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Abstract1 

Existing machine learning techniques have only limited 
capabilities of handling computationally intractable 
domains. This research extends explanation-based 
learning techniques in order to overcome such limitations. 
It is based on a strategy of sacrificing theory accuracy in 
order to gain tractability. Intractable theories are 
approximated by incorporating simplifying assumptions. 
Explanations of teacher-provided examples are used to 
guide a search for accurate approximate theories. The 
paper begins with an overview of this learning technique. 
Then a typology of simplifying assumptions is presented 
along with a technique for representing such assumptions 
in terms of generic functions. Methods for generating and 
searching a space of approximate theories are discussed. 
Empirical results from a testbed domain are presented. 
Finally, some implications of this research for the field of 
explanation-based learning are also discussed. 

1 Introduction 
Current machine learning techniques face considerable 

difficulties when dealing with intractable domains. Standard 
explanation-based learning (EBL) methods apply only to 
domains for which a tractable domain theory is available 
IMitchell et al. 861. While similarity-based learning (SBL) 

can be applied to intractable domains, it does not fully exploit 
the background knowledge contained in an intractable domain 
theory. These limitations are significant for the science of 
machine learning due to the ubiquity of intractable domains. 
Problems of intractability arise in a variety of domains 
including games like chess, circuit design, job scheduling and 
many others. Machine learning techniques are needed for 
such domains because intractability prevents the available 
theories from being directly useful for solving problems. 

This research is aimed at handling the intractable theory 
problem by developing new explanation-based learning 
methods. A program called POLLYANNA has been 
developed to experiment with such new EBL methods. 
POLLYANNA’s learning strategy involves replacing exact 
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intractable theories with approximate theories requiring fewer 
computational resources. Theories are approximated by 
explicitly introducing simplifying assumptions about the 
domain. The assumptions are useful because they greatly 
simplify the process of explaining observations or making 
inferences in a performance element. Although such 
assumptions are not strictly true in all situations, they may be 
correct in most typical cases. Even when not true, the 
assumptions may be sufficiently accurate so as to generate 
correct performance. In order to find such useful assumptions, 
POLLYANNA makes use of empirical information. 
Explanations of teacher-provided training examples are used 
to guide a search for accurate simplifying assumptions. 

The learning strategy used in POLLYANNA differs 
markedly from that of previous explanation-based learning 
programs. Prior EBL research has focused on compiling 
explanations into schemata [DeJong and Mooney 86; Mitchell 
et al. 861. Some recent studies have investigated the role of 
simplifying assumptions for intractable domains [Chien 87; 
Bennett 871; however, the assumptions are studied mainly in 
the context of schema formation. POLLYANNA is based on 
the belief that schema formation is a problem of secondary 
importance compared to the task of finding appropriate 
simplifying assumptions themselves. POLLYANNA’s 
methodology does not preclude schema formation; however, it 
involves using explanations primarily for a different purpose. 
Explanations are used for the purpose of evaluating candidate 
assumptions. Assumptions are evaluated according to whether 
they shorten the process of building explanations, and whether 
they correctly explain many examples. By adopting 
assumptions according to their power to explain examples, 
POLLYANNA manifests a form of abductive inference. A 
more complete description of this approach is found in 
CEllman 871. 

ethodolsgy 
Assumptisns 

for Finding Simplifying 

The learning process embodied in POLLYANNA has 
been broken down into several distinct phases, enumerated in 
Figure 1. These phases correspond roughly to a generate and 
test framework for finding simplifying assumptions. The first 
step generates a set of candidate assumptions by 
systematically instantiating schemata from a predefined. 
typology of simplifying assumptions. An exznple of such a 
typology is described in Figure 2. After generating candidate 
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assumptions, the system selects various well-formed sets of 
assumptions and integrates them into the initial intractable 
theory. This produces a collection of approximate theories, 
organized in a lattice structured search space. In the final 
.phase, the system conducts a search through the approximate 
theory space. Various approximate theories are invoked to 
explain teacher-provided training examples. The results are 
used to guide the search process. The general approach of 
using examples to guide a search through an approximate 
theory space is similar to methods described in [Keller 87; 
Mostow and Fawcett 871; however, the methods used here to 
generate and search the theory space are different. The theory 
space generation and theory space search phases have been 
implemented. Implementation of the assumption generation 
phase is in progress. 

1. Assumption Generation: Generate candidate 
assumptions by instantiating schemata from a 
predefined typology of simplifying assumptions. 

2. Theory Space Generation: Incorporate sets of 
simplifying assumptions into the domain theory to 
generate a space of approximate theories. 

3. Theory Space Search: Search through the theory space 
to find simple, accurate theories. 

Figure 1: Learning Phases in POLLYANNA 

3 An Intractable Theory 
The card game “hearts” has been chosen as a testbed 

domain for the POLLYANNA program.2 The hearts domain 
theory is represented in terms of a collection of purely 
functional LISP expressions that are used to evaluate potential 
card choices in any game situation. The theory computes an 
evaluation function ES(c,p,t) yielding the expected final game 
score for player (p) if he plays card (c) in trick (t). In order to 
compute this value, it is necessary to average over all ways the 
cards might be dealt, and perform a mini-max search for each 
possible deal. In practice this computation is hopelessly 
intractable. Each mini-max computation involves searching a 
large space of game trees to find a solution tree. Each solution 
tree is itself quite large, and the evaluation of each tree must 
be summed over a large number of possible deals. The hearts 
domain thus exhibits both types of intractability described in 
pajamoney and DeJong 871, i.e., a “large search space” and a 

“large explanation structure”. 

2Hearts is normally played with four players. Each player is dealt thirteen 
cards. At the start of the game, one player is designated to be the “leader”. The 
game is divided into thirteen successive tricks. At the start of each trick, the 
leader plays a card. Then the other players play cards in order going clockwise 
around the circle. Each player must play a card matching the suit of the card 
played by the leader, if he has such a card in his hand. Otherwise, he may 
play any card. The player who plays the highest card in the same suit as the 
leader’s card will take the trick and become the leader for the next trick. Each 
player receives one point for every card in the suit of hearts contained in a 
trick that he takes. The game objective is to minimize the number of points in 
one’s score. 

4A ology of Simplifying Assunaptions 
In order to implement POLLYANNA in the hearts 

domain, it has been necessary to identify the general types of 
simplifying assumptions that are useful for this domain. A 
partial typology of such assumptions is shown in Figure 2. The 
assumptions shown here are drawn from a longer list that was 
developed by analyzing protocols of hearts games played by 
humans. Verbal explanations of people’s decisions were 
analyzed to extract and formalize the assumptions they 
implicitly contained. Some specific instances of these types of 
assumptions are shown in Figure 3. Although the typology 
was developed by studying the hearts domain, it is expected 
that future research will demonstrate its usefulness in other 
domains as well. 

1. 

2. 

3. 

4. 

1 

Invariance of Functions: 
F lx) = F(y) for all x and y. 

Independence of Random Variables: 
Exp[x * yl = ExpCxl * Exp[yl 

Ecyal Probability of Random Variables: 
Prob[var = value] = l/ 1 Range [var] ] 

Abstraction of the Problem State: 
Prob[x Given state] = Prob[x] 

Figlure 2: Typology of Simplifying Assumptions 

I. Assume the expected number of points to be taken in all 
future tricks, EFTS(c,p,t), is invariant with respect to 
the card (c), the player (p) and the trick (t). 

2. Assume the odds of winning a trick, P-WIN, are 
independent of the trick’s expected point value, EXP- 
POINTS. 

3. Assume the lead suit 
likely to be any suit. 

for trick number N is equally 

4. Assume all cards in the deck remain unplayed, ignoring 
information about which cards have actually been 
played in the current problem state. 

Figure 3: Specific Assumptions for Hearts 

In the course of implementing POLLYANNA, an 
important task has involved finding representations for the 
simplifying assumptions. The assumptions must be 
represented in a manner that allows them to interface with the 
initial intractable theory and to shorten the process of building 
explanations. In the POLLYANNA system, this problem has 
been handled by an approach based on polymorphism and 
generic functions [Stefik and Bobrow 861. Each function 
appearing in the hearts domain theory is considered to be a 
generic function and is implemented in one or more versions. 
Some examples of functions with multiple versions are shown 
in Figure 4. This figure shows several different functions used 
in the hearts theory. Each of the functions exists in the two 
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different versions shown, among other versions not shown. 
Each version of a generic function implements a different 
simplifying assumption, or set of simplifying assumptions. 
The various function definitions have been coded in terms of 
purely functional LISP expressions. Some of the function 
arguments are not shown. In particular, each function takes an 
additional argument that determines which version should be 
used. 

ES (card) : (Expected Score) 
ES-O (c) = Constant 
ES-l (c) = ECTS (c) + EFTS (c) 

ECTS (card) : (Expected Current Trick Score) 
ECTS-0 (c) = Constant 
ECTS-1 (c) = P-WIN(c) *EXP-POINTS (c) 

EFTS (card) : (Expected Future Tricks Score) 
EFTS-0 (c) = Constant 
EFTS-1 (c) = SUM(k) (HAM>-(c))EXP-T=(k) 

UC(state) : (Unplayed Cards) 
UC-O(s) = DECK 
UC-1 (s) = DECK - CARDS-PLAYED(s) 

Figure 4: Multiple Versions of Generic Functions 

Important representation issues arise upon comparing 
the typology of simplifying assumptions (Figure 2) to the 
actual LISP implementation of the assumptions (Figure 4). In 
some cases, the LISP definitions represent straightforward 
implementations of simplifying assumptions f?om the 
typology. For example, the definition “EFTS(card) = 
Constant” is a direct application of the assumption that a 
function is independent of its arguments. Other definitions are 
semantically equivalent to assumptions from the typology, but 
are syntactically quite different. This indicates that the task of 
generating such assumptions may involve significant issues of 
theory reformulation, as noted in Nostow and Fawcett 871. 

Several advantages result from the technique of 
representing assumptions in terms of generic functions. To 
begin with, it helps in dealing with problems of inconsistency 
that arise when strictly untrue assumptions are added to the 
initial intractable theory. When an approximate version of a 
function F is added to the theory, the inconsistency is avoided 
if the original definition of F is removed at the same time. This 
technique also provides a convenient mechanism for 
determining when a set of assumptions is complete. A set of 
assumptions is complete when there is a definition for each 
function referenced in the set. 

6 Generating a Space of Approximate Theories 
In order to generate a space of approximate domain 

theories, POLLYANNA systematically combines various 
versions of the generic functions. For this purpose, the theory 
space generator is provided with a list of versions of each 
generic function. The generator is also provided with a 

relation partially ordering the versions of each generic 
function. More specifically, the relation PRIMITIVE- 
REFINEMENT(FO,Fl) indicates that FO implements a strictly 
stronger set of assumptions than Fl, i.e., the assumptions of 
FO logically imply the assumptions of Fl. For example, the 
relation PRIMITIVE-REFINEMENT(ES-O,ES-1) indicates 
that version zero uses a strictly stronger set of assumptions 
than version one. At present this relation is coded by hand; 
however, it is expected that future research will demonstrate 
that it can be generated automatically. 

The theory space is generated by a process that extends 
the PRIMITIVE-REFINEMENT(FO,F 1) relation among 
generic functions into a relation, REFINEMENT(TO,Tl), 
among theories. The space is generated by beginning with the 
simplest version of the top level function ES-O. This 
represents the root of the theory space. Refinements of this 
simple theory are generated by repeatedly applying the 
following rule. Any theory T-old can be refined into a theory 
T-new, by replacing some generic function version FO with a 
new version Fl such that PRIMITIVE-REFINEMENT(FO,Fl) 
holds. If Fl references a new generic function G not yet 
defined in the theory, the simplest version of G is added to 
make the refined theory complete. Thus the root theory using 
ES-O can be refined into a theory using ES-l. Since ES-l 
references ECTS and EFTS, the simplest versions of these 
functions are added to make the theory complete. The theory 
can then be further refined by substituting new versions of 
ECTS or EFTS. This process creates a lattice of theories, 
organized by the relation REFINEMENT. Whenever 
REFINEMENT(TO,Tl) holds, TO uses a strictly stronger set of 
assumptions than Tl. It is expected that the REFINEMENT 
relation serves also to approximately order the theories 
according to costs of computation. Preliminary measurements 
indicate this is indeed the case. 

7 Searching a Space of Approximate Theories 
A number of different algorithms have been developed 

in POLLYANNA for searching the approximate theory space. 
The algorithms all use an “optimistic” strategy of starting at 
the lattice root, i.e., the simplest theory in the space, and 
moving to more complex theories only when simpler ones are 
contradicted by training examples. This strategy is achieved 
by using the REFINEMENT relation to constrain the order in 
which theories are examined. The search algorithms differ 
mainly in the goal conditions and control strategies that are 
used. One version takes an error rate threshold as input, and 
searches for a theory of minimal computational cost that meets 
the specified error rate. A best first search algorithm is used to 
control the search, always taking a theory of minimal cost to 
expand next into its refinements? Both the costs and the error 

3An alternate search goal finds a theory of minimal error rate meeting a 
computational cost threshold. The alternate control strategy chooses theories 
of minimal error rate to expand next. 
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rates are measured empirically, by using candidate theories to 
explain a set of teacher-provided training examples. The 
examples are processed in batches, i.e., the system tests each 
theory against the entire example set before moving on to 
refined theories. It is worth noticing that the search is 
facilitated by the lattice organization of the theory space. The 
space is structured so that costs of computation increase 
monotonically along paths in the lattice. This allows the 
search algorithm to terminate upon expanding the first theory 
meeting the error rate threshold, since more refined theories 
will have equal or greater computational costs. 

POLLYANNA has been tested on several different sets 
of training examples. One set was designed to reflect a 
strategy of leading cards of minimal rank. The system was led 
to a goal theory asserting that ES(c,p,t) = Cl * P-WIN(c,p,t) + 
C2. This approximate theory uses a non-trivial version of P- 
WIN, the probability of winning the current trick. It ignores 
the expected point value of the current trick by assuming that 
EXP-POINTS(c,p,t) is a constant (Cl). Another example set 
was designed to reflect a strategy of leading cards of minimal 
point value. The system was led to a goal theory asserting that 
ES(c,p,t) = Cl * EXP-POINTS(c,p,t) + C2. This theory 
ignores the odds of winning the trick by assuming that P- 
WIN(c,p,t) is a constant (Cl). Instead it focuses on the 
expected trick point value, by using a non-trivial version of 
EXP-POINTS. These results indicate that POLLYANNA can 
be led to adopt different and inconsistent sets of assumptions 
depending on the examples provided. 

POLLYANNA produces data to illustrate the tradeoff 
between accuracy and tractability, as shown in Figure 5. This 
graph was generated during the second of the two runs 
described above. Each point on the graph represents a single 
approximate theory. The horizontal axis indicates the average 
running time of the theory, measured in terms of the number 
of function calls needed to evaluate all the choices in a given 
example situation. The vertical axis measures the “false good” 
error rate of the theory in the following way: If G is the true 
set of optimal cards in some example situation, and 6’ is the 
set of cards considered “optimal” by the approximate theory, 
then the false good rate is FG = ]G’-G]/]G’]. This represents 
the probability that a card chosen randomly from 6’ will 
actually be wrong. The vertical axis measures FG averaged 
over all examples from the training set. 

The circled points in Figure 5 correspond to theories 
that are Pareto optimal. Each circled point cannot be improved 
in running time except at the price of a greater error rate. 
Likewise each circled point cannot be improved in error rate, 
except at the price of increasing the running time. In order to 
choose among the Pareto optimal points, to find the right 
combination of accuracy and tractability, the system must be 
provided with contextual knowledge [Keller 871 defining its 
performance objectives. 
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Figure 5: Tradeoff between Accuracy and Tractability 
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8 Conclusion 
A new viewpoint on explanation-based learning is 

suggested by the methodology used in POLLYANNA. Prior 
EBL research has equated “explanation” with “logically sound 
proof” [Mitchell et al. 861. POLLYANNA is based on a 
weaker notion of explanation, i.e., a proof based on 
simplifying assumptions. The POLLYANNA methodology is 
also distinguished by the fact that it uses explanations in a 
manner different .from previous EBL systems. Prior research 
has focused on compiling explanations into schemata. The 
approach described here does not preclude schema formation; 
however, it uses explanations for a more important task. 
Explanations are used in a process of abductive inference to 
guide a search for simplifying assumptions. Depending on the 
examples provided, this technique can find different, 
inconsistent simplifying assumptions. It is therefore immune 
to a criticism leveled at other EBL systems, i.e., they only 
“compile” existing knowledge and do not change when 
viewed from the “knowledge level” Dietterich 861. The new 
strategy extends EBL beyond techniques for compilation of 
knowledge to become a process of substantive theory revision. 
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