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Abstract 

Recent work in formal learning theory has at- 
tempted to capture the essentials of the concept- 
learning task in a formal framework. This pa- 
per evaluates the potential contributions of cer- 
tain kinds of models to the study of learning by 
exploring the philosophical implications of these 
models. Some of my remarks bear on mainstream 
AI learning techniques such as version spaces and 
explanation-based learning. 

I. Introduction 
Recently there has been a renewed interest in formal learn- 
ing theory, due largely to Leslie Valiant’s paper “A Theory 
of the Learnable” [1984]. S ince a formal model of learning 
provides a clear and precise definition of learnability, re- 
sults in the model could have considerable impact on the 
study of human and machine learning. It might, for ex- 
ample, indicate limits on what is efficiently learnable by 
people or computers, much as computability theory has 
done for computation. It is important, therefore, to assure 
that the definition of learnability and the assumptions of 
the model are reasonable. Here I consider several prob- 
lems, largely philosophical, with the assumptions of the 
Valiant model and related models of concept learning. I 
begin by providing a brief overview of the Valiant model 
for concreteness. 

2 The Valiant ode1 
The following provides only the briefest sketch of the 
model; for more detail, see [Kearns et al., 1987b; Valiant, 
19841. 

We assume a space X of examples, with a probability 
distribution D imposed on X. A concept is a subset of X, 
a concept representation is a description of a concept, and 
a concept class is a set of concept representations. The 
situation modeled is that of a learner trying to acquire a 
particular concept, called the target concept, drawn from 
a concept class. The learner can examine examples drawn 
at random from X according to D; each example is labeled 
+ or - according to whether it is a member of the target 
concept. 

The learner takes as input the size of the target con- 
cept representation and two parameters E and 5, with 
0 < E! 6 5 1. The learner must quickly produce a con- 
cept representation in the concept class that is close to the 
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target concept with high probability. More precisely, the 
learner must produce, with probability 1 - 6, a concept 
representation that can disagree with the target concept 
with probability at most E on examples drawn randomly 
from X according to D, and it must accomplish this task 
in time polynomial p the size of the target concept rep- 
resentation, j and z. If there is an algorithm that can 
accomplish this task for any target concept in the concept 
class and any distribution D, then the class is learnable.’ 

One concept class that is learnable is the class of con- 
junctions of Boolean variables; in this case, X contains 
vectors of truth-assignments to the variables. Other learn- 
able concept classes include Ic-CNF and Ic-DNF [Valiant, 
19841, decision lists [Rivest, 19871, and a subclass of lin- 
ear threshold functions [Littlestone, 19871. Several classes 
are also known to be unlearnable, assuming RP # NP 
[Kearns et al., 1987a]. 

Although the model defines only the learnability of con- 
cept classes, the extensions to other senses of ‘learn’ are 
obvious. So, if a program outputs a concept that is within 
E (in the sense defined above) of the target concept, then 
it is in the spirit of the model to say that the program has 
learned the concept. 

My first criticism applies to probabilistic models of concept 
learning, like the Valiant model, that interpret the proba- 
bilities in a certain way. In his original paper, Valiant says 
that the probability distribution “is intended to describe 
the relative frequency with which the.. . examples.. . occur 
in nature” [Valiant, 1984, p. 11361. But accuracy on only 
the naturally occurring examples of a concept is rarely suf- 
ficient for its acquisition. An agent who succeeded ad- 
mirably in classifying existing instances but failed on hy- 
pothetical ones might be considered to have a good recog- 
nition method for the concept, but could not be said to 
have learned it. 

Consider the concept ‘bachelor,’ which we can assume to 
be defined as ‘unmarried male’ for the time being. Assume 
further what is almost certainly the case, that very few 
bachelors wear wedding rings. Still, if you are asked “Is an 
unmarried male wearing a wedding ring a bachelor?” you 
will reply in the affirmative. Bachelors are just unmarried 
males; wedding rings don’t enter into it. 

Now say a robot tries to learn the concept ‘bachelor’ 
from natural examples and manages to acquire the concept 

‘This description is a simplification of Valiant’s original def- 
inition in several ways. The differences play no role in what 
follows. 

580 Learning and Knowledge Acquisition 

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved. 



‘unmarried male who does not wear a wedding ring.’ The 4 eory 
robot will classify most existing things correctly with this 
description, and so has learned ‘bachelor’ as far as the In this section, I consider a more far-reaching argument 
Valiant model is concerned. But we would not say the that implicates many concept-learning schemes, not just 
robot has learned the concept ‘bachelor,’ for it will answer formal models but also more traditional AI approaches 
the above question incorrectly, even though it may perform such as version spaces [Mitchell, 19811. The criticism 
excellently-perhaps better than most people do-in the claims that concepts cannot be defined in the so-called 
task of identifying real-world bachelors. ‘classical’ way, by necessary and sufficient conditions for 

Note that this problem does not arise because the 
membership. IJsually this is intended as a psychological 

Valiant model allows a small error in the learner’s con- 
criticism [Lakoff, 1987; Schank et al., 1986; Smith and 

cept. For we can assume that no bachelors currently wear 
Medin, 19811, but an ontological argument can be made 

wedding rings, hence that the robot classifies existing bach- 
as well [Lakoff, 1987, ch. la]. The psychological argu- 

elors perfectly; but we still would not say it had learned 
ment claims that humans do not employ concepts defined 

‘bachelor,’ because it fails on hypothetical cases. 
by necessary and sufficient conditions; the ontological ar- 
gument claims, roughly, that no such concepts exist in the 

While the robot’s concept is coextensive with world. 
‘bachelor’ -it picks out the same set of things in the real 
world-it differs from ‘bachelor’ in hypothetical worlds, .I. 
and this matters to US. We do not count two concepts as 

sychological Critique 

the same if they are merely coextensive. Nor would doing The relevant aspect of the psychological argument is 
so be a wise idea: we require our concepts to be meaningful the claim that human concept representations are not 
in possible situations so we can be understood when dis- &vale&-they do not classify every object as either in- 
cussing these situations. When considering the bachelor- side or outside the concept. A body of pyschological ev- 
hood of a hypothetical unmarried man wearing a wedding idence that has been accumulating for fifteen years indi- 
ring, we do not want our deliberations affected by whether cates that human concepts cannot be described bivalently 
an unmarried man has ever done such a thing, or even [Smith and Medin, 19811. The evidence includes demon- 
whether the situation is physically possible (perhaps the strations of typicality effects, and inconsistencies across 
man in question is a Lilliputian). The point extends be- and within subjects on classification tasks. The results 
yond daily life into science: to discuss alternative theories seem to show that concept membership is a matter of de- 
meaningfully, there must be some constancy of concepts gree: some birds, like robins, are better examples of the 
across the theories, even though at most one theory can concept ‘bird’ than others, like penguins. 
be right. For example, if the bachelorhood of Lilliputians These results call into question the the psychological 
ever became a factor in the evaluation of rival physical the- plausibility of models that use bivalent concept represen- 
ories, one would hope that the impossibility of Lilliputians tations. To account for them, researchers have proposed 
in one theory would not prevent its adherents from under- concept representations based on prototypes, highly typical 
standing the other theory’s point of view. concept members; these representations allow for degrees 

Valiant takes the interpretation of the probability dis- of membership that vary with proximity to the prototype. 

tribution as over only the natural examples to carry some This critique is not immediately conclusive against mod- 

philosophical weight: els, like Valiant’s, that permit a wide range of concept 
classes. It is true that Boolean functions, the class of rep- 
resentations used most often in literature on the Valiant 

A learnable concept is nothing more than a model, are bivalent. But the model is compatible with 
short program that distinguishes some natural other representations. In fact, both linear threshold func- 
inputs from some others. If such a concept is tions and hyperspheres in Euclidean space could form the 
passed on among a population in a distributed basis for psychological models of concepts based on proto- 
manner, substantial variations in meaning may types [Smith and Medin, 19811. (Interestingly, the class of 
arise. More importantly, what consensus there is hyperspheres is learnable in the Valiant sense [Amsterdam, 
will only be meaningful for natural inputs. The 19881, as is a restricted class of linear threshold functions 
behavior of an individual’s program for unnatural [Littlestone, 19871.) Both representations divide naturally 
inputs has no relevance. Hence thought experi- into two components: a method to compute a graded (i.e. 
ments and logical arguments involving unnatural real-valued) measure of inclusion in the concept, and a 
hypothetical situations may be meaningless ac- threshold which uses the computed measure to determine 
tivities [Valiant, 1984, p. 11421. whether the example is a member of the concept. For 

linear threshold functions, the sum of weighted attribute 
It is certainly true that some situations tug our intuitions values provides the measure of inclusion; if the sum ex- 

both ways: what if your unmarried male friend was actu- ceeds a threshold, the example is considered to be in the 
ally the product of a synthetic sperm and egg? Philoso- concept. For hyperspheres, the Euclidean metric provides 
phers love such borderline cases because they can help to the measure of inclusion, and the hypersphere’s radius the 
tease apart the many threads that run through even the threshold. 
most basic of our concepts, like ‘person.’ To call these It is plausible to view the inclusion measure as the 
thought-experiments meaningless because they fail to con- actual, graded, concept definition, and the threshold as 
form to a model which cannot capture even the clear-cut merely an artifact forced by the Valiant model’s require- 
cases seems to be getting things the wrong way round. ment of bivalence, akin to experimenters’ insistence that 
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their subjects answer concept inclusion questions with a 
‘yes’ or ‘no’. Still, the Valiant model is inconsistent with 
the fact that the same subject will sometimes give conflict- 
ing answers to the same question about concept inclusion 
[McCloskey and Glucksberg, 19781, because in the model 
a given concept will always classify an example the same 
way. 

Some solace may be found in [Armstrong et al., 19831. 
They show that typicality effects occur even for obviously 
bivalent concepts like ‘even number’; in fact, subjects will 
rate some numbers ‘more even’ than others after explicitly 
stating that membership in ‘even number’ does not admit 
of degree. This result suggests that typicality data can 
shed little light on concepts’ membership criteria. Arm- 
strong et. al. propose a picture of human concepts that 
consists of a bivalent core, which determines membership, 
associated with a collection of heuristic identification pro- 
cedures whose interactions give rise to typicality effects. 
Bivalent concept-learning models could be seen as mod- 
els of concept core acquisition. Two problems inhere in 
this suggestion: first, it may be that many concepts are 
coreless, hence excluded from the purview of bivalent mod- 
els; and second, many models, Valiant’s included, are con- 
cerned with the process of identifying examples, and this 
is not the role of the core but of the identification proce- 
dures. So although the issue is far from settled, it would 

factors that would interfere with its expression, or con- 
versely, that would give rise to seedless grapes on a genet- 
ically seeded vine. The X-ray picture fails because other 
structures in the grape (possibly introduced unnaturally) 
might cast identical X-ray shadows, and because the con- 
cept ‘X-ray shadow of a grape seed’ is itself subject to 
the same criticism, where the features are the X-ray image 
pixels. 

The point is not that we can never be absolutely cer- 
tain of our categorizations; this is true and uninteresting. 
Rather, even if we were certain about the DNA sequence 
of the vine of origin and the intensity of every pixel in the 
X-ray image, we still would not be able to define ‘seedless 
grape’ from these features. The point is also not the mun- 
dane (though very important) one that we rarely know all 
the relevant features, but rather that there is no finite set 
of relevant features; cosmic rays, cropdusting, and school- 
boy pranks may all play a part. 

This is a severe philosophical criticism of the Valiant 
model, for even though the model allows the learner to 
merely approximate the target concept, it still assumes 
that there is a target concept defined by a representation 
in the concept class. For most cases in which the input 
features are not trivially definitive of the concept, this as- 
sumption appears untenable. 

seem that bivalent concept-learning models are not psy- 
chologically plausible.2 5 Learning 

4.2 Ontological Critique 
One could claim in response that the Valiant model can 
still be used to obtain correct, albeit psychologically im- 
plausible, definitions of many concepts. So even though 
the definitions of ‘bird’ that are produced do not fit the 
psychological data, they nonetheless classify birds well. 

While immune from the psychological critique, this re- 
sponse assumes that there is some description that pro- 
vides necessary and sufficient conditions for birdhood, be- 
cause the Valiant model depends on there being some tar- 
get concept that classifies the examples seen by the learner. 

The ontological critique questions this assumption. It 
claims that for most, if not all, empirical concepts, there 
is no necessary-and-sufficient description that is couched 
in terms of reasonable input features. An example should 
clarify this. Say we wish to separate seedless grapes from 
others at a grape processing plant. Now we could de- 
fine ‘seedless grape’ as ‘grape without seeds,’ but we wish 
to perform the classification without actually cutting the 
grapes open and looking for the seeds. The features we 
might use are overt sensory ones like color and shape as 
well as more esoteric ones like genetic analysis of the vine of 
origin and X-ray pictures of the grapes’ insides. It would be 
quite amazing if some function of these features provided 
necessary and sufficient conditions for ‘seedless grape,’ The 
presence of the gene responsible for seedlessness will not 
do, because there are probably numerous environmental 

2See [Lakoff, 198’7; Smith and Medin, 19811 for discussion 
at great length. It should be realized that many of the tra- 
ditional arguments against the classical view really attack the 
much weaker position that concept definitions are conjjunctions 
of features. 

Let us turn from these general considerations for a moment 
to consider a particular example of concept learning, in 
order to bring out an interesting way in which many formal 
models fail. Learning the grammar of a natural language is 
an appropriate choice, for it is a major problem in cognitive 
science and has inspired several formal models [Gold, 1967; 
Wexler and Culicover, 19801. 

There are numerous problems with formal approaches 
to language acquisition, many of them discussed elsewhere 
[Chomsky, 19861. I wish to raise only two. First, the class 
of human languages might be finite, a conclusion suggested 
by the parameter theory of language developed by Chom- 
sky [1981], in which natural-language grammars are dis- 
tinguished only by the settings of a few switches. Finite 
concept classes are trivially learnable in models based on 
asymptotic behavior, including the Valiant model with its 
requirement of polynomial-time learnability. This trivial- 
ity is misleading, however, because language learning poses 
some serious problems. In particular, it involves the si- 
multaneous acquisition of multiple, interdefined concepts. 
The ramifications of this observation are, I think, most 
far-reaching. They call into question the appropriateness 
not only of the Valiant model, but of much of the concept- 
learning paradigm as practiced in AI. 

The problem can be seen most clearly by viewing 
parameter-style language acquistion in the Valiant model’s 
terms, ignoring the finiteness problem for the moment. If 
we think of the parameters as features, the learning prob- 
lem is then very simple and straightforward: just set the 
parameters to match the features in the examples. Hence 
there would seem to be little to say about learnability. But 
the problem is that the features are not given in the exam- 
ples; most of the parameters that have been conjectured 
are fairly abstract, employing terms such as ‘phrase,’ ‘head’ 
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and so on. And even concepts like ‘noun’ and ‘word’ are 
not part of the learner’s (that is, the young child’s) raw 
input. That input consists primarily of streams of sounds 
and, in cases where the learner’s perceptual machinery can 
perceive the content of an utterance, simple ‘meanings.’ 
For example, if ‘Mary hits John’ is uttered while the ac- 
tion of Mary hitting John is visible to the learner, then it 
is assumed that the learner can decompose the event into 
two objects (Mary and John) and an action (hitting); this 
decomposed event would be the ‘meaning’ of the sentence. 

Because the learner’s input is so far removed from the 
concepts in which the innate grammar is couched, it would 
seem that language learning is quite difficult. How is it 
accomplished? 

It appears that we would have trouble even in phrasing 
the question in terms of models of single-concept learn- 
ing, since language acquisition is patently a multi-concept 
problem. But single-concept learning models could pro- 
vide an answer to this question. One might claim that the 
lowest-level concepts, like ‘word,’ are learned directly from 
the input. These concepts then become features them- 
selves, and another round of concept-learning occurs which 
results in the acquisition of concepts at the next level, such 

93 as ‘noun . 
This reductionistic account is simple and obvious, but 

it cannot be right. There is no way to define concepts 
like ‘word’ and ‘noun’ from the features available to the 
language learner. Consider ‘noun’. The nounhood of some 
words might be deduced from the input; for instance, that 
‘John’ is a noun might be determined from the fact that 
it often occurs in conjunction with a particular part of 
‘meanings’-namely the object John himself. Indeed, this 
is probably how acquisition of nouns and verbs is started. 
Hut it cannot be the whole story, for some nouns, like 
‘ride’ and ‘strength,’ do not correspond to physical objects 
and so cannot be assumed to be available in the child’s 
perceptual input. Likewise, some verbs, like ‘resemble,’ do 
not correspond to actions. 

According to one theory of language acquisition, children 
tentatively classify some words as nouns and verbs because 
they seem to correspond to objects and actions present in 
‘meanings.’ This enables the parsing of very simple sen- 
tences. They then use this knowledge to set parameters,4 
which in turn allows them to parse more complex sen- 
tences. Information from such parses can then serve to 
classify other words, like ‘ride’ and ‘resemble,’ that do not 
occur in ‘meanings’. This picture of language acquisition 
is known as ‘semantic bootstrapping’ [Pinker, 19841. 

Note that this process is quite different from the hier- 
archical learning procedure that seems natural for single- 
concept learning models. Concepts are not acquired hi- 
erarchically, but rather piecemeal; and partially learned 
concepts can help the learning process by driving theory 
(here, grammar) construction. 

Language is not the only domain that exhibits this boot- 
strapping pattern. Recent work has shown that children 
may acquire common-sense biological knowledge in the 
same manner [Carey, 19851. And, most crucially, science 

in general works this way, the formation of new concepts 
suggesting further experiments and making additional data 
available. On this view, concept acquisition is theory for- 
mation and revision. Concepts are not composed, layer 
by layer, from more primitive, already acquired concepts; 
instead, the whole cluster of concepts forms a complexly 
interacting web with no clear levels. The task of acquiring 
a single concept is at best an idealization, for in learning a 
new concept we will almost certainly alter others, so that 
our beliefs are as consistent; coherent and accurate as we 
can make them [Quine, 19711. 

This observation extends the ontological critique, which 
held that concepts are not definable from the input. It 
shows that most concepts are not even definable in terms 
of other concepts; the relationships between concepts in 
a theory, and between theory and data, are not relation- 
ships of definition. We cannot define ‘electron’ in terms of 
observable properties, nor even in terms of other concepts 
of physics; but ‘electron’ is a part of the web, connected 
to ‘particle,’ ‘quark’ and ‘positron’ by links of implication, 
links that are defeasible in the face of overwhelming data 
or pragmatic considerations. If the point is obscure in 
physics, consider ‘seedless grape’ again. I said earlier that 
we can define ‘seedless grape’ as ‘grape without seeds.’ 
While this may be appropriate for our classification task, 
the connections among ‘grape,’ ‘seed’ and ‘seedless grape’ 
are in fact much more subtle and subject to considerations 
not only of practical utility, but of scientific parsimony 
as well. ‘Seedless grape’ might be a genetic term to a 
molecular biologist, or a species designation to an evolu- 
tionary biologist; and in some overarching, unified biology 
(should such a thing exist), it might have a different char- 
acter entirely. Because of mutation, genetic tampering or 
cross-breeding, a seedless grape with seeds might not be 
a contradiction. The standard picture of single-concept 
learning that operates against a fixed background of the- 
ory and data cannot account for these facts. 

Although some work has addressed these issues, espe- 
cially work on discovery systems [Haase, 1986; Lenat, 
19831, the problems are enormous and largely unexplored. 
How is the web of interconnecting concepts structured? 
How is blame apportioned when contradictions are discov- 
ered? When should contradictions be ignored or papered 
over rather than repaired? And how can experiments best 
be designed to resolve contradictions and distinguish rival 
explanations? 

If much of our learning is best characterized as a process 
of theory formation and revision, where the multiple con- 
cepts of a theory interact with each other, with pragmatic 
constraints, and with the data in complex ways, then the 
single-concept learning model that has been with us for 
some time may be a poor model for all but a few learning 
tasks. And if, as its ubiquitous use in science suggests, this 
complex process is either inevitable, or superior to a hier- 
archical one for acquiring knowledge, then it would seem 
that single-concept learning may be a practical tool of only 
limited use. 

“Strictly speaking, we are defining the concepts ‘word-in-L,’ 
‘noun-in-L’ etc. where L is the language being learned. 

*Or, in other theories of grammar, to acquire rules or con- 
straints. The story is not tied to the parameter theory. 

I have considered several ways in which certain learning 
models fail to capture important learning phenomena. The 
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requirement for mere extensional equivalence of concepts 
cannot account for performance on hypothetical situations; 
the assumption that concepts can be defined is on shaky 
ground; and single-concept learning is likely an unusual 
special case of the theory-construction process. 

Some of my criticisms implicate a broad class of work in 
machine learning. The idea that interesting concepts can 
be characterized by definitions is presupposed not only by 
most formal models, but also by techniques like version 
spaces [Mitchell, 19811 and explanation-based generaliza- 
tion as described in [Mitchell et al., 19861. Happily, many 
machine learning researchers are moving away from this 
conception. It is important to realize that not all the power 
ofprobabilistic models like Valiant’s is lost in this retrench- 
ment: we can use statistical techniques to verify that a hy- 
pothesis is accurate with high probability without making 
any assumptions about the definability of a target concept 
[Etzioni, 19881. What needs to be given up, or at least 
considerably diluted, is the idea of completeness-that a 
learning algorithm will always (or almost always) produce 
an accurate hypothesis. Such results invariably assume the 
existence of definable concepts. 

The attention granted single-concept learning has re- 
sulted in some useful techniques, but the paradigm does 
not scale up cleanly to multiple concepts; rather, it is a 
special case, probably a rare and unrepresentative one. 
Single-concept learning does go on in practice, at least 
to a first approximation, and its techniques may serve as 
useful modules in larger learning systems; but the more 
fundamental and interesting problems center around the 
interaction of many concepts in the course of theory con- 
struction. 
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