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Abstract 
The SHUNYATA program constructs proof methods 
by analyzing proofs of simple theorems in mathemati- 
cal theories such as group theory and uses these meth- 
ods to form prooh of new theorems in the same or in 
other theories. Such methods are capable of gener- 
ating proo& of theorems whose complexity represents 
the state of the art in automated theorem proving. 
They are composed of elementary functions such as 
the union of sets and the subset relation. Elemen- 
tary knowledge about these functions such as descrip- 
tions of their domains and their ranges forms the basis 
of the method acquisition processes. These processes 
are controlled genetically, which means that SHUN- 
YATA, starting from scratch, constructs a sequence 
of more and more powerful partial methods each of 
which forms the basis for the construction of its suc- 
cessor until a complete method is generated. 

1 Introduction 
Mathematicians are often capable of generating many proofi 
in a mathematical theory such as group theory on the basis 
of a few methods which can be arrived at by analyzing a few 
simple proofs. This phenomenon formed a starting point for 
the development of the SHUNYATA program which automati- 
cally acquires proof methods by analyzing proofs and then uses 
these methods to generate proofs of new theorems. An investi- 
gation of the processes in this program provides an insight into 
method acquisition and proof discovery processes in the com- 
plex domain of higher mathematics. This paper focuses on the 
method acquisition processes in SHUNYATA: Sections 2 and 
3 give an example of a proof and a proof method. Section 4 
describes a method acquisition procedure which constructs the 
proof method from the proof. Section 5 shows how the method 
can be used to generate proofs of new theorems. Section 8 dis- 
cusses the generality and the power of the procedure. Finally, 
Section 7 compares this work with related research and Sec- 
tion 8 summarizes the most important results. 

2 Proof 

The input of the learning process consists of a set of axioms, 
a theorem, and its proof. This section gives an example of 
an input. The axiomatization of group theory chosen here de- 
fines groups as precisely those algebraic structures for which 
solutions to linear equations are guaranteed, rather than the 
usual axiomatization for which linear equation solvability is a 
theorem. The author began his investigations with this axiom- 
atization, but it has no special relevance. 

A group is a set with three binary functions f, q, and h. 
We write zy for f(3C, y), where z and y are terms. The axioms 
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are: 
1. (zy)z = z(yz) 

2. 9(%Y)X = Y 
3. xl&(x, y) = y 

An example of a group is the set of integers with addition where 
the second and the third axiom mean that the equations sz = y 
and xs = y have solutions s. A theorem is: For all elements a 
and b of a group, the equation 

q(a, a)b = b 
holds. It implies that there is a left identity in a group (see 
[MacLane & Birkhoff 67, pp. 78-79, Exercise 81). In order to 
improve the readability of this paper, we regard z(yz) = (~y)z, 
y = q(z, y)~, and y = zh(z, y) as additional axioms. 

A proof for the theorem q(a,a)b = b in ordinary mathe- 
matical representation is: Because of axiom 3, the equation 

9(a,+ = q(a, a)(ah(a, b)) holds. Because of axiom 1, the 
equation q(a, a)(ah(a, b)) = (q(a, a)a)h(a, b) holds. Because of 
axiom 2, the equation (q(a,a)a)h(a, b) = ah(a, b) holds. Be- 
cause of axiom 3, the equation ah(a, b) = b holds. Because of 
the transivity of the equality relation, the above equations im- 
ply the equation q(a,a)b = b which was to be proved. A com- 
putational representation of this proof is given in Table 1. Each 
row in the table is a proof step, i.e., the proof consists of four 
steps. A proof step is a tuple whose members are an equation, a 
term, a pointer to a subterm of this term, an axiom, and a sub- 
stitution for the variables of this axiom. A pointer is a natural 
number or a list of natural numbers that points to a subterm of 
a term. The. empty list points to a term itself. The equations 
in the first column are the equations in the proof in ordinary 
representation. The first equation q(a, a)b = g(a, a)(ah(a, b)) 
in the proof is generated as follows: Its left side is equal to 
the term g(a, a)b in the second column. The application of the 
substitution (a/z, b/y} for th e variables x and y to the third 
axiom yields the equation ah(a, b) = b. The replacement of the 
subterm b in the term q(a, a)b the pointer 2 points to by the 
term &(a, b) yields the term q(a, u)(ah(u, b)) which is equal 
to the right side of the first equation in the proof. The other 
equations in the proof are generated analogously. 

roof &ho 
The output of the learning process is a proof method which 
generates a proof from a set of axioms and a theorem in the 
input of the learning process. This section gives an example 
of a method. The evaluation of proof methods, i.e., the per- 
formance component of SHUNYATA, is described in the ap- 
pendix. Section 4 gives a method acquisition procedure which 
generates the method from the proof in Table 2. Section 5 
describes how the method can be used to form proofi of new 
theorems. 

The method consists of two operators which generate finite 
sets of proof steps. It is given in Table 2. The second operator 
has priority, which means that the first operator is applied only 
if the second one generates no proof steps. The proof steps gen- 
erated by these operators are appended to a list which is empty 
at the beginning. It is called parGal proof The operators can 
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Equation Term Pointer Axiom Substitution 

da, 4b = da, a)W(a, b)) 9h 4b 2 3 WI b/Y) 
da, &ah& b)).= (qia, a)+@, b) s(a, a)(ah(at W 0 1 
(da, a)a)h(a, b) = ah@, b) (9(a, 44W4 b) 2 

ah(a, b) 0 3 

t9:9 '):"y; a/YS h(a9 b)lzl 
a 2, a 

&(a, b) = b wx, b/Y) * 

Table 1: A proof for the theorem q(a, a)b = b 

((e, t, p, a, s)I is-a-proof-step (e, t, p, a, s) A left-side (e) = left-side ( THEOREM) A 
a E (AXIOM-l, AXIOM-2 AXIOM-3) A substituents (s) E variables (THEOREM)} 

((e, t, p, a, s)l is-a-proof-step (e, t, p,a, s) A left-side (e) E right-sides (equations (PARTIAL-PRQQF)) A 
a E (AXIOM-l, AXIQM-2, AXIOM-31 A variab2es (left-side (a)) > variables (right-side (a)) A 
right-side (e) 6 I fc d ( q t e si es e ua ions (PARTIAL-PROOF))) 

Table 2: A proof method consisting of two set operators 

be regarded as rules of inference in the sense that the equations 
in the proof steps they produce are valid. The first operator 
generates the set of all proof steps (e, t, p,a, s), where e is an 
equation, t is a term, p is a pointer to subterm of this term, Q 
is an axiom, and s is a substitution for the variables in this ax- 
iom, that satisfy the following constraints: The left side of the 
equation e is equal to the left side of the theorem, the axiom a 
is the first, second, or third axiom, and the substituents in the 
substitution 8 are variables contained in the theorem. Roughly 
speaking, the first operator generates equationz whose left side 
is equal to the left side of the theorem and whose right side 
is constructed on the basis of substitutions whose substituents 
are variables contained in the theorem. The first proof step of 
the proof in Table 1 satisfies the constraints in the first oper- 
ator: The left side q(a,a)b of the equation in this proof step 
is equal to the left side of the theorem g(a,a)b = b, the axiom 
is the third axiom, and the substituents a and b are variables 
contained in the theorem g(a,a)b = b. The second operator 
in Table 2 generates the set of all proof steps (e, t, p, a, s) that 
satisfy the following constraints: The left side of the equation e 
is equal to the right side of an equation in the partial proof, the 
axiom a is the first, second, or third axiom, the variables in the 
right side of the axiom a are contained in its left side, and the 
right side of the equation e is different from the left sides of the 
equations in the partial proof. Roughly speaking, the second 
operator generates equations whose left side is the right side 
of an equation in the partial proof and whose right side is not 
longer than its left side. The second, the third, and the fourth 
proof step of the proof in Table 1 satisfy the constraints in the 
second operator: For example, the left side (q(a,a)a)h(a, b) of 
the equation in the third proof step is equal to the right side 
of the preceding equation, the axiom is the second axiom, the 
variable y in the right side of the axiom is contained in its 
left side, and the right side ah(u, b) of the equation is different 
from the left sides of the preceding equations. The evalua- 
tion of the two operators, i.e., the performance component of 
SHUNYATA, is described in the appendix. They yield a set of 
proof steps containing the proof steps in Table 1. 

The application of the method to the theorem q(a,a)b = b 
produces eighteen proof steps whose equations are given in Ta- 
ble 3. The equations required for the proof are underlined. The 
equations in the first column are generated by the first operator 
and the equations in the other columns by the second operator 
of the proof method. The equations in the first column are 
produced by the second and the third axiom. The equations 
in the second column are produced by the first axiom. The 
equation in the third column is produced by the second axiom 
and the equation in the fourth column by the third axiom. 

eth Aquisit ion 
This section describes a method acquisition procedure which 
constructs the method in Table 2 from the proof in Table 1, 
i.e., it describes the learning procedure of SHUNYATA. This 
procedure analyzes the proof steps one by one and, starting 
from scratch, constructs partial methods which generate the 
proof steps in the proof up to the current proof step, i.e., the 
one that is presently being analyzed. The partial methods are 
lists of set operators such as the operators in Table 2. The 
analysis of a single proof step is performed as follows: First, 
the procedure applies the partial method within a given time 
interval. If this yields the current proof step, the next proof 
step is processed. Otherwise, an elementary analysis of the 
current proof step is performed which yields a set operator 
generating this proof step. In a simplification process, the 
unessential constraints of the set operator are deleted. Then, 
the procedure attempts to unify the resulting set operator and 
the set operator for the preceding proof step. This process 
is called unification. If the unification fails, the set operator 
is appended to the partial method which is called division. 
Then, the next proof step is processed. When all proof steps 
are processed, the partial method generates a set of proof steps 
containing the proof. The procedure contains time limits which 
are required because the partial methods are constructed on 
the basis of experiments which may fail. 

The method acquisition procedure is an iteration procedure 
whose iteration variables are a pointer to the current proof step, 
i.e., the proof step that is presently being analyzed, a partial 
method, and a partial proof. A partial method is a list of set 
operators which have priority in reverse order, i.e., an operator 
is executed only if the following operators do not generate proof 
steps. The partial proof which is a list of proof steps generated 
by the partial method contains the proofsteps up to the current 
proof step. At the beginning, the pointer is 1 and the partial 
method and the partial proof are the empty list. The iteration 
step, i.e., the analysis of a single proof step, has six stages: 
Stage 1 (Application of the Partial IvIethod). This stage 
applies the partial method within a time interval such as ten 
minutes. If it produces a set of proof steps containing the 
proof steps up to the current proof step, the sixth stage of 
the iteration step is performed. Otherwise, the second stage is 
performed. 
Ezample (fourth proof step). The analysis of the first, second, 
and third proof step of the proof in Section 2 which is described 
in the examples of Stages 2 to 5 yields the method in Table 2. 
This method generates all proof steps, in particular the fourth 
proof step. 
Stage 2 (Elexnentary Analysis). This stage produces a set 
operator 
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First operator 

g(a, up = s(s+% +I 4) 
. . . 

Second operator 

Table 3: The equations generated by the proof method 

((e, t,p,a,s)l is-a-proof-step (e,t,p,u, 9) A . ..) 
whose constraints are constructed as follows: The application 
of axioms in the knowledge base of SHUNYATA to initial 
metatheorems yields generations of new metatheorems. The 
initial metatheorems state that the theorem and the equation 
in a proof step are equations, that the term in a proof step 
is a term, that the axiom in a proof step is an equation, and 
that the substitution in a proof step is a substitution. The 
axioms contain elementary knowledge about the elementary 
functions that can occur in set operators such as descriptions 
of the domains and ranges and the hact that the application 
of connectives and predicates to valid arguments yields formu- 
las. Thus, some metatheorems contain formulas. The formulas 
that are evaluablc and whose value is true for the current proof 
step are used as additional constraints on the set operator. If 
the evaluation of the resulting set operator within a given time 
interval such as ten minutes yields a set of proof steps, the 
third stage of the iteration step is performed. Otherwise, the 
axioms in the knowledge base are again applied to the meta- 
theorems which yields a new generation of metatheorems. This 
generation is processed as described. 
Ezample (first proof step). The elementary analysis of the first 
proof step of the proof in Table 1 produces a set operator con- 
taining the constraints in the first operator in Table 2. As an 
example, the construction of the constraint 

left-side (e) = left-side (THEOREM) 
in this set operator is described. Initial metatheorems are 

is-an-equation (EQUATION) and 
is-an-equation (THEOREM), 

which means that the equation in the current proof step and 
the theorem are equations. The application of the axiom 

Vx : is-an-equation (z) =+ is-a-term (left-side (x)), 
which describes the domain and the range of the function kft- 
side, to the two initial metatheorems yields the metatheorems 

is-a-term (left-side (EQUATION)) and 
is-a-term (left-side (THEOREM)), 

which state that the left side of the equation in a proof step 
and the left side of the theorem are terms. The application of 
the axiom 
Vx, y : is-a-te7m (z) A is-a-term (y) * is-a-formula (z = y), 

which states the application of the equality predicate to two 
terms forms a formula, to the metatheorems yields the meta- 
theorem 

is-a-formula (left-side (EQUATION) = 
left-side ( THEOREM)). 

Because the formula 
left-side (EQUATION) = left-side (THEOREM) 

in this metatheorem is evaluable and its value is true, the con- 
stant EQUATION is replaced by the variable e and the re- 
sulting formula is used as an additional constraint of the set 
operator. 

Stage 3 (Simplification). The set operator generated by 
the preceding stage contains unessential constraints. There- 
fore, this stage multiplies the evaluation time of the operator 
by a number greater than one such as two, four, or eight which 
produces a time interval. Then, it temporarily removes each 
constraint from the set operator. If the evaluation of a re- 
sulting set operator produces the current proof step within the 
time interval, the constraint is deleted definitively and the next 
constraint is processed. Thus, a set operator is generated that 
contains only essential constraints. Then, the fourth stage of 
the iteration step is performed. 
Ezample (first proof Step). The set operator generated by 
the elementary analysis of the first proof step contains many 
unessential constraints such as 

left-side (THEOREM) = left-side (THEOREM) 
which means that the left side of the theorem is equal to itself. 
The deletion of unessential constraints yields the first operator 
in Table 2. It forms the partial method after the analysis of 
the first proof step. 
Stage 4 (Unification). If the partial method is the empty 
list, the fifth stage of the iteration step is performed. Other- 
wise, this stage attempts to construct a set operator 

((e, t, p,u, s)l is-a-proof-step (e, t, p,u, 9) A . ..} 
by unifying the set operator generated in the simplification 
stage and the last set operator in the partial method. The con- 
straints of the set operator are constructed in two substages: 

(4 Analogous to the elementary analysis in the second stage, 
generations of metatheorems are produced on the basis of 
initial metatheorems and axioms in the knowledge base of 
SHUNYATA. Metatheorems stating that the constraints 
in the two set operators to be unified are formulas are ad- 
ditionally used as initial metatheorems. The formulas in 
metatheorems that are evaluable and whose value is true 
for the proof step preceding the current proof step and 
the current proof step are used as additional constraints 
on the set operator. If the repeated evaluation of the 
resulting set operator within a time interval such as ten 
minutes yields the proof step preceding the current proof 
step and the current proof step itself, Substage (b) is per- 
formed. Otherwise, the next generation of metatheorems 
is processed as described. 
Analogous to the simplification stage, unessential con- 
traints in the set operator produced in Substage (a) are 
deleted. Then, the last set operator in the partial method 
is replaced by the resulting set operator and the sixth 
stage of the iteration step is performed. 

W 

If the execution time of this stage is greater than the time re- 
quired for the construction of the set operators to be unified, 
the fifth stage of the iteration step is performed. 
Ezample (third proof step). The elementary analysis and the 
simplification stage for the third proof step yield the second 
operator in Table 2. The unification of the set operator gener- 
ated by the analysis of the second proof step (see the example 
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in Stage 5) and the second operator yields the second operator 
because the value of the constraints 

variables (left-side (u)) > variables (right-side (u)) and 
right-side (e) p’ left- d ( q t si es e ua ions (PARTIAL-PROOF)) 

in the second operator is true for the second proof step. The 
second operator in the partial method after the analysis of the 
second proof step is replaced by the second operator which 
yields the proof method in Section 3. 
Stage 5 (Division). The set operator generated by the sim- 
plification stage is appended to the partial method. Then, the 
sixth stage of the iteration step is perfomcd. 
E’xam.ple (second proof step). The elementary analysis and the 
simplification stage for the second proof step produce a set op- 
erator whose first constraints are the first three constraints in 
the first operator in Table 2 and whose last constraint is 

substitvents (s) = variables (TIIEOREM) 
Because the unification fails, this operator is appended to the 
partial method generated by the analysis of the first proof step. 
Stage 6 (Update of the Iteration vnrinhles). If the 
pointer points to the last proof step, the partial method gen- 
erates a set of proof steps containing a proof for the theorem. 
Otherwise, the remaining iteration variables are updated. The 
pointer to the current proof step is increased by one and the 
new partial proof is obtained by appending the proof steps 
generated by the new set operator to the old partial proof. 

The application of simple variations of the proof method in 
Table 2 to other axiomatizations of group theory and certain 
theorems in equality yields proofs for these theorems. Exam- 
ples are the theorems that there is only one identity element in 
a group, that the inverse element of an element is unique, and 
that the inverse element of the inverse element is equal to the 
original element (see [MacLane & Birkhoff 67, pp. 75-771). An 
example of a variation of the proof method is the application 
of subterms of the theorem as substituents in its first operator. 
Variations of the proof method are also capable of generating 
proofi for sophisticated theorems such as SAM’s Lemma whose 
complexity represents the state of the art in automated theo- 
rem proving (see [Antoniou & Ohlbach 83, p. 9191). Proofs of 
SAM’s Lemma generated by traditional theorem provers are 
unreadable and manual translations of these proofs into read- 
able form can be over a page long (see [Ohlbach 82, pp. SO-611). 
SAM’s Lemma is a theorem in equality which was an open 
problem in modular lattice theory until 1969. This section de- 
scribes a variation of the method in Table 2 which generates 
a proof for SAM’s Lemma. The proof is fairly readable and 
simpler than any other proof of SAM’s Lemma known to the 
author. 

The following axiomatization describes a modular lattice 
with a zero and a one element for which four additional ax- 
ioms about constants a, 6, c, and d hold. This axiomatization 
requires two binary functions f and g. We write x+y for f (z, y) 
and XY for dx,~), where z and y are terms. The axioms are: 

1. (x+y)+z=x+(y+z) 10. 
2. (xy)z = x(y2) 11. 
3. x+y=y+x 12. 
4. xy yx = 13. 
5. x+x=x 14. 
6. xx = x 15. 
7. x+xy= x 16. 
8. x(x+ y) =x 17. 
9. x+z= 2 * (x + y)t = x + yz 

0+x=x 
ox = 0 
1+x=1 
lx = 2 
(u+b)+c=l 
(u + b)c = 0 
ub+d= 1 
(ab)d = 0 

An example of such a lattice is a finite set with the union 
and the intersection of subsets as binary operators, the empty 

set and this finite set as a zero and a one element, c as the 
complement of the union of the sets a and b, and d as the 
complement of the intersection of the sets a and b. SAM’s 
Lemma is 

(c + du)(c + db) = c. 
A proof method for SAM’s Lemma is obtained by modifying 
the method in Table 2 as follows: 

The last constraint in the first operator is replaced by 
substitucnts (s) 5 constants (THEOREM) 

which means that the substituents in the substitution are 
constants in the theorem. 
The constraint 

constants (left-side (u)) S, constants (right-side (a)), 
which means that the constants in the right side of an 
axiom in a proof step are contained in its left side, is 
added to the const.raints of the second operator. 
The consequent (Z c y)z = x -t yz in the ninth axiom is 
applied only if the ‘antecedent x i- z = z can be proved 
by the second operator. 

The application of this variation of the proof method in Ta- 
ble 2 to SAM’s Lemma yields some 86,000 proof steps nineteen 
of which form a proof for SAM’s Lemma [Amman 871. By 
omitting parentheses, the number of proof steps can be dras- 
tically reduced: from 86,000 to just 111. (Humans also omit 
the parentheses for nested associative-commutative functions 
such as addition.) Eight of the 111 proof steps form the proof 
in Table 4. In each case, the dots represent the right side of 
the preceding equation. Variations of a given method can be 
generated by a simple triaZ-and-error procedure: The method 
acquisition procedure is applied to some simple proofs and con- 
straints in the set operators of the resulting methods are tenta- 
tively inserted into the set operators of the given method until 
a successful variation is generated. 

iscussion 

If the order of the axioms in the knowledge base of SHUN- 
YATA is reversed, the method acquisition procedure constructs 
the proof method in Table 2 after the analysis of the second 
proof step so that no unification is performed. This run of 
SHUNYATA came as a surprise to the author, who thought a 
unification was required. The application of the method ac- 
quisition procedure to the proof obtained from the proof in 
Section 2 by exchanging the left and right sides of the equa- 
tions and reversing the order of the proof steps yields a method 
which is similar to the method in Table 2. If in the simplifica- 
tion stage for the third proof step the evaluation time of the 
set operator is multiplied by eight, the constraint 

right-side (e) g 1 ft ‘d ( q t e -sz es e ua ions (PARTIAL-PROOF)) 
is deleted, which means that the system regards the constraint 
as unessential. This was another surprise to the author, who 
thought that the constraint could not be omitted. In this case, 
the author learned an interesting fact from the SHUNYATA 
program. The application of the method acquisition proce- 
dure to prooh for other theorems in group theory also yields 
useful proof methods [Ammon 871. SHUNYATA discovered 
proofs for significant theorems from higher mathematics such 
as the fixed point theorem on the basis of methods which have 
so far been developed manually. The methods consist of sim- 
ple operators generating finite sets of proof steps and simple 
heuristic rules controlling their application. They could also 
be constructed by applying the method acquisition procedure 
to simple proofs [Amman 87, 881. The discovery of a proof 
for the fixed point theorem is the first discovery of a proof for 
a significant theorem from higher mathematics bv a machine 
(see [Wos 861). Th e method acquisition procedure-is also capa- 
ble of constructing visual concepts from preprocessed images 
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(c + da)(c + db) =*(c + du(a + b))(c + db) 
it 

8 G/x:, b/Y3 
. . . = c + du(a + b)(c + db) 9 (c/x, da(a + b)/y, c + db/z) 
. . . = c + da(db + c(a + b)) 9 (dbh C/Y, a + b/z) 
. . . = c+da(db+O) 15 0 
. . . -c+dudb - 10 W/4 
. . . =c+dO 17 0 
. . . =c+o 11 
. . . =c !?“I 10 cx 

Table 4: A proof of SAM’s Lemma generated by the SHUNYATA program 

n Eauation 11 Axiom 1 Substitution 

d 

hours up to several days. The Ill-step generation of the proof 
of SAM’s Lemma discussed in Section 5 took approximately 
seventy-five minutes. Because SHUNYATA is an experimental 
system, its code is not optimized. Recent tests indicate that an 
improvement of its time efficiency by a factor of ten is feasible. 

Lenat’s AM program discovered mathematical definitions and 
conjectures on the basis of a set of initial concepts and a large 
number of sophisticated heuristics (Lenat 82, pp, 35-101 and 
pp. 151-2041. In contrast, SHUNYATA constructs proof meth- 
ods on the basis of elementary knowledge about elementary 
functions such as descriptions of their domains and ranges. AM 
was the first project concerned with automated mathematics 
research [Lenat 82, p. 1371. AM is concerned with elementary 
mathematics [Lenat 82, p. 7] whereas SHUNYATA focuses on 
higher mathematics. This comparison also applies to Lenat’s 
EURISKO program [Lenat 831. 

Silver’s LP program learns new equation-solving methods 
by a sophisticated technique which is called precondition analy- 
sis [Silver 863. In contrast, SHUNYATA constructs proof meth- 
ods on the basis of elementary functions. 

Mitchell et al. [SS] d escribe a learning mechanism called 
explanation-based generalization. This mechanism transforms 
an inefficient definition of a goal concept into an efficient de% 
nition on the basis of a description of a training example, a do- 
main theory, and an operationality criterion [Mitchell eZ al. 86, 
pp. 50-52) The goal concept defines the concept to be ac- 
quired, the training example is a description of an example, 
and the operationality criterion defines efficient terms in which 
the goal concept must be expressed. In contrast, SHUNYATA 
does not contain the goal concept at the beginning, but only 
elementary functions that form the building blocks of methods. 
Furthermore, it contains the proof, i.e., the training example, 
explicitly. The axioms containing elementary knowledge about 
the elementary functions could be regarded as an elementary 
domain theory. Finally, SHUNYATA does not contain an op- 
erationality criterion but it selects efficient constraints in the 
simplification stage of the method acquisition procedure on the 
basis of experiments. 

8 Csnclusion 

This paper described the method acquisition processes in the 
SHUNYATA program which analyzes mathematical proofs and 
constructs methods capable of generating proofs of new theo- 
rems. The methods are lists of set operators which are com- 
posed of elementary functions. Elementary knowledge about 
these functions such as descriptions of their domains and ranges 
forms the basis of the method acquisition processes. In the 
analysis of proofs, SHUNYATA processes the proof steps one 
by one and, starting from scratch, constructs a sequence of 
more and more powerful partial methods until a complete proof 
method is generated. In the analysis of a single proof step, it 
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Ve,t,p,a,s: is-a-proof-step (e, t, p, a, 9) W 
is-an-equation (e) A is-a-term (t) A is-a-pointer (p) A is-an-a&on (a) A is-a-substitution (s) A 
left-side (e) = t A right-side (e) = replace (t, p, right-side (substitute (a, s))) A p E pointers (t) A 

arg (p, t) = left-side (substitute (a, s)) 
Ve,t,p,a,s: is-a-proof-step (e, t,p,a, s) A variables (left-side (a)) > variables (right-side (a)) =S 

s = match (arg (p, t), left-side (a)) 

Table 5: Two axioms required for the evaluation of the second operator of the proof method 

-t(e, t, P, a, s)I is-a-proof-step (e, t, p, a, s) A . . . A right-side (e) 6 left- ‘d ( q 2 SE es e ua ions (PARTIAL-PROOF)) 
is-an-equation (e) A is-a-term (t) A . . . A arg (p, t) = lefl-side (substitute (a, s)) A 

s = match (aig (p, t), le.&side (a)) 4 

Table 6: The extended second operator of the proof method 

first performs an elementary analysis which yields a set op- 
erator, then simplifies this operator, finally attempts to unify 
the resulting operator and the partial method, or inserts the 
resulting operator into the partial method if this attempt fails. 
A final objective of my work is the development of a program 
that automatically analyzes mathematics textbooks and au- 
tomatically develops new mathematical theories in ordinary 
representation. Future experiments will for example deal with 
the automatic acquisition of powerful proof methods generat- 
ing proofs for significant theorems from higher mathematics. 

I would like to thank David Fleet and the referees for providing 
valuable comments on an earlier draft of this paper. Special 
thanks to Russell Block for improving my English. 

The operators in the proof method in Table 2 generate the set 
of all proof steps that satisfy certain constraints. Their evalu- 
ation is performed in two steps. The first step applies axioms 
about proof steps in the knowledge base to the constraints on 
a set operator which yields additional constraints. The second 
step replaces element relations between parts of proof steps 
and finite sets by equality relations between these parts and 
the elements of these sets. If the constraints of a resulting set 
operator are inconsistent, this operator is abandoned. Oth- 
erwise, it is used for generating a proof step. For example, 
the evaluation of the second operator of the proof method is 
performed as follows: The knowledge base of SHUNYATA con- 
tains the two axioms in Table 5. The first axiom is a definition 
of the concept of proof steps. It states that the first member e 
of a proof step is an equation, its second member t is a term, 
its third member p is a pointer to a subterm of t, its fourth 
member a is an axiom, its fifth member s is a substitution, the 
the left side of the equation e is equal to the term t, and so 
forth. The replace function replaces the subterm of a term a 
pointer points to by another term. The pointers function gen- 
erates the set of all pointers that point to the subterms of a 
term. The arg function selects the subterm of a term a pointer 
points to. The second axiom states that, if the variables in 
the right side of an axiom a in a proof step (e, t, p,a, s) are 
contained in its left side, then the substitution s is obtained 
by matching the left side of the axiom a against the subterm 
of the term t the pointer p points to. Thus, this axiom de- 
scribes a simple property of special proof steps. The first step 
of the evaluation applies the two axioms to the second oper- 
ator which yields the operator in Table 6. The second step 
of the evaluation successively replaces the three element rela- 
tions by equality relations between p, left-side (e), and a and 
the corresponding finite sets. If the constraints in a result- 

ing set operator are inconsistent, this operator is abandoned. 
Otherwise, the left side and the right side of the equation e, 
the term t, the pointer p, the axiom a, and the substitution 
s are determined by equality relations contained in this oper- 
ator. Therefore, a proof step can bc constructed from these 
parts directly. Thus, the set of all proof steps that satisfy the 
constraints in the original set operator is generated. 
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