
Simulation-Assisted Inductive Learning*

Bruce G. Buchanan, John Sullivan,
and Tze-Pin Cheng

Knowledge Systems Laboratory
Stanford University

Stanford, California 94305

Abstract
Learning by induction can require a large number of

training examples. We show the power of using a simulator
to generate training data and test data in learning rules for an
expert system. The induction program is RL, a simplified
version of Meta-DENDRAL. The expert system is ABLE, a
rule-based system that identifies and locates errors in particle
beam lines used in high energy physics. A simulator of
beam lines allowed forming and testing rules on sufficient
numbers of cases that ABLE’s performance is demonstrably
accurate and precise.

1 Introduction
Learning by induction is one important means of learning

classification rules for expert systems [Buchanan and Mitchell,
1978; Michalski, 19831. The major assumption in learning by
induction is that a source of training examples exists. In
many domains for which one wants to build expert systems,
however, assembling libraries of training cases can present
significant practical problems. Meta-DENDRAL, for
example, worked with available mass spectra of just a few
organic chemical compounds at a time because only a few
compounds of the classes under consideration had been
analyzed, and additional spectra were nearly impossible to
obtain.

In the present paper we illustrate one way of overcoming
these kinds of problems by using a simulator to generate large
numbers of training examples, and we discuss some
implications of doing so. This idea was developed by Brown
[1982] in the context of tutoring electronics troubleshooting,
by Samue1[1963] in the context of checkers, and recently by
Kunstaetter[19871 in the context of tutoring medical diagnosis.
An obvious assumption we make is that an accurate
simulation model exists. This is frequently true in technical
domains in which there are theoretical equations or other
strong models describing the behavior of physical or biological
systems. Another assumption is that the domain is complex
enough that explaining data (e.g., for troubleshooting) cannot
be performed by using the simulator in a random generate-and-
test method.

One obvious question arises in the case where strong

*The research reported in this report was funded in part by
the following contracts and grants: DARPA N00039-86C-
0033, NIH/SUMEX 5P41 RR-00785 and IBM SL-87046.
Work was also performed under the auspices of the Department
of Energy and supported by the U.S. Army Strategic Defense
Command.

Scott H. Clearwater
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

and Knowledge Systems Laboratory
Stanford University

models exist: why build a heuristic program at all? The
answer lies mostly in the asymmetry between prediction and
explanation. The behavior of a system under ideal conditions
may be predictable with high accuracy using relations that map
descriptions of the initial state of the system onto descriptions
of its final state (and from there to observable data). Heuristics
are needed, however, to adjust such relations with respect to
deviations from the ideal. More importantly, it is not
generally possible to interpret equations or run simulations
“backwards” in order to infer causes from their effects, because
causal knowledge often maps many different causes onto the
same manifestation.

For the induction program we use Rule-Learner (RL) [Fu,
1985; Fu and Buchanan, 19851, a generalization of Meta-
DENDRAL. RL is a successive refinement program that
searches a space of IF-THEN rules for acceptable classification
rules.

The input to RL is: (a) a collection of training examples
classified into one or more concept classes (with no
assumption of complete correctness), and (b) some initial
knowledge of the domain -- called the “half-order theory” -- that
includes (i) the vocabulary of legal descriptions of examples,
including names of classifications, (ii) some semantics of
relationships among the terms in the vocabulary, (iii)
heuristics to prune or order RL’s search through the space of
rules, e.g., plausible ranges of values of descriptors, plausible
threshold values on the size or complexity of rules, and
plausible (or implausible) combinations of terms in rules.

The output from RL is a set of rules that correctly classify
(true positives) most of the examples (where “most” is defined
in the half-order theory as a specified percent of all training
examples) and that misclassify (false positives) an acceptably
small number of examples (where “acceptably small” is
similarly defined). Each rule is of the form:

Cfeature~>&..&<feature;>*<classificationk>

where each feature describes a value or range of values for an
attribute of an object, e.g., Attributej > 2.

1.2 The ABLE Program
A practical problem that fits this model came to our

attention from high energy physics. Experimental high-energy
physicists study the composition of matter using particle
accelerators. These facilities all use beam lines to transport
the high energy particle “beams” (bunches of particles) for
studying properties of elementary particles, material science
research, or other applications. The beam line itself is a

552 Learning and Knowledge Acquisition

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

complicated arrangement of magnets, beam position monitors,
accelerating sections, and drift sections forming a magnet
optical lattice. The magnet optics are analogous to a
conventional lens system that is used to focus light onto a
particular area. Hence, the magnet optical elements (or simply
“elements”) bend or focus the electrically charged particles in
the beam onto a target. The beam centroid is monitored along
the trajectory from source to target with instruments referred to
as beam position monitors or simply “monitors”.

Particle accelerators are well described theoretically but their
behavior is all too often not what is predicted or desired. For
example, there may be misalignments or miscalibrations in
the elements or monitors. Thus the actual beam may not
behave as expected, as shown in Figure 1.

Distance Along Beam Line, m
I I I 1 I I

55 60 65 70 75 80

II Actual Monitor Values i Fitted Monitor Values

. .

. .

. .
. . .

I. .
.

.
.
.
.
.

.

L? -5 ’ I
12 3 4 5678 9 1011 12 13 14

Monitor Number

Figure 1
Diagram of a beam line, showing the measured and
simulated values at each monitor. The two values
have been slightly offset for clarity. An element error
occurs somewhere before monitor number 9;
downstream of monitor 9 the two values differ
significantly.

One of the tools developed to assist in correcting problems
is a simulator based on the theoretical model from which
accelerators are constructed. It has been used in two modes:

(1) as a “what-if” tool showing what happens to a beam The relationship of the simulator, the RL induction
if operating conditions are perturbed, and program, and the ABLE diagnostic system.

(2) as a predictive mechanism with a numerical
optimization program that attempts to minimize the
error between observed and predicted behavior of the
beam.

We asked whether we could use the simulator in a third
way, as a generator of training data, as described in the next
set tion.

The Automated Beam Line Experiment project (ABLE)
[Clearwater and Lee, 1987; Lee et al., 1987al is a research
project investigating diagnosis of problems in particle beam
lines. A prototype system was constructed as a rule-based
expert system written in L1SP.l

The present project blends ABLE and RL in an attempt to

‘A FORTRAN version is also maintained for portability.

demonstrate the utility of learning programs for the particle
accelerator domain.* In particular, we are studying machine
learning in the presence of a very good quantitative domain
simulator. We have assumed that a reasonable half-order
theory can be specified more easily than an accurate rule set
can be specified. This may not always be the case, but the
items we requested for the half-order theory were not difficult
for physicists to specify, especially with some feedback from
the performance system. Figure 2 shows the relationship of
the major elements discussed in this paper.

L

Figure 2

2
2.1 Importance of earn Line Verification

Because of the extreme complexity and expense involved in
operating particle accelerator facilities and the high demand for
access, there is a strong motivation to correct problems
properly as quickly as possible.

The first task in operating a beam line is to verify the

*RL and ABLE are implemented in Common Lisp and
run on TI Explorer-II, Xerox 1186, and Apple MAC-II
machines. Run times of RL for the present studies, involving
600 beam line segments, took 2-3 hours on an Explorer-II.
ABLE uses the dozen or so rules to localize errors in 100 beam
line test cases in run times in a few tens of minutes on a
Symbolics 3600. Speeding up the programs is an obvious
prerequisite for export which we have not yet undertaken.

Buchanan, Sullivan, Cheng and Clearwater 553

one of the following constraints: design of the magnet lattice. This requires the expertise of
accelerator nhvsicists to analvze the data from beam line
experiments: The beam line -frequently needs verification
because magnets are moved or their strengths are changed,
resulting in a “new machine”. Although data acquisition from
the beam line diagnostics is often highly automated, analysis
of these data by specialists has been a cumbersome and
laborious task, requiring anywhere from hours to months.

2.2 The Simulator
Unlike many problem domains in AI, our application is

able to utilize an excellent model. The model we used,
COMFORT [Woodley et al., 19831, is based on the well-
known physics of particle beams propagating through a lattice
of magnets. A beam line simulation program, PLUS Lee et
al., 1987b], uses input beam characteristics to compute a
value for the centroid of the beam at each monitor along the
beam’s “trajectory”, using the design values for the magnet
lattice.

The calculated design trajectory can then be compared with
measurements from the actual (or simulated) machine. The
differences between calculated and observed trajectories are used
to localize and classify the cause of the problem. Making
these interpretations is complicated in practice by the fact that
there are usually more magnets than monitors and that there is
noise in the data. The simulator has proved very useful in this
context in solving actual problems bee et al., 1987c].

3 e&hods
3.1 Generation of Training Data

Training and test data were generated using the design
lattice of the North Ring-to-Linac O\JRTL) section of the
SLAG Linear Collider. We further reduced the beam line into
20 monitors and 31 magnets corresponding to about 50m in
length. Several hundred runs of the simulator generated cases
for a training set, such that the error does not occur within
three monitors of either end of the beam.3 Each run was
made by randomly choosing the “launch conditions” (the
transverse off-set from the ideal beam centerline and the angle
the beam makes with the centerline) of the input beam. Also
each magnet had a small, random, transverse misalignment or
strength miscalibration error in it to simulate realistic
construction tolerances. In every case a random, large (but
still realistic) magnet misalignment or miscalibration or
monitor misalignment was added on top of the residual errors
intrinsic to the system. It is these major misalignments or
miscalibrations that the ABLE system is designed to find.

For each training example two segments (portions of the
beam line delimited by monitors) were generated. We
systematically chose segments that covered the problem space
in the same way they would be applied, i.e., we focussed on
the critical region where an error begins to manifest itself.
Care is needed to assure that the systematically selected
segments do not leave an important part of the problem space
uncovered. Here again the simulator is crucial by providing a
check on the performance of the rules on non-training data.

A segment had to contain at least 3 monitors and satisfy

3The reason for limiting the placement of errors is that
the underlying physics rarely allows isolation of errors very
close to the beginning or end of a beam line section.

(1) it ends exactly on the first monitor to show an error,
(2) it ends before the error, or
(3) it lies wholly after the error.

3.2 Data Abstraction
The examples generated by the simulator are of the form:

(ml m2 m3 . . mi)
(sl s2 s3 . . si)
(ELEMENT-ERROR-AROUND-MONITOR (X 1 ..Xj))
(MONITOR-ERROR-AT (Y 1 ..Yk)),

where i is the number of monitors, j is the number of element
errors, and k is the number of monitor errors. Each m is the
measured value of the beam trajectory at the corresponding
monitor: each s is the simulated ideal value of the beam
trajectory at a monitor.

RL input is in the form of a feature vector classified with
respect to the concept being learned [Fu, 19851. Since
examples are not already in the form of RL’s input, an
additional component of the RL system, named the
FeatureMaker, specifies RL’s input feature vectors from the
simulator’s output. In Meta-DENDRAL, this rewriting
function was performed by INTSUM [Buchanan et al., 19761.
A complete list of terms used is shown in Appendix A.

3.3 Induction on the Training Data
3.3.1 The Vocahdary

In general, RL can operate with features whose values are
numerical, symbolic, or boolean. For the ABLE domain, only
numerically-valued features of RL have been used. In
numerically-valued features, the range of possible values is
subdivided by the use of pre-specified endpoints or markers.
These markers are the only values present in the rules RL
generates. The markers are chosen so that there are enough to
distinguish positive examples from negative examples, but not
so many that the computation becomes intractable. We plan
to investigate ways to choose or adjust markers automatically,
but have set them manually for the results presented here.
Several runs of RL on different training sets were used to
determine reasonable markers.

3.3.2 Separation of Concepts
Each example in the training set is classified according to

the type of error (“Element-Error” or “Monitor-Error”). Recall
that there are random fluctuations added to the descriptions of
examples that may result in false classifications of these
training data RL learns the classification rules for each target
concept independently by regrouping the examples into
exemplars and non-exemplars of that concept.

3.3.3 Threshold Adjustments
RL uses two simple thresholds to determine whether a rule

matches the training set “well enough” to warrant further
refinement, or inclusion in the concept definition if none of its
specializations match well enough. These are:

positive-coverage = number of true nositive nredictions
total number of positive examples

554 Learning and Knowledge Acquisition

negative-coverage = number of false nositive nredictions
total number of negative examples

Since we do not know the a priori optimal thresholds in a
domain, we iterate on successively looser definitions. Initially
the positive threshold was set to 0.90, and the negative
threshold to 0.04, for the results presented here. This means
that a potential rule will be rejected unless it covers at least
90% of the positive examples and no more than 4% of the
negative examples in the training set. RL generates all rules
that meet these criteria using an intelligent breadth-first search.
If some of the positive examples in the training set remain
uncovered by rules at the 90% level, the thresholds will be
loosened4, and RL will begin the top-down search again. In
this way, the best rules are found first, and rules with less
coverage are found only if the best rules are inadequate to
explain the training set.

3.4 Solving: The
By assuming that the model of problem solving is evidence

gathering, or heuristic classification, we remove the burden
from RL to find error-free rules. The rules predict
“MONITOR-ERROR” or “ELEMENT-ERROR” for any beam
line or segment of a beam line. However, from a physicist’s
standpoint it is crucial to be able to localize the error as well
as classify it. Having this motivation, we added an outer loop
to interpret the rules in the following way.

To localize errors we employ the GOLD Method [Lee and
Clearwater, 19871. This technique delineates the beam line
sequentially into so-called “good regions”, i.e., lengths of the
line in which no error is believed to exist. Each rule makes
some relevant comparisons between measured values of the
beam trajectory and predicted values within a region. After any
element-error rule fires, signifying the end of a good region,
the simulated beam is launched again -- with new input
parameters based on the monitors immediately after the end of
the previous good region -- and the search for the next
terminus of a good region begins.

At the same time the interpreter extends regions looking for
element errors, monitor-error rules may also identify a
particular monitor as erroneous and its corresponding data will
subsequently be disregarded. If both element-error rules and
monitor-error rules trigger on the same monitor then the error
is called a monitor error. This is done because the false
positive rate for element errors is much higher than for
monitor errors, as discussed below, and because the real-world
cost of making a false positive for an element error is much
higher than for a monitor error. A more sophisticated conflict
resolution and evidence-gathering strategy involving past
performance of various rule combinations is under
development.

4

.I es Generated by
Appendix B shows examples of two rules generated by

RL. A typical rule for each type of error is shown. Even
though the rule sets of which these are examples were
generated independently in two separate runs, they share a
considerable number of common rules. This results from RL’s
ability to find all plausible rules about the concepts, and from
each random sample being large enough to be representative.

4.2 Test Case - SLAC Simulator
We used two training sets to learn rules. The rules were

tested on a non-learning set of one hundred simulated cases.
The element error rules achieved an average accuracy5 of
98% and a false positive rate of 13%. Similarly, monitor error
rules had an accuracy of 86% and a false positive rate of 5%.
The precision6 of the element error rules was 94% within 3
monitors and for monitor error rules was 95% exactly on the
error. Several explanatory comments are necessary to
understand these numbers. Three monitors is the minimum
length of a good region and the interval within which element
error rules can be said to be precise. Also, the effect of an
error will usually not become immediately significant, so it is
somewhat arbitrary what we mean by “within three monitors
of the error.” Monitor errors, on the other hand, are local to a
particular monitor and must therefore be pinpointed. However,
due to the noise in the data, it is possible for a large monitor
fluctuation to mimic a monitor error and trigger a monitor
error rule. All the rules used had a minimum positive
coverage of .7 and a maximum negative coverage of .04. The
tabulated results are consistent with our expectations from the
rules we requested from RL. The measures of accuracy and
precision calculated here, for the first time, provide the expert
with a quantitative prediction of the efficacy of his techniques.

4.3 Test Case - §L ata
We obtained two separate sets of data from the NRTL that

partially overlapped our training beam line. Both rule sets
were tried and both found an element error in the same region
as that found by an expert using the GOLD Method. A new
element was later inserted into the actual beam line to
compensate for this error.

.4 es& Case - CE ata
In general, every beam line has its own positioning,

calibration, and resolution tolerances so that it would be
necessary to run RL for every beam line where these tolerances
differ in order to best calibrate the rules. However, we have run
the rules formed by RL on training data from SLAC on a
beam line from the CERN (European Center for Nuclear
Research) SPS (Super Proton Synchrotron). This section of
beam line from the SPS has 75 magnets, and 36 monitors and
is 2.3km long. The data were the actual differences of the

4We use a step size of 10% in reducing the positive-
coverage threshold; the negative-coverage threshold is kept
constant for any run. We are experimenting with other
strategies for changing these, and other, thresholds
incrementally.

5Accuracy for a class of rules means the fraction of times
the rules fired on a beam line segment when there was an error
of that class present.

6Precision is the fraction of times a rule correctly
classifies and localizes an error to within some number of
monitors.

Buchanan, Sulliwu-~, Cheng and Clearwater 555

monitor readings taken over a year apart after several magnets
were repositioned. This example was solved by ABLE using
the SLAC rules, and the program’s element error conclusions
agreed with the actual changes made.

5 Discussion
The main point of the present study is to demonstrate the

utility and power of a strong device model, the simulator, for
providing training examples to an induction system. One of
the difficulties of using induction to learn rules for expert
systems in medicine, mass spectrometry, or many other
important disciplines is the inaccessibility of a large library of
training examples. The strong predictive model of beam line
physics that was already implemented in a simulation program
allowed us to generate realistic cases in large numbers. Thus
we could generate training cases to any extent needed to
develop the parameters under which we felt learning would be
successful, and then generate new test cases without bias. The
simulator allowed us to generate and examine hundreds of
examples. Thus we were able to see patterns and boundary
cases and upgrade our techniques accordingly.

The parameters of the learning system, embodied in RL’s
half-order theory, require some adjustments from their initial,
intuitive settings. For example, the cost of an expert system
making false-positive predictions directly affects the threshold
value on how many non-exemplars the induction system
allows new rules to cover. Intuitively, we would like rules to
be as general as possible, but when we consider the cost of
false-positives we are forced to make them more specific.
Another place where a tradeoff forced us to adjust values
empirically was in setting the endpoint markers on the
numerical ranges: fine resolution, while desirable in promoting
precision in the rules, decreases their generality and increases
the run time of the learning program.

One of the difficulties we encountered is suggestive of a
fundamental conceptual problem deserving more analysis. In
particular, the rule interpreter was designed to terminate a good
region when an element-error rule fires. But the rules were
initially formed without specifying where the error occurs.
Thus using rules to define the ends of segments was found to
cause false positive (mis)identification of errors. We then
changed the definition of segments used as training examples
with substantially better results. This suggests difficulties in
formulating rules independently of their use. Interestingly,
though, even when the segments were chosen systematically
badly the overall performance of the rules after incorporating
evidence-gathering knowledge improved significantly and
became comparable to our best rules.

This domain involves a physical system and uses
exclusively numeric data, unlike many AI systems. Thus, we
were unable to exploit RL’s ability to use hierarchies of
symbolic values in successive specialization. Nevertheless,
RL’s method appears not to depend on having rich semantics
for good performance and is robust enough to deal with this
situation. It is obvious, however, that RL’s performance
depends very much on the accuracy of the simulator.

ABLE has shown the power expert system technology can
have on beam line start-up; RL has shown that the level of
automation can be increased even more and may lead to further
productivity gains for accelerator facilities or in applications
with good device models. The generality of the rules across
accelerator facilities is untested, however, except for the SLAC

and CERN examples. Different beam lines may have different
tolerances but the descriptions of the underlying physics are
generally the same. Thus rule sets for different beam lines
will likely differ only in the endpoint markers for numerical
intervals, and not in the features used in rules or in their
conjuncts.

We have assumed that a single monitor error cannot be
mistaken for an element error and vice-versa, However, in a
single set of data it is possible for multiple element errors to
be mistaken for a monitor error. In reality this case is not
very frequent, but we are, in effect, assuming that a single
error is a preferred explanation over a complex of errors. Note
that we are not making a global assumption about single
faults in a beam line, but we are assuming that each error-free
region is broken by just a single fault.

There remain many interesting problems to examine using
RL in this domain as an experimental laboratory. We intend
to focus next on incremental rule formation, experiments with
the efficacy of using rules that predict presence and absence of
errors, conflict resolution, and automatic adjustment of interval
markers.

Acknowledgments
We extend special thanks to Haym Hirsh for generous,

constructive criticisms of early drafts of this paper and to
James Rice for help optimizing RL on the Explorer. Li-Min
Fu wrote the first version of RL. We also express our gratitude
to Dr. Martin Lee for his expertise in accelerator physics and
to Stephen Kleban, SLAC, and CERN for supplying us with
data.

A Features used y FeatureMaker
Features used in the redescription (abstraction) of the training
data, and in the left-hand sides of rules:

OBJECTIVE-VALUE:
A measure of the mean square difference between measured
and simulated beam positions for the monitors in the
segment.

The following definition will be useful in defining the other
features:
DIFFERENCE TRAJECTORY (DT):

The absolute value of the difference between the measured
and simulated beam positions at a monitor.

LARGEST-DIFFERENCE-TRAJECTORY:
The largest difference trajectory in the segment.

DOWNSTREAM-NEIGHBOR-OF-LARGEST-DT:
The difference trajectory at the monitor immediately after
the monitor with the largest difference trajectory.

DOWNSTREAM-NEXT-NEIGHBOR-OF-LARGEST-DT:
The difference trajectory at the monitor two after the
monitor with the largest difference trajectory.

556 Learning and Knowledge Acquisition

Sample Rules
wo typical rules generated by RL in a run of 300 training

examples:

((LARGEST-DIFF-TRAJ (GT 0.3))
(DOWNSTREAM-NEIGHBOR-OF-LARGEST-DT (GT 0.5)
(DOWNSTREAM-NEXT-NEIGHBOR-OF-LARGEST-DT
(GT 0.5))) 3 (ELEMENT-ERROR YES)
80.1% of positives in the training set matched (181/226)
3.6% of negatives in the training set matched (24/674)

((LARGEST-DIFF-TRAJ (GT 0.7))
(DOWNSTREAM-NEXT-NEIGHBOR-OF-LARGEST-DT
(LE 0.7))) j (MONITOR-ERROR YES)
85.5% of positives in the training set matched (171/200)
3.7% of negatives in the training set matched (26/700)

eferences
[Brown et al., 19821 J.S. Brown, R. Burton, and J. DeKleer.

Pedagogical and Knowledge Engineering Techniques in
SOPHIE I, II, and III. In Sleeman, D.H. and Brown, J.S.
(editors), Intelligent Tutoring Systems. Academic Press,
London, 1982.

[Buchanan and Mitchell, 19781 Bruce G. Buchanan and Tom
M. Mitchell. Model-Directed Learning of Production Rules.
In Waterman, D.A. and Hayes-Roth, F. (editors), Pattern-
Directed Inference Systems, pages 297-3 12. Academic
Press, New York, 1978.

[Clearwater and Lee, 19871 Scott H. Cleat-water and Martin J.
Lee. Prototype Development of a Beam Line Expert
System. In Lindstrom, E.R. and L.S. Taylor (editors),
Proc. 1987 Particle Accelerator Conf., pages 532-534.
Washington, D.C., March, 1987.

[Fu, 19851 Li-Min Fu. Learning Object-Level and Meta-
Level Knowledge in Expert Systems. PhD thesis, Stanford
University, March, 1985.

[Fu and Buchanan, 19851 Li-Min Fu and Bruce Buchanan.
Learning Intermediate Concepts in Constructing a
Hierarchical Knowledge Base. In Proc. IJCAZ 8.5, pages
659-666. IJCAI, Los Angeles, CA, August, 1985.

[Kunstaetter, 19871 R. Kunstaetter. Intelligent Physiologic
Modeling: An application of knowledge based systems.
Computer Methods and Programs in Biomedicine
24(3):213-225, 1987.

[Lee et al., 1987a] Martin J. Lee, Scott H. Clearwater,
Stephen D. Kleban, and Lawrence J. Selig. Error-finding
and Error-correcting Methods for the Start-up of the SLC.
In Lindstrom, E.R. and L.S. Taylor (editors), Proc. 1987
Particle Accelerator Con.., pages 1334- 1336. Washington,
DC., March, 1987.

pee et al., 1987b] Martin J. Lee, S. Cleat-water, E. Theil,
and V. Paxson. Modern Approaches to Accelerator

L.S. Taylor (editors), Proc. 1987 Particle Accelerator
Conf., pages 611-613. Washington, D.C., March, 1987.

[Lee et al., 1987c] Martin Lee, S. Kleban, S. Clearwater, et
al. Analysis of the Orbit Errors in the CERN Accelerators
Using Model Simulation. In Proc. Europhysics
Conference on Control Systems for Experimental Physics.
1987 (in press).

[Lee and Clearwater, 19871 Martin J. Lee and Scott H.
Clearwater. GOLD: Integration of Model-based Control
Systems with Artificial Intelligence and Workstations. In
Proc. of the Workshop on Model-based Accelerator
Controls, pages 31-38. Upton, New York, August, 1987.

[Michalski, 19831 R.S. Michalski. A Theory and
Methodology of Inductive Learning. AI, 20(2): 1 1 1 - 16 1,
February, 1983.

[Samuel, 19631 A.L. Samuel. Some Studies in Machine
Learning Using the Game of Checkers. In Feigenbaum,
E.A. and Feldman, J. (editors), Computers and Thought,
chapter 3, pages 71-105. McGraw-Hill, 1963.

[Woodley et al., 19831 M.D. Woodley, M.J. Lee, J. Jaeger,
and A.S. King. COMFORT, Control of Machine
Functions OR Transport Systems. In Proc. 1983 Particle
Accelerator Conference. Santa Fe, New Mexico, March,
1983.

Simulation and On-Line Control. In Lindstrom, E.R. and

Buchanan, Sullivan, Cheng and Cleatwater 557

