. For 
example, Rule1 can be considered to be composed of 

Rule2: 
If the specification of the module output has the form 
(IF Bool-fnl THEN Bool-fn2 

ELSE Bool-fn3) 
Then refine it to the circuit in figure 5. 
and 
Rule3: 
If the specification of the module output has the form 
(Bool-fnl > Bool-fn2) 
Then refine it to the circuit in box B2 in Figure 1. 

A refinement rule em r is considered to be of larger grain 
size than another refinement rule E, if we can construct 
a tree of rules i! containing E such that application of t 
produces the same result as a single application of P. For 
example, de2 followed by BuIe3 will produce the same 
result as a single application of ulel. Hence de1 is of 
larger grain size than both Rule2 and BPnPe3. Due to the 
varying size of the manual refinements, the rules learned 
by LEAP will be of varying grain size. This leads to the 
following problems limiting the usefulness of the learned 
rules in VEXED, the performance system. 

Less coverage: Firstly, a large grained rule is not 
applicable in many situations, even though it contains 
all the relevant information. For example, consider the 
specification: 

Spec2: IF (Key1 = Key%) THEN (Port1 OR Port2) 
ELSE (Port1 AND Port2) 

Pkulel does not apply to Spec2, even though it is 
almost the same as Specl and could be implemented 
simply by changing the components in box B2 in Fig- 
ure 2. Secondly, larger grained rules may not be able 
to produce alternative designs. Alternative implemen- 
tations of the specification (BooI-fnl > Bool-fn2) 
will not get used if Rule1 is the only rule available 
for refining Specl. 

eduudaney: Rules of varying grain size often over- 
lap. For example Rule2 can be considered to be a 
part of Rulel. If rules are redundant then more rules 
must be acquired to achieve the same coverage. 

Efficieucy: If the rules used by the performance sys- 
tem are too fine grained then a large number of rules 
need to be applied to complete a design. For inter- 
active systems like VEXED, this means that the user 
has to make too many choices. 

etic arsin 
The first two effects of the grain size problem as identified 
in the previous section suggest that the rules should ‘be 

Canposed Specification : 

(or (and (Bool-fnl) Bool-fn2) 
(and (not (Bool-fnl)) 

Bool-fnl M2 

i 

Figure 5: THEN part of a refinement rule 

as fine grained as possible. However the last effect sug- 
gests use of larger grained rules. This apparent conflict 
can be resolved by splitting the rule learning process into 
two phases. 

In Phase 1 we try to learn as much as possible from 
the single training example, i.e. learn rules which apply 
in more cases and produce a larger range of designs when 
used along with other existing rules. Hence in this phase 
the system should try to learn as fine grained a rule as 
possible. We propose the technique of “synthetic pursing” 
to extract fine grained rules from the manual refinement. 

In Phase 2 the objective is to increase the efficiency 
of the performance system. In interactive systems like 
VEXED this means that the user has to make fewer control 
decisions. So we need to reorganize the rules to produce 
rules of larger grain size. This may be done by forming 
macro-steps by composing finer grained rules [Huhns and 
Acosta, 19871 or by storing design plans and “replaying” 
[Mostow and Barley, 19871 them when necessary. 

Our current work implements a prototype for Phase 1. 
If a manual refinement step corresponds to a large step, 

one way to extract a fine grained rule from it is to deter- 
mine which parts of the step can be accounted for by the 
existing rules. The part that cannot be accounted for by 
any existing rule is isolated and generalized into a new rule 
using LEAP. 

Parsing a manual refinement is the process of finding a 
hierarchy of refinement rules which when applied to the 
initial module will decompose it into the same circuit as 
the manual refinement. The hierarchy of existing rules 
found is called a pwse tree. If the hierarchy of rules is 
allowed to contain newly synthesized rules, then the pro- 
cess is called synthetic parsing and the hierarchy of rules 
is called a synthetic parse tree. 

We assume the user chooses to refine a module manu- 
ally only if none of the applicable rules refines it toward 
the desired circuit. Thus the parse tree for the module 
will require a new rule at the top. So we use a simple 
bottom-up parser which iteratively replaces a connected 
set of modules (Ml...Mn) by a single module (M), if there 
is a refinement rule which refines M to the group of con- 
nected modules Ml...Mn. Given this scheme of parsing, 
the following questions need to be answered to modify it 
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Figure 6: Proof trees for New-rule1 

to implement synthetic parsing. 

When to create a new rule? Whenever the basic pars- 
ing scheme is in a state where it needs to backtrack, 
we create a new rule to complete the parse tree. 

How to create a new rule? The new rule created refines 
the initial module specification to the partially parsed 
circuit formed at the point when we decided to create 
a new rule. 

How to choose a good parse tree from which the newly 
created rule is given to LEAP for further generaliza- 
tion? Currently this is done manually. 

In our implementation we have chosen to answer these 
questions in the most simple manner, since our emphasis 
in this work is to demonstrate the usefulness of the rule 
extracted by synthetic parsing rather than the efficiency 
of synthetic parsing. We have a PROLOG prototype im- 
plementation of a synthetic parser whose output can be 
processed by a simpler version of LEAP, also implemented 
in PROLOG, which ignores some features of circuits such 
as timing considered in the original LEAP. 

To illustrate, let us assume that Rule3 is already known 
to the system, and the user manually refines the specifica- 
tion Specl to the circuit in Figure 2. Synthetic parsing 
would use Rule3 to convert the circuit in box B2 of the 
circuit in Figure 2 to a generic module with output spec- 
ification (Key1 > Key). Since existing rules cannot parse 
the circuit any further, synthetic parsing creates a new rule 
New-rule1 which refines Specl to the partially parsed 
circuit obtained by modifying Figure 2 as just mentioned. 
New-rule1 is given to LEAP for further generalization. 
LEAP verifies that the partially parsed circuit implements 
its composed specification 

(OR (AND (Key1 > Key2) (Port1 OR Port2)) 
(AND (NOT (Key1 > Key2)) (Port1 AND Port2))) 

by creating the proof tree in Figure 6(A). The proof tree 
in Figure 6(A) is generalized to the proof tree in Figure 
6(B) from which LEAP creates the rule Rule2 presented 
before. 

[Dejong and Mooney, 19861 generalizes explanations by 
replacing subtrees with abstract schemas, just as we parse 
modules explained by existing synthesis rules. However, 
the learned structures are used for concept recognition, 
while LEAP’s design rules are used for generation. 

As explained before, Rule2 is finer grained than RuleI, [Segre, 19871 g eneralizes explanations by dropping lower- 
the rule that would have been learned by using LEAP di- level details based on a pre-specified measure of the desired 
rectly on the manual refinement. Rule2 is more general 
than Rulel, e.g., it applies to Spec2 as well as to Speck. 

tradeoff between the operationality and generality of the 
robot operator to be learned. In contrast, the grain size of 

Rule2 is also less redundant as it captures only the knowl- a rule learned in our system is determined by the mismatch 
edge missing from the previous set of rules. Thus this ex- 
ample illustrates the use of synthetic parsing to learn rules 

between the user’s example and the existing rules. 

which are more general and less redundant. 
SOAR [Laird et al., 19861 might be viewed as parsing 

subproblem traces into chunks that “explain” (solve) parts 

5 Discussion 
Parsing can be viewed as explanation [Vanlehn, 19871. 
Parsing allows synthesis knowledge (the refinement rules) 
to explain part of the manual refinement and leaves the 
rest to be verified by LEAP using its analysis knowledge. 
Hence learned refinement rules can contribute to explana- 
tion of future manual refinements when synthetic parsing 
is added to LEAP. Parsing also affects some problems re- 
lated to EBL [Mitchell et cal., 1985a] in LEAP. 

Intractability of verification: Comparison of the 
proof (Figure 4) for the complete refinement step and 
that (Figure 6) of New-rule1 extracted by the syn- 
thetic parser shows that the latter is much smaller. 
Hence fine grained rules appear to be less expensive 
to verify and generalize. However this may be offset 
by the effort required to isolate the fine grained part 
from the larger refinement step provided by the user. 

Incomplete theory: LEAP needs to verify the man- 
ual refinement completely before it can learn a new 
rule. If the analysis knowledge is not complete, LEAP 
may not be able to learn from a manual refinement, 
even though most of the refinement step can be ver- 
ified. By adding synthetic parsing the burden of ex- 
planation is shared between analysis knowledge and 
synthesis knowledge. Hence, even if a part of the 
manual refinement cannot be explained by analysis 
knowledge, LEAP still might be able to learn some- 
thing, provided there is a refinement rule that parses 
away the problematic part of the refinement step. 

5.1 ellated work 
Other similar systems differ in method, application do- 
main, or purpose. 

[Waters, 19851 parses LISP code in terms of program- 
ming “cliches,” but does not attempt to learn new ones. 
[Hall, 19861 uses existing rules to explain as much of a 
circuit design as possible, and learns a new rule from the 
remainder, but without generalizing. [Vanlehn, 19871 uses 
existing rules to explain as much of a subtraction protocol 
as possible, and generalizes the rest into a new rule by an 
inductive step. In contrast, LEAP’s analysis knowledge 
lets it use EBL for this step. 

[Paezani, 19871 and [Rajamoney, 19881 also use existing 
rules to explain part of an example. They then use weaker 
rules to fill the gaps. While their purpose is to complete 
the explanation in the face of an incomplete theory, ours 
is to generalize the explanation by omitting parts already 
explained by existing synthesis rules. 
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of subsequent problems. Chunking simplifies future traces 
by dropping certain subproblem details, such as the pref- 
erence rules and subgoaling used to guide the search. 

5.2 Limitations 
In the example considered, the system actually produces 
two different partial parses of which only one leads to learn- 
ing Rule2. The second partially parsed circuit cannot be 
verified by LEAP using the rules of equivalence in Figure 
3 and hence does not lead to any new refinement rule. Ex- 
periments with the prototype parser suggest that if the 
the manual refinement is large compared to the grain size 
of existing refinement rules, not only do we get a large 
parse tree, but also more of them. With many parse trees 
many new rules would be constructed and it is expensive 
to identify the ones that are verifiable by LEAP and re- 
sult in a finer grained rule. Moreover, since different parse 
trees would bridge the gap in the existing set of refinement 
rules in various ways, the rules learned are likely to over- 
lap with each other. This defeats the objective of learning 
non-redundant rules by parsing. These limitations suggest 
that it would be useful to have heuristics capable of select- 
ing “good” parse trees, perhaps based on the size of the 
parse tree or the size of the unparsed part of the circuit. 

Because a single rule is created for the unparsed portion 
of the example, the grain size of the learned rule depends 
on the mismatch between the example and the existing 
rules. While this approach reduces the combinatorial num- 
ber of ways in which the example could be decomposed into 
finer-grained rules, it is sensitive to the order in which ex- 
amples are presented. In our example, learning New-rule1 
depends on already having acquired Rule3; otherwise syn- 
thetic parsing will not help. To overcome this limitation 
without decomposing the unparsed portion, one might try 
to factor existing rules each time a new rule is acquired 
[Hall, 19861. 

We can draw the following conclusions from this work: 

Q Synthetic parsing combined with LEAP can be used to 
learn rules which are ffiner grained than those learned 
by LEAP alone. Fine grained rules improve coverage 
and reduce redundancy of refinement rules. 

e Synthetic parsing allows the burden of explanation to 
be shared between synthesis knowledge and analysis 
knowledge. Hence incompleteness in analysis knowl- 
edge may be compensated for by relevant synthesis 
knowledge. 

e Heuristics for selecting “good” parse trees from the 
many generated by synthetic parsing would be very 
useful. 
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