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Abstract 

Research in machine learning often focuses either 
on inductive learning - learning from experience 
with minimal reliance on prior theory - or, more 
recently, on explanation-based learning - deducing 
general descriptions from theories with minimal 
reliance on experience. Theory revision unites 
these two concerns: one must revise one’s theory 
in the light of experience, but one must simulta- 
neously use information implicit in the theory in 
order to guide the revision process. This paper 
focuses on the second step of a unified three-step 
method for solving theory revision problems for 
certain classes of empirical theories. Test results 
for the first two phases of this approach are re- 
ported. 

1 Introduction and verview 
A theory revision problem exists for a theory 7 when 7 
is known to yield incorrect results for given cases in its 
intended domain of application. The goal of theory revi- 
sion is to find a revision 7’ of 7 which handles all known 
cases correctly, makes use of the theoretical terms used in 
7, and may, with a reasonable degree of corifidence, be ex- 
pected to handle future cases correctly. In contrast to pure 
inductive learning from experience, theory revision is not 
only guided by the information implicit in 7, but also at- 
tempts to preserve the language and, as much as possible, 
the structure of 7. 

This paper focuses on the second step of a unified three- 
step method - integrating aspects of explanation-based 
learning [Mitchell, Keller, and, Kedar-Cabelli, 19861, in- 
ductive learning [Michalski 19831, and heuristic approaches 
to knowledge base refinement [Ginsberg, Weiss, and Poli- 
takis, 19881 - for solving theory revision problems for cer- 
tain classes of empirical theories. In the first step the the- 
ory is “translated” into a form that is more amenable to 
inductive learning techniques. As we shall see (section 2), 
this step may be viewed as a complete prior “operational- 
ization” of the theory, in the sense of the term employed in 
explanation-based learning [Mitchell, Keller, and, Kedar- 
Cabelli, 19861. This process is called theory reduction, 
and the resulting translation is called the reduced theory. 
The notion of theory reduction is discussed in [Ginsberg, 
1988a], and detailed accounts of the application of this idea 
to “expert system theories” are given in [Ginsberg, 1988101. 

The second step involves modifying the reduced theory 
in order to improve its empirical adequacy. At a high level, 
the methods described here differ from those described, for 

example, in [Michalski 19831, in that the basic task is to 
“tailor” the reduced theory so it “fits the facts,” rather 
than build or rebuild a general description of the facts from 
the bottom up. This perspective manifests itself in such 
items as the calculation and use of theoretical expectations 
of correlations between observables and theoretical terms 
(see section 3.4)) as well as the use of certain “conserva- 
tive” strategies, e.g., attempting to generalize expressions 
that are already “closest to being satisfied” in a given case 
(see section 3.1). In contrast to the heuristic approach to 
knowledge base refinement advocated in [Ginsberg, Weiss, 
and Politakis, 19881, the Reduced Theory Learning System 
(RTLS) described here does not employ a cyclic generate- 
test-select hill-climbing strategy for discovering efficacious 
refinements. 

Once the reduced theory has been modified, the final 
step involves a “retranslation” of the modified reduced ver- 
sion back into the entire language of the original theory. 
This step is necessary because the reduced theory only 
makes use of a subset of the vocabulary of the original 
theory. While the parsimony of the reduced theory is de- 
sirable in the learning step, it is undesirable as a final goal, 
since a reduced theory will generally be a less compact and 
efficient representation for actual use than a theory that 
uses a richer language and structure. The retranslation 
step of the method is not discussed here; however, an algo- 
rithm for automatic retranslation of expert system theories 
is known. 

2 Theory Reduction & E 
For a theory 7 to have any utility for a system it must be 
possible for the system to apply 7 - in essentially mechan- 
ical fashion - to problem cases that arise in the domain in 
question. We may therefore view a useful empirical theory 
as defining an “inference mechanism” that relates “observ- 
able” features of problem cases to “theoretical” entities or 
processes for which the theory posits certain law-governed 
behavior. 

In view of this, let 7 be a theory and let the vocabu- 
lary (predicate symbols, propositional constants, etc.) of 
7 be divided into two disjoint subsets 7, and II. We re- 
fer to these as the observational (operational) and theoreti- 
cad (non-operational) vocabulary of 7, respectively [Nagel, 
1961; Keller, 19871; for the sake of brevity, we will hence- 
forth refer to theoretical terms as hypotheses. We may 
view 7 as implicitly specifying a (partial) function, hav- 
ing all possible combinations of items in 7, as domain and 
all possible combinations of items in 7t as range: given 
some combination of observables as “input,” 7 will yield 
some combination of hypotheses as “output,” i.e., this is 
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7’s answer for this case. Complete theory reduction may 
be seen as a transformation of this implicit function to a 
set of functions ,!Z more amenable to analysis and revision: 
for each hypothesis r E ‘&, Z(T) E L is a minimal sum- 
of-products (minimal disjunctive normal form) expression 
in which each product term (disjunct) consists solely of 
observables. Following the terminology of de Kleer [1986], 
we say that 1(r) is the label for r, and each product term 
in a(~) is said to be a (minimal) environment for r. In- 
tuitively, 1(r) p re resents all the possible minimal sets of 
observables that would cause the theory 7 to assert r. 

EBL systems may be viewed as involving dynamic par- 
tial theory reduction: an “output” of a typical learning 
episode in EBL systems is generally some product term in 
a(r), for some r. As each new instance is explained (and 
generalized) a particular item in the theoretical vocabu- 
lary is being “partially reduced” to a set of predicates that 
meets an operationudity criterion. For Mitchell et al. [1986] 
the operationality criterion says that the generated gener- 
alization must be “expressed in terms of predicates used 
to describe examples.. . or other selected, easily evaluated, 
predicates from the domain theory.” This is basically the 
same as saying that the generated generalization must be 
entirely in the observational vocabulary.’ 

As new instances are presented to an EBL system, new 
explanations (inherent in the theory) will be generated and 
generalized. For finite propositional theories there can be 
only a finite number of instances (perhaps very large) that 
yield new explanations and generalizations. 2 In the limit, 
when all the instances are seen, the domain theory will 
be completely operationalized. Complete theory reduction 
yields the same results as exhaustive operationalization, 
but does not require the actual presentation of cases to 
achieve them: in this sense, the theory is exhaustively op- 
erationalized prior to case presentation. 

2.1 eduetion of Expert System 
Theories 

We consider an expert system theory & to be a restricted 
propositional logic theory. That is, E consists of a set of 
conditionals in propositional logic, i.e., the rules or knowl- 
edge base. A sentence a + ,0 is considered to follow from 
& iff, to put it loosely, p can be derived from cy and I 
via a sequence of applications of a generalized version of 
modus ponens. & is said to be acyclic if, roughly speaking, 
a sentence of the form Q + or does not follow from &. 

A two-step algorithm for the complete prior reduction of 
acyclic expert system theories, and a system, K&Reducer, 
that implements the algorithm are discussed in [Ginsberg, 
1988b]. In the first step the rules in E are partitioned into 
disjoints sets called rule levels. A rule r is in level 0 iff 

‘DeJong and Mooney [1986] point out problems with the 
notion of a well-defined, fixed observation language and Keller 
[1987] argues for a notion of operationality that is more closely 
tied to the “objectives” of the performance system. For the 
sorts of theories considered in this paper, however, it is reason- 
able, both from a formal point of view, and from the point of 
view of the typical intended application domains, e.g., medi- 
cal diagnosis, to view theories as having a fixed observational 
vocabulary over substantial periods of time. 

2This will also be true for predicate logic theories 
spect to their finite models [Ginsberg, 1 988a]. 

with se- 

the truth-value of the left-hand side of r is a function of 
the truth-values of observables only. A rule r is in level n, 
iff the truth-value of the left-hand side of T is a function 
of the truth-values of observables and hypotheses that are 
concluded only by rules at levels 0, . . . , n- 1. This partition 
defines a partial-ordering for computing the reduction of 
all hypotheses: each rule in level 0 is processed (exactly 
once), then each rule in level 1, etc. 

KB-reducer has been used to reduce several knowledge 
bases. Knowledge bases of approximately 50 and 150 
rules in size were reduced in 40 cpu seconds and 5 cpu 
minutes respectively. The early rheumatology knowledge 
base [Lindberg et ad., 19801 (call it “Rheum” for short) 
which was used to conduct the experiments reported be- 
low (section 4) has 84 observables, 73 hypotheses, and 367 
rules when translated into the rule language used by KB- 
Reducer. There are 4 rules levels. The total cpu time to 
compute the reduction was approximately 10 hours on a 
TI Explorer3 II. The total number of environments in the 
labels is 34,522. 

3 ne 
Theory 

This section describes the methods employed by an induc- 
tive learning program, RTLS, that takes as its input a set 
of labels ,C and a set of cases C such that for each c E C, 
Answer(c), the “correct answer” for case c, is known. For 
the sake of brevity, we use the following notation and ter- 
minology. (Table 1 below summarizes most of the notation 
used in this section.) Let 1(r) E L represent the label (at 
some specified point in the training process) for hypothesis 
r. The (current version of the) theory would assert r in 
case c iff 1(r) is satisfied by c, i.e., there is some environ- 
ment in I(r) that is satisfied by (contained in) c. For a 
given c, the set of hypotheses r such that 1(r) is satisfied 
by c will be referred to as the “outcome vector” for c. The 
phrases “r-case” and “non-r-case” refer, respectively, to 
any member of C which is such that Answer(c) includes, 
or does not include r. Suppose that l(7) fails to have any 
of its environments satisfied in a r-case c. In this event 
we say that r and 1(7) “require generalization” and that c 
“poses a generalization problem” for 1(r) and r. Suppose 
that a(~) has one or more of its environments satisfied in 
some non-r-case c. In this case we say that r and 1(r) 
“require specialization” and that c “poses a specialization 
problem” for 1(r) and r. 

RTLS currently uses a five-phase procedure in refining 
reduced theories. The first two phases involve massive la- 
bel generalization and specialization; the third and fourth 
phases involve focused label generalization and specializa- 
tion; the fifth phase corrects any problems that are not 
corrected in the first four phases. In massive label refine- 
ment one attempts to counteract “systematic” errors in 
a theory by deleting or adding observables to relatively 
large numbers of environments in an effort to match ob- 
served correlations, without trying to correct any specific 
problem. As we shall see, this is a useful tactic when re- 
vising theories whose reductions are much larger than the 
number of cases in C. In focused label refinement specific 
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lo, 0 
z, 7 
c, c 
Answer(c) 
w 
L 
out come vector 
r-case 
non-T-case 
generalization problem 
Gen(C9 7); 9 
e 
e--n 
G-4 
aa 
S 
S-patches 
e-n-l-0 
specialization problem 
Spec(C, 7); s 
Spec-envs(s, T) 
Left-Spec-envs(T) 

New- Gen( 7) 

the observational terms (observables) of 7 (the given theory); a variable over these 
the theoretical terms (hypotheses) of 7; a variable over these 
the given set of cases; a variable over individual cases 
the given (correct) theoretical description for c (may contain several hypotheses) 
the label for r (initially determined by reducing 7) 
the set of a(r) for r E ‘& 
for a given c, this is the set of r whose J(r) are satisfied by c 
a c whose Answer(c) includes r 
a c whose Answer(c) does not include r 
for a r, is a r-case c that does not satisfy 1(r) 
the set of r-cases C C posing generalization problems for r; a variable over these 
a variable over environments 
the result of removing n specified observables from e, so that e - n is satisfied by given g 
the set of g E Gen(C, r), for which a (non-empty) e - n exists 
foragEG,, theset ofalle-nforg 
for a e - n E E,, the set of non-r-cases satisfying e - n 
for some e - n, the set of all o such that o is true in g, but not in any S 
the result of adding some o E S-patches to e - n 
for a r, is a non-r-case c that does satisfy Z(r) 
the set of non-r-cases C C posing specialization problems for r; a variable over these 
the set of e E 1(r) satisfied by (non-r-case) s 
the union over s E Spec(C, 7) of all the environments that remain in Spec-envs(s, 7) 
after certain specialization procedures have been applied 
cases that would become generalization problems for r if all environments in 
Left-Spec-envs( 7) were deleted from I( 7) 

Table 1: Important Symbols and Terminology Defined 

additions, deletions, and modifications are made to tar- 
geted environments in labels in ways that are guaranteed 
to correct specific problem cases. A key pair of principles 
employed throughout these procedure is: whenever solv- 
ing a generalization {specialization} problem be sure not 
to create new specialization {generalization} problems. A 
simple schematic example of the methods discussed here is 
given in figure 1 below. 

3.1 Focused Label Generalization 
Let Gen(C, 7) be the set of r-cases in C which pose gener- 
alizations problems for r; and let g be a variable over indi- 
vidual cases in this set. Let Gr be that subset of Gen(C, 7) 
consisting of every g for which there exists at least one en- 
vironment e E 1(r) that would be satisfied in g if exactly 
one observable were to be deleted from e. That is, removal 
of the observable in question from e would yield an envi- 
ronment for r that is satisfied in g. RTLS will initially 
try to correct the generalization problems posed by Gr. 
Any g E Gi whose generalization problem is solved in this 
phase is removed from Gen(C, T). RTLS will then move 
on to consider Gz C Gen(C, 7) which is defined in similar 
fashion to G1. That is, for any g in G2 there exists at least 
one environment e E J(T) that would be satisfied in g if ex- 
actly two observables were to be deleted from e. This pro- 
cess continues until all the generalization problems posed 
by Gen(C, 7) are solved or the number of observables that 
would have to be deleted equals the length of the largest 
environment in 1( 7.) .4 

4The idea of first trying to generalize environments that are 
“closest to being satisfied” in a case is analogous to the idea of 

Let us suppose that for some n, RTLS is currently con- 
cerned with the cases in G,; let g be a member of G,. 
Let E, C l(7) be th e set of e E 1(r) that would be sat- 
isfied in g if n of e’s observables were removed. For each 
e E E,, RTLS forms e - n, i.e., e with the n observables 
which make it unsatisfied in g, removed. For each such 
e - n RTLS then determines whether it is satisfied in any 
non-r-case. If some of the e - n’s are not satisfied in any 
non-?--case, then these environments are added to the label 
for a(r); the generalization problem for g is solved. 

Suppose, on the other hand, that each of the e - n’s is 
satisfied in at least one non - r -case. Let S be the set 
of non-r-cases satisfied by one of these environments. For 
each e - n and its associated S, RTLS will try to find all 
the observables o which are such that o is true in g but 
not true in any of the cases in S; let us call the set of such 
o’s, the S-patches for e - n. Adding any o E S-patches 
to e - n produces an environment - let us designate it by 
the notation e - n + o - that will be satisfied in g but 
not satisfied in any non-r-case. If S-patches exists for any 
e - n, then for every e - n that has S-patches, RTLS will 
add e-n+o to l(7) f or every o in the S-patches for e - n. 

If, on the other hand, S-patches does not exist for any 
e - n, RTLS will move on to try something called theory- 
driven label generalization. For each e - n a sorted list of 
candidates is formed, as follows. We consider every o true 
in g that is not in e - n. The list of such o’s is sorted 
in decreasing order by the theoretical expectation of their 
“correlation strength” with respect to r - a number given 

trying to generalize rules closest to being satisfied used in [Poli- 
takis and Weiss, 1984; Ginsberg, Weiss, and Politakis, 19881. 
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Theory 
ab V ac V bc --+ 71 

eVfVg-kr2 
dr1r2 --+ r3 

Labels of Reduced Theory 
71 = abvacvbc 
rz=eVfVg 
73 = abde V acde V bcde V abdf v 

acdf v bcdf v abdg v acdgv 
bcdg 

After Massive Refinement 
q=aVb 

=eVfVg 
z=aevbeVafVbfv 

adg v bdg 

After Focused Refinement 
rl =aVbVc 
72 = ef V eg V fg 
73 =unchanged 

- Cases 
Case: a 6 c e 

Answer: q q 71 nil 
f ii1 fs ef e9 
nil 72 72 72 

Case: 
Answer: 

a b9 
~-1 

bf9 
7172 73 

aef abef 
7172 73 7172 73 

Figure 1: A Simple Example 

by the percentage of environments in 1(r) containing o (see 
section 3.4 below). 5 Examining the candidate list in sorted 
order, RTLS tries to find a subset 0 = { 01, . . . . ok} of the 
candidates which is such that each oi E 0 has positive 
correlation strength with r, and such that the conjunction 
of observables of 0 is false in every non-T-case. If such an 
0 is found, it is added to e - n, and this new environment 
is added to I(r); the generalization problem for g is solved. 
If such an 0 is not found, then the problem posed by g will 
be reconsidered by RTLS when it looks at environments in 
a(~) with exactly n + 1 observables removed, i.e., at the 
G,+l phase. 

3.2 Focused Label Specialization 
Let Spec(C,h) be the set of non-r-cases in C which pose 
specialization problems for r; and let s be a variable over 
individual cases in this set. For each s E Spec(C, h), let 
Spec-Envs(s, h) be the set of environments in a(r) satis- 
fied in case s. In order to solve the specialization problem 
posed by s, every environment e in Spec-Envs(s, h) must 
be modified - or, if necessary, deleted from a(~) - in such 
a way that e no longer is satisfied in s. Once again, how- 
ever, RTLS will make a modification to solve a special- 
ization problem, only if doing so does not result, in a new 
generalization problem coming into existence. 

Let e be an environment in Spec-Envs(s, h). RTLS will 
first attempt to add observables to e to prevent it from be- 
ing satisfied in s, without causing it to become unsatisfied 
in any T-case it which it may currently be satisfied. It may 
be possible to do this in one of two ways. First RTLS tries 

5While this idea is similar to Davis’s [1979] notion of a r&e 
model- which encoded the degree of correlation between the oc- 
currence of items in the antecedents of rules with the hypotheses 
asserted by those rules - it is more general in the sense that a 
theory can imply a correlation between o and T, even if they 
never occur together in any rules. 

to find an observable o satisfied in every r-case but not 
satisfied in any non-T-case. If such an o exists replacing e 
in J(T) with the environment e + o will contribute to solv- 
ing the specialization problem - it will solve it only if e is 
the only member of Spec-Envs(s, h) - without generating 
new generalization problems. In fact,, if there are several 
such observables 01,. . . , o, , RTLS will add each e + oi to 
a(~) for 1 < i 5 n. If such an o does not, exist, RTLS will 
try the tactic in reverse: find an o true in every non-T-case 
that is not true in any T-case. Again, for every such o, 
the environment e + 6, i.e., e with the negation of o added 
to it - is added to a(~) (and e, of course, is removed). If 
either of these tactics is successful, RTLS will remove e 
from Spec-Envs(s, h); if Spec-Envs(s, h) is now empty the 
specialization problem for s is solved. 

Suppose that RTLS has tried these procedures but Spec- 
Envs(s, h) is still not empty. Let Left-Spec-Envs(h) be the 
union of Spec-Envs(s, h) for every s after the preceding 
tactics have been attempted. Intuitively, if all the envi- 
ronments in Left-Spec-Envs(h) were simply removed from 
i(7) all remaining specialization problems for r would be 
solved; the problem, of course, is that new generalization 
problems might thereby be created. Let, New-Gen(h) be 
the (possibly empty) set of cases that would pose new gen- 
eralization problems for T if all the environments in Left- 
Spec-Envs(h) were to be deleted from a(r). For each case 
g E New-Gen(h), RTLS will attempt to use theory-driven 
label generalization - see section 3.1 above - to generate a 
new environment for r that will be satisfied in g but not 
generate new specialization problems. If this can be done 
for every case in New-Gen(h) then deletion of the environ- 
ments in Left-Spec-Envs(h) from r - together with addition 
of the environments generated to handle New-Gen(h) - will 
solve all specialization problems for r. However, outright 
deletion of environments from a label is a tactic that RTLS 
would prefer to use only as a last resort. 

The alternative is to try theory-driven label specializa- 
tion on the environments in Left-Spec-Envs(h). For each 
e E Left-Spec-Envs(h) a sorted list of candidates is formed, 
as follows. We consider every o that is not already con- 
tained in e. The list of such o’s is sorted in decreasing 
order by the theoretical expectation of their correlation 
strength with respect to r (see section 3.4 below). Ex- 
amining the candidate list in sorted order, RTLS tries to 
find a subset, 0 = {ol,..., ok} of the candidates such that 
each oi E 0 has positive correlation strength with r, and 
such that the conjunction of observables of e + 0 is false 
in every non-T-case. If such an 0 can be found for every e 
in Left-Spec-Envs( h), and if replacing e with e + 0 results 
in an Z(T) that does not have new generalization prob- 
lems, then RTLS will perform these replacements. If this 
is not, the case, and New-Gen(h) is either empty or can be 
successfully treated by theory-driven label generalization, 
then Left-Spec-Envs( h) will simply be removed from l(r). 
However, it is possible for theory-driven generalization to 
fail on New-Gen(h) and for theory-driven specialization to 
fail on Left-Spec-Envs(h); in that event no action will be 
taken, and some specialization problem for r will remain 
unsolved. 
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3.3 Solving All Problems highly unlikely that the focused label refinement process 

Suppose that the above procedures have been applied with 
less than 100% success. Let ,C, be the set of labels for 
which generalization problems still exist; let L, be the set 
of labels for which specialization problems still exist. The 
specialization problems are addressed first as follows. Sup- 
pose s is a case which poses a specialization problem for 
label Z(r): simply delete every environment in Z(r) that 
is satisfied in s. We do this for every case that poses a 
specialization problem for any label. Let C’ be the set of 
labels after all these deletions have been performed. We 
must now recalculate the outcome vector for every case c 
- using f? - before continuing the training process. This 
is necessary because the deletions just performed may give 
rise to new generalization problems which we must address 
in the next step of the process. Note however, that at this 
point all specialization problems have been solved. 

Now we address the remaining generalization problems. 
Let r be a hypothesis for which generalization problems ex- 
ist. Note that an easy way of correcting all these problems 
for r - without generating any new problems (assuming 
that C is consistent) - is simply to add c to Z(T) for each 
case c E Gen(C,r), i.e., the set of cases still posing a gen- 
eralization problem for r. A better procedure is to safely 
generalize each such c before adding it to Z(r). This is done 
by first forming a subvector of c that contains only those 
observables in c that have positive theoretical expected cor- 
relation strength with respect to r. Let c7 represent this 
subvector of observables. Now for every non-r-case, c’, in 
which c, is satisfied we find an observable o E c- c,&o $ c’ 
such that o has maximum expected empirical correlation 
strength with respect to r. For each such non-r-case, c’, 
we add the corresponding o to c,. The resulting vector of 
observables is guaranteed to be satisfied in case c but un- 
satisfied in every non-r-case in C; it now is added to Z(T). 
Once this procedure is repeated for every c E Gen(C, r), all 
generalization problems for r will be solved, and no new 
problems will be generated. 

3.4 Massive Label Refinement 
As we have seen, focused label refinement can guarantee 
that all cases in C are handled correctly by the refined re- 
duced theory. Recall however, that a good solution to a 
theory revision problem should yield a rational expectation 
of general improvement over future cases and not merely 
over known cases. The greater the expected improvement 
over the entire domain of cases, the better a solution one 
has obtained. One can identify situations in which focused 
label refinement alone will clearly fail to generate the high- 
est expectation of such a general improvement. This will 
almost certainly be the case when the reduced theory con- 
tains a far greater number of environments than the num- 
ber of cases in C, and C contains a fairly representative set 
of cases for the domain. 

To appreciate this point, consider the following exam- 
ple. Suppose a label I( 7 contains 1000 environments for ) 
r, and that all of them contain a particular observable 
o. Suppose that in reality this is a particularly egregious 
systematic error: o should be in only 100 environments 
for r. Suppose further that the training set contains 100 
T-cases, 10 of which contain o. Clearly in this case it is 

will result in the deletion of o from 900 environments in 
Z(T). It is, therefore, highly likely that some T-cases in the 
domain but not in C will (when they become known) pose 
generalization problems for the new label. 

Massive label refinement is an attempt to address the 
problem of refining theories that have a large reduced form 
relative to the number of known cases. Massive label re- 
finement involves trying to make the “correlation strength” 
between observables and hypotheses implicit in a theory 
match the correlation strengths that are actually observed 
in the training cases. (Currently RTLS deals only with 
first-order correlations, i.e., correlations between a single 
observable and a single hypothesis.) Thus in the example 
just given, the fact that all the environments for r contain 
o raises the theoreticadexpectation that r and o will always 
occur together. But the 90 T-cases in which o does not oc- 
cur, as opposed to the 10 T-cases in which it does, raises 
the empiricaZexpectation that r and o occur together 10% 
of the time. To make the former expectation (quantita- 
tively) match the latter, one should attempt to remove o 
from 90% of the environments in Z(T); we say “attempt” 
because removal of o from environment e should only be 
performed if the resulting environment is not satisfied by 
any non-r case. 

In the case just given one attempts to decrease the theo- 
retical expectation for a correlation between an observable 
and a hypothesis by removing the observable from a cer- 
tain fraction of the environments in which it occurs in a 
label. This is massive label generalization. If one reverses 
the example - suppose the theoretical expectation is that 
o and r never occur together while the empirical expecta- 
tion is that they always do - then by a similar argument 
one is led to the idea of massive label specialization: one 
attempts to increase the theoretical expectation for a cor- 
relation between an observable and a hypothesis by adding 
the observable to a certain fraction of the environments in 
which it does not already occur in a label. (Again, o will 
not be added to an environment for r if doing so causes 
some r-case to become a new generalization problem). 

RTLS attempts massive label refinement prior to focused 
label refinement. Currently RTLS determines that a label 
Z(T) requires massive label generaliration if the following 
is true: there are generalization problems for Z(r), and 
the percentage of environments in Z(T) that are not satis- 
fied in any T-case is greater than a user specifiable value, 
currently set at 5%. RTLS determines that Z(T) requires 
massive label specialization if the following is true: there 
are specialization problems for Z(7), and the percentage of 
environments in Z(T) that are satisfied in at least one non- 
T-case is greater than a user specifiable value, currently set 
at 5%. 

RTLS will attempt to decrease {increase} theoretical ex- 
pectations of correlation strengths for any o for which the 
difference between the implied {observed} correlation and 
the observed {implied} correlation exceeds a user specifi- 
able value, currently set at 1%. Once massive label ad- 
justment is completed, one must recalculate the outcome 
vector for every case, and recompute the theoretical expec- 
tation for the correlation of every o - r pair. 

The experiments conducted todate indicate that mas- 
sive label refinement can have the desired impact. In the 
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experiments reported here (section 4) it was observed that 
performing massive label refinement prior to focused label 
refinement generally resulted in a 3-5% increase in per- 
formance over test cases - cases not included in C - than 
simply using focused label refinement alone. 

4 mpirical Evaluation of 
RTLS has been implemented in common lisp and runs on 
a Texas Instruments Explorer’ II. The system has been 
tested using the aforementioned Rheum knowledge base 
(section 2.1). A total of 121 cases were available. Initially 
Rheum misdiagnoses 33 cases: 11 false positives and 22 
false negatives. While multiple hypotheses were allowed in 
Answer(c) for these cases, there is always one of them that 
is distinguished as the preferred diagnosis. As in previous 
work with Rheum [Politakis and Weiss, 1984; Ginsberg, 
Weiss, and Politakis, 19881 a case c was judged to be cor- 
rectly diagnosed by theory 7 iff the preferred diagnosis 
for c had the highest confidence factor of any hypothesis 
among those reached by I in case c. 

In a typical RTLS-Rheum experiment anywhere from 70 
to almost 100 percent of the cases are randomly chosen as 
training cases and the rest left out for independent testing. 
Average training time per trial is about 7-10 cpu minutes. 
The system always trains to 100% correct over the training 
set. The average performance on the testing set in these 
trials is nearly always in the 90% to 100% range - which 
represents improvements ranging from 17 to 27 percent 
over the initial theory. (It should be noted that in all 
but a handful of several hundred such experiments, the 
fifth phase of the procedure, described in section 3.3, did 
not have to be invoked.) Using the more accurate leave- 
one-out method [Lachenbruch, 19671 - which in this case 
involves running 121 trials, using a single different case 
as the testing set on each trial, then summing the results 
- an estimated error rate of 6.7% was obtained. When 
massive label refinement is not used 
an estimated error rate of 11.6%. 

leave-one-out yields 

5 Conclusion 
The results reported here indicate that the basic approach 
is a feasible and robust solution to the theory revision prob- 
lem for non-trivial medium size expert system theories. 
For large scale problems it will undoubtedly be necessary 
to employ heuristic strategies [Ginsberg, 19861 in order to 
pinpoint selected portions of the theory for reduction or 
partial reduction. 
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