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Abstract 
Learning by induction can require a large number of 

training examples. We show the power of using a simulator 
to generate training data and test data in learning rules for an 
expert system. The induction program is RL, a simplified 
version of Meta-DENDRAL. The expert system is ABLE, a 
rule-based system that identifies and locates errors in particle 
beam lines used in high energy physics. A simulator of 
beam lines allowed forming and testing rules on sufficient 
numbers of cases that ABLE’s performance is demonstrably 
accurate and precise. 

1 Introduction 
Learning by induction is one important means of learning 

classification rules for expert systems [Buchanan and Mitchell, 
1978; Michalski, 19831. The major assumption in learning by 
induction is that a source of training examples exists. In 
many domains for which one wants to build expert systems, 
however, assembling libraries of training cases can present 
significant practical problems. Meta-DENDRAL, for 
example, worked with available mass spectra of just a few 
organic chemical compounds at a time because only a few 
compounds of the classes under consideration had been 
analyzed, and additional spectra were nearly impossible to 
obtain. 

In the present paper we illustrate one way of overcoming 
these kinds of problems by using a simulator to generate large 
numbers of training examples, and we discuss some 
implications of doing so. This idea was developed by Brown 
[1982] in the context of tutoring electronics troubleshooting, 
by Samue1[1963] in the context of checkers, and recently by 
Kunstaetter[ 19871 in the context of tutoring medical diagnosis. 
An obvious assumption we make is that an accurate 
simulation model exists. This is frequently true in technical 
domains in which there are theoretical equations or other 
strong models describing the behavior of physical or biological 
systems. Another assumption is that the domain is complex 
enough that explaining data (e.g., for troubleshooting) cannot 
be performed by using the simulator in a random generate-and- 
test method. 

One obvious question arises in the case where strong 
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models exist: why build a heuristic program at all? The 
answer lies mostly in the asymmetry between prediction and 
explanation. The behavior of a system under ideal conditions 
may be predictable with high accuracy using relations that map 
descriptions of the initial state of the system onto descriptions 
of its final state (and from there to observable data). Heuristics 
are needed, however, to adjust such relations with respect to 
deviations from the ideal. More importantly, it is not 
generally possible to interpret equations or run simulations 
“backwards” in order to infer causes from their effects, because 
causal knowledge often maps many different causes onto the 
same manifestation. 

For the induction program we use Rule-Learner (RL) [Fu, 
1985; Fu and Buchanan, 19851, a generalization of Meta- 
DENDRAL. RL is a successive refinement program that 
searches a space of IF-THEN rules for acceptable classification 
rules. 

The input to RL is: (a) a collection of training examples 
classified into one or more concept classes (with no 
assumption of complete correctness), and (b) some initial 
knowledge of the domain -- called the “half-order theory” -- that 
includes (i) the vocabulary of legal descriptions of examples, 
including names of classifications, (ii) some semantics of 
relationships among the terms in the vocabulary, (iii) 
heuristics to prune or order RL’s search through the space of 
rules, e.g., plausible ranges of values of descriptors, plausible 
threshold values on the size or complexity of rules, and 
plausible (or implausible) combinations of terms in rules. 

The output from RL is a set of rules that correctly classify 
(true positives ) most of the examples (where “most” is defined 
in the half-order theory as a specified percent of all training 
examples) and that misclassify (false positives) an acceptably 
small number of examples (where “acceptably small” is 
similarly defined). Each rule is of the form: 

Cfeature~>&..&<feature;>*<classificationk> 

where each feature describes a value or range of values for an 
attribute of an object, e.g., Attributej > 2. 

1.2 The ABLE Program 
A practical problem that fits this model came to our 

attention from high energy physics. Experimental high-energy 
physicists study the composition of matter using particle 
accelerators. These facilities all use beam lines to transport 
the high energy particle “beams” (bunches of particles) for 
studying properties of elementary particles, material science 
research, or other applications. The beam line itself is a 
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complicated arrangement of magnets, beam position monitors, 
accelerating sections, and drift sections forming a magnet 
optical lattice. The magnet optics are analogous to a 
conventional lens system that is used to focus light onto a 
particular area. Hence, the magnet optical elements (or simply 
“elements”) bend or focus the electrically charged particles in 
the beam onto a target. The beam centroid is monitored along 
the trajectory from source to target with instruments referred to 
as beam position monitors or simply “monitors”. 

Particle accelerators are well described theoretically but their 
behavior is all too often not what is predicted or desired. For 
example, there may be misalignments or miscalibrations in 
the elements or monitors. Thus the actual beam may not 
behave as expected, as shown in Figure 1. 
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Figure 1 
Diagram of a beam line, showing the measured and 
simulated values at each monitor. The two values 
have been slightly offset for clarity. An element error 
occurs somewhere before monitor number 9; 
downstream of monitor 9 the two values differ 
significantly. 

One of the tools developed to assist in correcting problems 
is a simulator based on the theoretical model from which 
accelerators are constructed. It has been used in two modes: 

(1) as a “what-if” tool showing what happens to a beam The relationship of the simulator, the RL induction 
if operating conditions are perturbed, and program, and the ABLE diagnostic system. 

(2) as a predictive mechanism with a numerical 
optimization program that attempts to minimize the 
error between observed and predicted behavior of the 
beam. 

We asked whether we could use the simulator in a third 
way, as a generator of training data, as described in the next 
set tion. 

The Automated Beam Line Experiment project (ABLE) 
[Clearwater and Lee, 1987; Lee et al., 1987al is a research 
project investigating diagnosis of problems in particle beam 
lines. A prototype system was constructed as a rule-based 
expert system written in L1SP.l 

The present project blends ABLE and RL in an attempt to 

‘A FORTRAN version is also maintained for portability. 

demonstrate the utility of learning programs for the particle 
accelerator domain.* In particular, we are studying machine 
learning in the presence of a very good quantitative domain 
simulator. We have assumed that a reasonable half-order 
theory can be specified more easily than an accurate rule set 
can be specified. This may not always be the case, but the 
items we requested for the half-order theory were not difficult 
for physicists to specify, especially with some feedback from 
the performance system. Figure 2 shows the relationship of 
the major elements discussed in this paper. 

L 

Figure 2 

2 
2.1 Importance of earn Line Verification 

Because of the extreme complexity and expense involved in 
operating particle accelerator facilities and the high demand for 
access, there is a strong motivation to correct problems 
properly as quickly as possible. 

The first task in operating a beam line is to verify the 

*RL and ABLE are implemented in Common Lisp and 
run on TI Explorer-II, Xerox 1186, and Apple MAC-II 
machines. Run times of RL for the present studies, involving 
600 beam line segments, took 2-3 hours on an Explorer-II. 
ABLE uses the dozen or so rules to localize errors in 100 beam 
line test cases in run times in a few tens of minutes on a 
Symbolics 3600. Speeding up the programs is an obvious 
prerequisite for export which we have not yet undertaken. 
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one of the following constraints: design of the magnet lattice. This requires the expertise of 
accelerator nhvsicists to analvze the data from beam line 
experiments: The beam line -frequently needs verification 
because magnets are moved or their strengths are changed, 
resulting in a “new machine”. Although data acquisition from 
the beam line diagnostics is often highly automated, analysis 
of these data by specialists has been a cumbersome and 
laborious task, requiring anywhere from hours to months. 

2.2 The Simulator 
Unlike many problem domains in AI, our application is 

able to utilize an excellent model. The model we used, 
COMFORT [Woodley et al., 19831, is based on the well- 
known physics of particle beams propagating through a lattice 
of magnets. A beam line simulation program, PLUS Lee et 
al., 1987b], uses input beam characteristics to compute a 
value for the centroid of the beam at each monitor along the 
beam’s “trajectory”, using the design values for the magnet 
lattice. 

The calculated design trajectory can then be compared with 
measurements from the actual (or simulated) machine. The 
differences between calculated and observed trajectories are used 
to localize and classify the cause of the problem. Making 
these interpretations is complicated in practice by the fact that 
there are usually more magnets than monitors and that there is 
noise in the data. The simulator has proved very useful in this 
context in solving actual problems bee et al., 1987c]. 

3 e&hods 
3.1 Generation of Training Data 

Training and test data were generated using the design 
lattice of the North Ring-to-Linac O\JRTL) section of the 
SLAG Linear Collider. We further reduced the beam line into 
20 monitors and 31 magnets corresponding to about 50m in 
length. Several hundred runs of the simulator generated cases 
for a training set, such that the error does not occur within 
three monitors of either end of the beam.3 Each run was 
made by randomly choosing the “launch conditions” (the 
transverse off-set from the ideal beam centerline and the angle 
the beam makes with the centerline) of the input beam. Also 
each magnet had a small, random, transverse misalignment or 
strength miscalibration error in it to simulate realistic 
construction tolerances. In every case a random, large (but 
still realistic) magnet misalignment or miscalibration or 
monitor misalignment was added on top of the residual errors 
intrinsic to the system. It is these major misalignments or 
miscalibrations that the ABLE system is designed to find. 

For each training example two segments (portions of the 
beam line delimited by monitors) were generated. We 
systematically chose segments that covered the problem space 
in the same way they would be applied, i.e., we focussed on 
the critical region where an error begins to manifest itself. 
Care is needed to assure that the systematically selected 
segments do not leave an important part of the problem space 
uncovered. Here again the simulator is crucial by providing a 
check on the performance of the rules on non-training data. 

A segment had to contain at least 3 monitors and satisfy 

3The reason for limiting the placement of errors is that 
the underlying physics rarely allows isolation of errors very 
close to the beginning or end of a beam line section. 

(1) it ends exactly on the first monitor to show an error, 
(2) it ends before the error, or 
(3) it lies wholly after the error. 

3.2 Data Abstraction 
The examples generated by the simulator are of the form: 

(ml m2 m3 . . mi) 
(sl s2 s3 . . si) 
(ELEMENT-ERROR-AROUND-MONITOR (X 1 ..Xj)) 
(MONITOR-ERROR-AT (Y 1 ..Yk)), 

where i is the number of monitors, j is the number of element 
errors, and k is the number of monitor errors. Each m is the 
measured value of the beam trajectory at the corresponding 
monitor: each s is the simulated ideal value of the beam 
trajectory at a monitor. 

RL input is in the form of a feature vector classified with 
respect to the concept being learned [Fu, 19851. Since 
examples are not already in the form of RL’s input, an 
additional component of the RL system, named the 
FeatureMaker, specifies RL’s input feature vectors from the 
simulator’s output. In Meta-DENDRAL, this rewriting 
function was performed by INTSUM [Buchanan et al., 19761. 
A complete list of terms used is shown in Appendix A. 

3.3 Induction on the Training Data 
3.3.1 The Vocahdary 

In general, RL can operate with features whose values are 
numerical, symbolic, or boolean. For the ABLE domain, only 
numerically-valued features of RL have been used. In 
numerically-valued features, the range of possible values is 
subdivided by the use of pre-specified endpoints or markers. 
These markers are the only values present in the rules RL 
generates. The markers are chosen so that there are enough to 
distinguish positive examples from negative examples, but not 
so many that the computation becomes intractable. We plan 
to investigate ways to choose or adjust markers automatically, 
but have set them manually for the results presented here. 
Several runs of RL on different training sets were used to 
determine reasonable markers. 

3.3.2 Separation of Concepts 
Each example in the training set is classified according to 

the type of error (“Element-Error” or “Monitor-Error”). Recall 
that there are random fluctuations added to the descriptions of 
examples that may result in false classifications of these 
training data RL learns the classification rules for each target 
concept independently by regrouping the examples into 
exemplars and non-exemplars of that concept. 

3.3.3 Threshold Adjustments 
RL uses two simple thresholds to determine whether a rule 

matches the training set “well enough” to warrant further 
refinement, or inclusion in the concept definition if none of its 
specializations match well enough. These are: 

positive-coverage = number of true nositive nredictions 
total number of positive examples 
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negative-coverage = number of false nositive nredictions 
total number of negative examples 

Since we do not know the a priori optimal thresholds in a 
domain, we iterate on successively looser definitions. Initially 
the positive threshold was set to 0.90, and the negative 
threshold to 0.04, for the results presented here. This means 
that a potential rule will be rejected unless it covers at least 
90% of the positive examples and no more than 4% of the 
negative examples in the training set. RL generates all rules 
that meet these criteria using an intelligent breadth-first search. 
If some of the positive examples in the training set remain 
uncovered by rules at the 90% level, the thresholds will be 
loosened4, and RL will begin the top-down search again. In 
this way, the best rules are found first, and rules with less 
coverage are found only if the best rules are inadequate to 
explain the training set. 

3.4 Solving: The 
By assuming that the model of problem solving is evidence 

gathering, or heuristic classification, we remove the burden 
from RL to find error-free rules. The rules predict 
“MONITOR-ERROR” or “ELEMENT-ERROR” for any beam 
line or segment of a beam line. However, from a physicist’s 
standpoint it is crucial to be able to localize the error as well 
as classify it. Having this motivation, we added an outer loop 
to interpret the rules in the following way. 

To localize errors we employ the GOLD Method [Lee and 
Clearwater, 19871. This technique delineates the beam line 
sequentially into so-called “good regions”, i.e., lengths of the 
line in which no error is believed to exist. Each rule makes 
some relevant comparisons between measured values of the 
beam trajectory and predicted values within a region. After any 
element-error rule fires, signifying the end of a good region, 
the simulated beam is launched again -- with new input 
parameters based on the monitors immediately after the end of 
the previous good region -- and the search for the next 
terminus of a good region begins. 

At the same time the interpreter extends regions looking for 
element errors, monitor-error rules may also identify a 
particular monitor as erroneous and its corresponding data will 
subsequently be disregarded. If both element-error rules and 
monitor-error rules trigger on the same monitor then the error 
is called a monitor error. This is done because the false 
positive rate for element errors is much higher than for 
monitor errors, as discussed below, and because the real-world 
cost of making a false positive for an element error is much 
higher than for a monitor error. A more sophisticated conflict 
resolution and evidence-gathering strategy involving past 
performance of various rule combinations is under 
development. 

4 

.I es Generated by 
Appendix B shows examples of two rules generated by 

RL. A typical rule for each type of error is shown. Even 
though the rule sets of which these are examples were 
generated independently in two separate runs, they share a 
considerable number of common rules. This results from RL’s 
ability to find all plausible rules about the concepts, and from 
each random sample being large enough to be representative. 

4.2 Test Case - SLAC Simulator 
We used two training sets to learn rules. The rules were 

tested on a non-learning set of one hundred simulated cases. 
The element error rules achieved an average accuracy5 of 
98% and a false positive rate of 13%. Similarly, monitor error 
rules had an accuracy of 86% and a false positive rate of 5%. 
The precision6 of the element error rules was 94% within 3 
monitors and for monitor error rules was 95% exactly on the 
error. Several explanatory comments are necessary to 
understand these numbers. Three monitors is the minimum 
length of a good region and the interval within which element 
error rules can be said to be precise. Also, the effect of an 
error will usually not become immediately significant, so it is 
somewhat arbitrary what we mean by “within three monitors 
of the error.” Monitor errors, on the other hand, are local to a 
particular monitor and must therefore be pinpointed. However, 
due to the noise in the data, it is possible for a large monitor 
fluctuation to mimic a monitor error and trigger a monitor 
error rule. All the rules used had a minimum positive 
coverage of .7 and a maximum negative coverage of .04. The 
tabulated results are consistent with our expectations from the 
rules we requested from RL. The measures of accuracy and 
precision calculated here, for the first time, provide the expert 
with a quantitative prediction of the efficacy of his techniques. 

4.3 Test Case - §L ata 
We obtained two separate sets of data from the NRTL that 

partially overlapped our training beam line. Both rule sets 
were tried and both found an element error in the same region 
as that found by an expert using the GOLD Method. A new 
element was later inserted into the actual beam line to 
compensate for this error. 

.4 es& Case - CE ata 
In general, every beam line has its own positioning, 

calibration, and resolution tolerances so that it would be 
necessary to run RL for every beam line where these tolerances 
differ in order to best calibrate the rules. However, we have run 
the rules formed by RL on training data from SLAC on a 
beam line from the CERN (European Center for Nuclear 
Research) SPS (Super Proton Synchrotron). This section of 
beam line from the SPS has 75 magnets, and 36 monitors and 
is 2.3km long. The data were the actual differences of the 

4We use a step size of 10% in reducing the positive- 
coverage threshold; the negative-coverage threshold is kept 
constant for any run. We are experimenting with other 
strategies for changing these, and other, thresholds 
incrementally. 

5Accuracy for a class of rules means the fraction of times 
the rules fired on a beam line segment when there was an error 
of that class present. 

6Precision is the fraction of times a rule correctly 
classifies and localizes an error to within some number of 
monitors. 
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monitor readings taken over a year apart after several magnets 
were repositioned. This example was solved by ABLE using 
the SLAC rules, and the program’s element error conclusions 
agreed with the actual changes made. 

5 Discussion 
The main point of the present study is to demonstrate the 

utility and power of a strong device model, the simulator, for 
providing training examples to an induction system. One of 
the difficulties of using induction to learn rules for expert 
systems in medicine, mass spectrometry, or many other 
important disciplines is the inaccessibility of a large library of 
training examples. The strong predictive model of beam line 
physics that was already implemented in a simulation program 
allowed us to generate realistic cases in large numbers. Thus 
we could generate training cases to any extent needed to 
develop the parameters under which we felt learning would be 
successful, and then generate new test cases without bias. The 
simulator allowed us to generate and examine hundreds of 
examples. Thus we were able to see patterns and boundary 
cases and upgrade our techniques accordingly. 

The parameters of the learning system, embodied in RL’s 
half-order theory, require some adjustments from their initial, 
intuitive settings. For example, the cost of an expert system 
making false-positive predictions directly affects the threshold 
value on how many non-exemplars the induction system 
allows new rules to cover. Intuitively, we would like rules to 
be as general as possible, but when we consider the cost of 
false-positives we are forced to make them more specific. 
Another place where a tradeoff forced us to adjust values 
empirically was in setting the endpoint markers on the 
numerical ranges: fine resolution, while desirable in promoting 
precision in the rules, decreases their generality and increases 
the run time of the learning program. 

One of the difficulties we encountered is suggestive of a 
fundamental conceptual problem deserving more analysis. In 
particular, the rule interpreter was designed to terminate a good 
region when an element-error rule fires. But the rules were 
initially formed without specifying where the error occurs. 
Thus using rules to define the ends of segments was found to 
cause false positive (mis)identification of errors. We then 
changed the definition of segments used as training examples 
with substantially better results. This suggests difficulties in 
formulating rules independently of their use. Interestingly, 
though, even when the segments were chosen systematically 
badly the overall performance of the rules after incorporating 
evidence-gathering knowledge improved significantly and 
became comparable to our best rules. 

This domain involves a physical system and uses 
exclusively numeric data, unlike many AI systems. Thus, we 
were unable to exploit RL’s ability to use hierarchies of 
symbolic values in successive specialization. Nevertheless, 
RL’s method appears not to depend on having rich semantics 
for good performance and is robust enough to deal with this 
situation. It is obvious, however, that RL’s performance 
depends very much on the accuracy of the simulator. 

ABLE has shown the power expert system technology can 
have on beam line start-up; RL has shown that the level of 
automation can be increased even more and may lead to further 
productivity gains for accelerator facilities or in applications 
with good device models. The generality of the rules across 
accelerator facilities is untested, however, except for the SLAC 

and CERN examples. Different beam lines may have different 
tolerances but the descriptions of the underlying physics are 
generally the same. Thus rule sets for different beam lines 
will likely differ only in the endpoint markers for numerical 
intervals, and not in the features used in rules or in their 
conjuncts. 

We have assumed that a single monitor error cannot be 
mistaken for an element error and vice-versa, However, in a 
single set of data it is possible for multiple element errors to 
be mistaken for a monitor error. In reality this case is not 
very frequent, but we are, in effect, assuming that a single 
error is a preferred explanation over a complex of errors. Note 
that we are not making a global assumption about single 
faults in a beam line, but we are assuming that each error-free 
region is broken by just a single fault. 

There remain many interesting problems to examine using 
RL in this domain as an experimental laboratory. We intend 
to focus next on incremental rule formation, experiments with 
the efficacy of using rules that predict presence and absence of 
errors, conflict resolution, and automatic adjustment of interval 
markers. 
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A Features used y FeatureMaker 
Features used in the redescription (abstraction) of the training 
data, and in the left-hand sides of rules: 

OBJECTIVE-VALUE: 
A measure of the mean square difference between measured 
and simulated beam positions for the monitors in the 
segment. 

The following definition will be useful in defining the other 
features: 
DIFFERENCE TRAJECTORY (DT): 

The absolute value of the difference between the measured 
and simulated beam positions at a monitor. 

LARGEST-DIFFERENCE-TRAJECTORY: 
The largest difference trajectory in the segment. 

DOWNSTREAM-NEIGHBOR-OF-LARGEST-DT: 
The difference trajectory at the monitor immediately after 
the monitor with the largest difference trajectory. 

DOWNSTREAM-NEXT-NEIGHBOR-OF-LARGEST-DT: 
The difference trajectory at the monitor two after the 
monitor with the largest difference trajectory. 
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Sample Rules 
wo typical rules generated by RL in a run of 300 training 

examples: 

((LARGEST-DIFF-TRAJ (GT 0.3)) 
(DOWNSTREAM-NEIGHBOR-OF-LARGEST-DT (GT 0.5) 
(DOWNSTREAM-NEXT-NEIGHBOR-OF-LARGEST-DT 
(GT 0.5))) 3 (ELEMENT-ERROR YES) 
80.1% of positives in the training set matched (181/226) 
3.6% of negatives in the training set matched (24/674) 

((LARGEST-DIFF-TRAJ (GT 0.7)) 
(DOWNSTREAM-NEXT-NEIGHBOR-OF-LARGEST-DT 
(LE 0.7))) j (MONITOR-ERROR YES) 
85.5% of positives in the training set matched (171/200) 
3.7% of negatives in the training set matched (26/700) 
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