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Abstract 

Compiled knowledge, which allows macro inference 
steps through an explanation space, can enable 
explanation-based learning (EBL) systems to reason 
efficiently in complex domains. Without this 
knowledge, the explanation of goal concepts is not 
generally feasible; moreover, the problem of finding 
the most general operational concept definition is 
intractable. Unfortunately, the use of compiled 
knowledge leads to explanations which yield overly 
specific concept definitions. These concept definitions 
may be overly specific in one of two ways: either a 
similar concept definition with one or more constants 
changed to variables is operational, or a concept 
definition which is more general, according to the 
implication rules of the domain theory, is operational. 
This paper introduces a method (ME%) for modify- 
ing, in a directed manner, the explanation structures of 
goal concepts that have been derived using compiled 
knowledge. In this way, more general operational con- 
cept definitions may be obtained. 

1. Introduction 
The methods of explanation based learning (EBL) [Dejong & 
Mooney, 19861 and explanation based generalization 
(EBG) [Mitchell, Keller, & Kedar-Cabelli, 19861 involve 
two conceptual phases: explanation and generalization. 
Until recently, little consideration has been given to the 
dependencies of the generalization phase upon the explanation 
phase or to the difficulties of forming the explanation itself. 
These two factors are strongly influenced by the form and 
content of the domain theory being used by the explanation 
based method. 

Various researchers have noted that the goal of the 
explanation based methods is not only to generalize, but also 
to produce generalizations that are easy to apply in future 
situations. This ease of application is captured by the 
notion of operationality as defined by Mitchell, et al. [1986] 
and extended by Dejong and Mooney [1986] and Keller 
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[1987]. We adopt the method for evaluating operationality 
suggested by Hirsh [1987,1988] and Mostow [1987]; 
namely, the operationality of a given concept definition is 
determined by supplied rules which allow deliberate 
meta-reasoning about the knowledge in the domain theory. 
We have the compound goal of finding explanation structures 
that yield concept definitions that are not only operational, 
but also maximally general. 

With intractable domain theories Mitchell et al., 19861, 
however, it may be difficult to form even a single explanation, 
let alone find the best one for generalization purposes. 
One approach for dealing with this problem is to admit 
approximations to the domain theory that allow quicker expla- 
nations at the expense of accuracy [Ellman, 1988; Bennett, 
19871. Alternatively, and without loss of accuracy, the prob- 
lem of finding explanations in complex domains may be made 
more tractable if the explanation module is given knowledge 
that allows macro inference steps in the explanation space; 
herein, we refer to this type of knowledge as compiled 
knowledge. The use of compiled knowledge to achieve 
efficiency is, of course, not new; Scripts [Cullingford, 19781 
for story understanding, MACROPs Eikes, Hart, & Nilsson, 
19721 for robot planning, and Chunks Laird, Rosenbloom, 
& Newell, 19861 for general problem solving are three not- 
able examples. Korf [1987] has shown that the use of 
macro-operators in abstraction hierarchies can reduce the 
complexity of problem solving from exponential to linear. 

Indeed, the very point of EBL is to create compiled 
knowledge in order that the performance element of the 
system may operate more efficiently in the future. Unfor- 
tunately, as will be shown in Sections 2 and 3, the use of com- 
piled knowledge leads to explanations that give less general 
concept definitions than would otherwise be obtained without 
its use. Given a domain theory consisting of logical axioms, a 
concept q (9) is at least as general as a concept p (2) if it can 
be shown that p (x’) + q (3). From this it follows that a con- 
cept r(Y) over a vector of uninstantiated variables Z+ is more 
general than the same concept with one or more of the vari- 
ables instantiated. The straight forward use of compiled 
knowledge leads to overly specific concept definitions in two 
ways: concept definitions are produced in terms of p (z?), even 
though q(T) is operational and p(T) -+ q (I?); and concept 
definitions are produced in terms of r v), with the elements of 
7 unnecessarily or overly instantiated. There is an inherent 
conflict between being able to find any explanation at all 
(using compiled knowledge) and obtaining desirable generali- 
zations (not using compiled knowledge). 

This paper introduces a method, called IMEX, to Incre- 
mentally Modify, a given EXplanation to make it better meet 
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the criteria of operationality and generality. We assume that 
the domain theory used to construct the given explanation 
contains compiled knowledge. IMEX then uses the opera- 
tionality criteria to focus on those parts of the explanation that 
should be changed in order to obtain a more useful explana- 
tion structure. Thus, the operationality criterion is used to 
motivate explanation modifications, in contrast to other 
approaches that generate all possible explanations and then 
use the operationality criterion as ajilter. 

2. Implication Rules and Generality 

Rule 9 is a compilation of rules 7 and 8 along with the fact 
(not listed above) that all rectangular solid objects have some 
height, width, and length. Rule 10 follows from rules 3, 5, 6 
and 9. We also have the following knowledge about the 
objects Objl and Obj2 (the training instance): 

Isa (Obj 1 Box) Isa (Obj2,rect -solid) 
Color (Obj 1 ,Red ) Color (Obj2,Clear) 
Madeof (Obj 1 ,wood) Madeof (Obj2,lucite) 
Spec -Grav (wood ,O. 1) On (Obj l,Obj2) 
Volume (Obj 1,1) 

2.1. The Boundary of Operationality 1 Safe-To-Stack(x,y) 1 

For any generalized explanation structure wtchell et al, 
19861, if we remove one or more rules from the bottom of 
the structure, we obtain a new structure whose conjunct of 
leaf nodes yields a potentially more, and certainly not less, 
general concept definition than would the original struc- 
ture. The boundary of operationality [Braverman and 
Russell, 19881 of an explanation structure is the highest line 
that can be drawn through the structure such that if the rules 
supporting the nodes immediately below the boundary were 
eliminated, the resulting structure would yield an operational 
concept definition. If the boundary line were moved any 
higher, then the concept definition of the new structure 
would be non-operational. Thus, the boundary locates the con- 
cept definition which, according to the implication rules of the 
domain theory, is the most general operational concept 
immediately derivable from the explanation structure. 

Madeof(x,m) 1 Spec-Grav(m,d) 

Figure 1: Generalized Explanation Structure of Safe-To-Stack(Obj1 .Obj2) 

Consider the following example which is a modified 
version of the Safe-To-Stack example from [Mitchell et al., 
19861. Although the domain is not particularly complex, ima- 
gine that the domain contains many more axioms, making it 
infeasible to try all possible proofs. The domain theory 
contains a manufacturing constraint (rule 7) on rectangular, 
solid objects made of lucite. Assume that we often refer to 
the volume and weight of these objects during problem solv- 
ing, and this has led to the creation of the two compiled 
pieces of knowledge in rules 9 and 10. The domain theory is 
as follows (where Times (x ,y ,z) and Less (a ,b) are procedur- 
ally defined to be true when z =x x y and a < b, respec- 
tively): 

Given the goal of proving Safe-To-Stack(Objl ,Obj2) 
we might derive a proof tree whose explanation structure 
is as shown in Figure 1. Here we assume that all predicates in 
the domain theory are unconditionally operational except for 
Fragile, Lighter, Safe-To-Stack, and Weight. Note the posi- 
tion of boundary of operationality. Even though the concept 
Madeof (x ,m ) A Spec -Grav (m ,d ) is operational, 
Density (x,d) is also operational and, according to rule 6, 
more general. Hence, the boundary is positioned above the 
Density (x ,d) node rather than below it. 

2.2. Using Compiled Knowledge: Problem One 
The use of compiled knowledge to form an explanation struc- 
ture can hide concept definitions which are more general, 
according to the implication rules of the domain theory, than 
the conjunct of the nodes below the structure’s boundary of 
operationality. Given the explanation structure in Figure 1 
and its associated boundary of operationality we derive the 
operational but not so general rule: 
Volume (x ,v) A Density (x ,d) A Times (v ,d ,w) 

Not (Fragile 0) )) + Safe -To -Stack (x y ) 
Lighter (x ,y ) + Safe -To -Stack (x ,y ) 
Volume (p ,v ) A Density (p ,d) A Times (v ,d ,w ) 

+ Weight (p ,w ) 
Weight(pl,wl) h Weight(pz,w,)hLess(wl,w2) 

+ Lighter (pl,pz) 
Spec -Grav (lucite ,2) 
Madeof (p ,x) A Spec -Grav (x ,s ) + Density (p s ) 
Isa (p ,rect -solid) A Madeof (p &cite ) A Length (p ,I ) 

A Width (p ,w ) A Height (p ,h) 

(1) 
(2) 

(3) 

(4) 
(5) 
(6) 

A Times (1 ,w ,area ) + Times (area ,h ,5) (7) 
Isa (p ,rect -solid) A Length (p ,I ) A Width (p ,w ) 

A Height (p ,h ) A Times (1 ,w ,a) 
A Times (a ,h ,v ) + Volume (p ,v ) (8) 

Isa (p ,rect -solid) A Madeof (p ,lucite ) + Volume (p ,5) (9) 
Isa (p ,rect-solid) A Madeof (p ,lucite) + Weight (p ,lO) (10) 

Boluldary of 
Operationality 

A Isa 0, ,rect -solid) A Madeof 0, Jucite ) 
A Less (w ,lO) --+ Safe -To -Stack (x ,y ) 

This rule is overly specific because the compiled domain rule 
10 was used in forming the explanation structure. 

In order to obtain a more general concept definition, we 
might consider taking the explanation structure of Figure 1, 
removing the conjunction Madeof (x ,m) A Spec -Grav (m ,d) 
from the leaves (which add nothing to the concept definition), 
and expanding the compiled rule for Weight(yJ0); this would 
yield the explanation structure in Figure 2. By expanding a 
rule, we mean that the rule should be replaced, if possible, by 
a chain of inference steps that justify the rule. The expansion 
of the compiled rule reveals a new, previously hidden, concept 
definition that is more general according to the implication 
rules of the domain theory. 
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Often not worth expanding 

Not worth expanding 

Figure 2: The Result of Expanding an Inference Step 

Thus, we are motivated to remove, from the structure in 
Figure 2, the rules whose antecedents are the nodes 
Isa(y,rect-solid) and Madeof(y,lucite). In so doing, we not 
only eliminate the nodes from the explanation structure, but 
also retract the constraints on variable values resulting from 
unifications of the structure with the, soon to be, removed 
rules. The remaining explanation structure would yield the 
very general (and operational) rule: 
VoZume(x~,v~)~Density(x~,d~)~Times(v~,d~,wJ 

A Volume (x2,v2) A Density (x2,d2) 
A Times(v2,d2,w2) A Less(w,,wd 
+ Safe -To -Stack (x 1,x2) 

Note that expanding out some inference steps, such 
as those labeled not worth expanding above, will have no 
effect on the generality of the concept definition finally 
obtained so far as implication generality is concerned. The 
IMEX Implication algorithm given below is designed to 
effect just those changes to the explanation structure which 
lead to more general, operational concept definitions accord- 
ing to the implication rules of the domain theory. 

2.3. The I.MEX Implication Algorithm 
Given a goal concept G to prove, the IMEX Implication algo- 
rithm may be stated as follows: 

(1) 

(2) 

(3) 

Using the domain theory with all its compiled 
knowledge, find a proof of the goal concept G. 
Let E denote the explanation structure formed and 
compute, for E, the boundary of operationality. 
Take the explanation structure E and locate a rule 
R in the structure that straddles the boundary of 
operationality; i.e. all of its antecedents are 
directly below the line and the consequent is 
above the line. If no such rule can be found, then 
go to step (4). 
Try to expand the rule R; in other words, attempt 
to show that the consequent of R follows from its 
antecedents without using R itself. If this is not 
possible, then go to step (2) and search for 
another rule that straddles the boundary. If an 
expansion does exist, then splice it into the expla- 
nation structure E, compute the new operational 
boundary, and go back to step (2) with the 
modified E structure. 

(4) Retract all rules involving nodes from E that only 
support other nodes below the boundary of opera- 
tionality. The resulting explanation structure is 
the one that is used to form the general goal con- 
cept definition. 

The correctness and efficiency of the algorithm are 
explained as follows: After step (4) only the nodes directly 
below the boundary of operationality will have any effect on 
the generality of the concept definition. Hence, in order to 
achieve the most general concept definition, IMEX should 
attempt to make the conjunction of the nodes below the 
boundary as general as possible. Clearly these nodes will not 
become more general by trying to reprove their 
justifications. Thus, the potentially many different expan- 
sions of inference steps of the sort indicated as not worth 
expanding in Figure 2 do not affect the generality of the final 
concept definition. If the operationality theory dictates that a 
concept definition’s operationality decreases with its general- 
ity, then expanding rules whose antecedents are nodes above 
the current boundary will have no effect on the new boundary 
calculated in step (3); this follows since any new nodes that 
might be revealed would be part of a concept definition which 
is at least as, if not more, general (and, hence, less opera- 
tional) than a concept definition which has already been 
declared non-operational by the current boundary of opera- 
tionality. Therefore, the only parts of the proof definitely 
worth examining are those that straddle the current boundary. 
Step (2) checks exactly those rules. For each rule expan- 
sion, the operational boundary either stays stationary or moves 
up relative to the nodes originally below the boundary; the 
concept definition generality is monotonically non- 
decreasing with each IMEX iteration. By attempting to 
reprove those, and only those, subparts of the proof that 
have a definite potential of leading to a more general con- 
cept definition, the incremental algorithm drastically reduces 
the search space for a general explanation structure. 

3. Variable Instantiation and Generality 

3.1. Using Compiled Knowledge: Problem Two 
The use of compiled knowledge to form an explanation struc- 
ture can result in concept definitions which have unneces- 
sarily or overly instantiated variables in the definition formula. 
These concept definitions obtained are, then, overly specific. 

A 

LL --. 
B 42: gK?*, D 

c 

Figure 3: Isosceles Right Triangle Training Example 

As an example, consider the following problem from 
the domain of plane geometry. Given a situation as in Figure 
3, we wish to show that if the measure of angle ACD is 90°, 
then the measure of angle ABC is 45’. This training instance 
is a particular case of the more general goal concept 
Measure@as ,val), that the measure of the base angle of an 
isosceles triangle has some value; this goal would arise as a 
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subgoal to an EBL system that is trying to prove the interest- 
ing theorem that any inscribed angle of a circle has half the 
measure of its intercepted arc. 

Suppose our plane geometry domain theory contains, 
among others, the following facts (where Minus (x ,y ,z) and 
Div (a ,b ,c ) are procedurally defined to be true when z = x-y 
and c=;, respectively): 

Supp (ax ,ay ) A Measure (ax ,max) A Minus (180,max ,muy ) 
+ Measure (ay ,muy ) 

Supp (ax ,ay ) A Measure (ax ,90) -+ Measure (ay ,90) 
Isos (tri ) A Vertex -Ang (tri ,ang ) 

A Measure (ang 90) + Isos -Right (tri ) 
Isos-right (tri) A Vertex-Ang (tri ,ang > 

-+ Measure (ang ,90) 
Isos -Right (tri > -+ Isos (tri ) 
Isos -Right (tri ) A Measure (ang ,901 

+ Vertex -Ang (tri ,ang ) 
Isos (tri ) A Vertex-Ang (h-i ,ver ) A Base -Ang (tri ,bas) 

A Measure (ver ,mver ) A Minus (180,mver ,dif ) 
A Div (d$f ,2,mbas ) + Measure (bas ,mbas ) 

Isos-Right (tri) A Base -Ang (tri ,bas )+Measure (bas ,45) 

Here, rule 2 is a compiled version of rule 1; in particular. the 
variable max of rule 1 is instantiated with the value go, 

(1) 
(2) 

(3) 

(4) 
(5) 

(6) 

(7) 
(8) 

evaluation of Minus (180,9O,may) is performed, and rule 2, 
stating that the supplement of a 90” angle is itself 90”, is 
created. In addition, rule 8, stating that the base angle of any 
isosceles right triangle is 45”, is a compiled version of rule 7 
(which applies to all isosceles triangles) with the help of rule 
4, rule 5, and the additional knowledge (not listed above) that 
all isosceles triangles have base and vertex angles. Suppose 
we are given the following (training instance) information: 

Isos (Tri) 
Vertex -Ang (Tri ,ACB ) 
Base -Ang (Tri ,ABC) 

Supp (ACD ,ACB ) 
Measure (ACD ,90) 

If the procedurally defined predicates are unconditionally 
operational and we define any concept, or specialization 
thereof, of the following form to be operational: 
Supp (a 1 ,a 2) A Measure (a 1 ,ma 1) A Isos (tr ) 

A Vertex -Ang (tr ,a 2) A Base -Ang (tr ,a 3) 
then one possible generalized explanation structure (using 
compiled rules 2 and 8) for Measure (ABC ,45) is that in Fig- 
ure 4. We choose the particular operationality condition above 
so that we might generate a theorem which calculates the 
measure of the isosceles triangle’s base angle in terms of the 
angle which is supplementary to its vertex angle. 

Unfortunately, the use of compiled knowledge yields an 
overly specific concept definition. In English, the conjunction 
of leaf nodes in Figure 4 state the rule that, for any isosceles 
triangle, if its vertex angle is supplementary to a right angle, 
then its base angle will be 45’. Thus, the only generalization 
that took place was from the specific isosceles right triangle of 
the training instance to all isosceles right triangles. 

Even applying the IMEX implication algorithm seems 
to be of no use initially. The only rule that can be expanded 
(the only one with all its antecedents below the boundary of 
operationality) is compiled rule 2; once expanded (essentially 

Measure(bas.45) 1 

C-- Compiled Rule (2) 

Supp(ax,ang) 1 IMeasure(ax,90) 

Figure 4: Generalized Explanation Structure of Measure(ABC,45) 

replacing rule 2 with rule l), the concept definition will not get 
more general because the presence of compiled rule 8 requires 
the presence of rule 3, which, itself, requires that 
Measure (ang ,90) be part of the explanation structure, which, 
in turn, causes Measure (ax ,90) to be a leaf of the structure 
even after rule 2 is expanded. After expanding rule 2, the 
node Measure (MC ,90) would be connected to the explanation 
structure with the antecedent node Measure (ax ,max) of rule 
1. Thus, instead of having Measure (ax ,max) as a leaf node, 
mux would be unified/instantiated with the value 90: the con- 
cept definition is overly specific because of an unnecessary 
variable instantiation. 

Figure 5: Generalization Possible After Expanding Compiled Rule 8 

However if, as in Figure 5, we expand compiled rule 8 
(replacing it with rule 7) along with compiled rule 2, then we 
may eliminate rule 3 from the explanation structure and get 
the general, operational, desirable rule: 
Supp (ax ,ang ) A Measure (ax ,mm ) A Minus (180,ma.x ,mang ) 

A Isos (tri) A Vertex -Ang (tri ,ang > 
A Base -Ang (tri ,bas ) A Minus (180,mang ,dif ) 
A Div (dzp ,2,mbas) + Measure (bas ,mbas) 

In English, this states that for all isosceles triangles, the meas- 
ure of the base angle is half the measure of the angle which is 
supplementary to the triangle’s vertex angle. The key prob- 
lem is to keep from having to expand all of the compiled rules 
which appear above the boundary of operationality when try- 
ing to generalize explanation structures like the above. 
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3.2. The IMEX Instantiation Algorithm 
Due to space constraints and the complexity of the method, we 
will only briefly sketch how to handle overly instantiated con- 
cept definitions. After compiled knowledge has been used to 
generate an initial explanation structure, the IMEX Implica- 
tion Algorithm should be run on the resultant structure to gen- 
eralize it as much as possible. Next, for each leaf node of the 
resulting explanation structure, if the leaf node is more 
specific (in terms of more variable instantiations) than the 
corresponding uninstantiated antecedent node of the rule that 
links the leaf to explanation structure, then do the following: 
Trace up the explanation structure from the leaf until the 
antecedent of a compiled rule is found. Expand this rule, 
retracting the unification constraints resulting from the con- 
nections between its old specific antecedents and adding the 
new constraints from its new more general antecedents. 
Check to see if the propagation of these constraints general- 
izes the leaf node sufficiently. If so, then we are done with 
that leaf node. Otherwise continue tracing up the proof struc- 
ture to find more compiled rules to expand. 

4. Discussion and Future Work 
Both IMEX algorithms rely on being able to expand compiled 
knowledge. This expansion process can be made more 
efficient if the justifications for the knowledge are recorded 
when the knowledge is compiled. Otherwise, these 
justifications must be redetermined for each expansion step. If 
the original domain theory contains recursive domain rules, 
then it is possible for recursive pieces of compiled knowledge 
to be generated. Thus, any implementation of the IMEX 
algorithms must include some type of goal stack checking to 
avoid getting into infinite loops while expanding rules. 

In addition, IMEX must be capable of computing the 
boundary of operationality in order to direct its search 
through the space of possible explanation structures. 
Braverman and Russell [1988] give methods for finding the 
boundary and describe a number of properties of operational- 
ity theories that affect the ease with which the boundary may 
be found. If the operationality theory satisfies a property 
termed locality, then the new boundary in step (3) of the 
implication algorithm may be obtained by only modifying the 
old boundary in the region of the newly spliced-in rule expan- 
sion. With other types of operationality theories, especially 
those which allow predicates to be conditionally operational, 
finding the boundary can be more complex; in fact, more than 
one boundary may exist, leading to concept definitions that are 
mutually incomparable along the generality/specificity dimen- 
sion. Choosing between these different boundaries is a matter 
for future research. 

IMEX only attempts to maximize the generality of the 
concept definition based on an initial explanation structure. In 
a sufficiently complex domain there may be several 
significantly distinct explanation structures that explain the 
training instance (such as proving, if possible, Safe-To- 
Stack(x,y) in terms of the Not(Fragile(y)) rule as opposed to 
the Lighter(x,y) rule). In the future, we would like to investi- 
gate methods of finding the most general concept definition 
achievable considering as many of those structures as is feasi- 
ble. 

Currently, we are in the process of implementing a sys- 
which applies the IMEX method in the domain of route 

planning. The creation and use of compiled knowledge effec- 
tively allows for reasoning by levels of abstraction. We 
believe that IMEX, in conjunction with other processes for 
removing and reordering rules, will be able to efficiently 
approximate the kind of optimal levels of abstraction proposed 
by Korf [ 19871. Our goal is to create a system whose global 
performance converges to approximate optimality via local 
improvements in the domain theory. 
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