
Theory Revision via Prior Operationalization

Allen Ginsberg
Knowledge Systems Research Department

AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract

Research in machine learning often focuses either
on inductive learning - learning from experience
with minimal reliance on prior theory - or, more
recently, on explanation-based learning - deducing
general descriptions from theories with minimal
reliance on experience. Theory revision unites
these two concerns: one must revise one’s theory
in the light of experience, but one must simulta-
neously use information implicit in the theory in
order to guide the revision process. This paper
focuses on the second step of a unified three-step
method for solving theory revision problems for
certain classes of empirical theories. Test results
for the first two phases of this approach are re-
ported.

1 Introduction and verview
A theory revision problem exists for a theory 7 when 7
is known to yield incorrect results for given cases in its
intended domain of application. The goal of theory revi-
sion is to find a revision 7’ of 7 which handles all known
cases correctly, makes use of the theoretical terms used in
7, and may, with a reasonable degree of corifidence, be ex-
pected to handle future cases correctly. In contrast to pure
inductive learning from experience, theory revision is not
only guided by the information implicit in 7, but also at-
tempts to preserve the language and, as much as possible,
the structure of 7.

This paper focuses on the second step of a unified three-
step method - integrating aspects of explanation-based
learning [Mitchell, Keller, and, Kedar-Cabelli, 19861, in-
ductive learning [Michalski 19831, and heuristic approaches
to knowledge base refinement [Ginsberg, Weiss, and Poli-
takis, 19881 - for solving theory revision problems for cer-
tain classes of empirical theories. In the first step the the-
ory is “translated” into a form that is more amenable to
inductive learning techniques. As we shall see (section 2),
this step may be viewed as a complete prior “operational-
ization” of the theory, in the sense of the term employed in
explanation-based learning [Mitchell, Keller, and, Kedar-
Cabelli, 19861. This process is called theory reduction,
and the resulting translation is called the reduced theory.
The notion of theory reduction is discussed in [Ginsberg,
1988a], and detailed accounts of the application of this idea
to “expert system theories” are given in [Ginsberg, 1988101.

The second step involves modifying the reduced theory
in order to improve its empirical adequacy. At a high level,
the methods described here differ from those described, for

example, in [Michalski 19831, in that the basic task is to
“tailor” the reduced theory so it “fits the facts,” rather
than build or rebuild a general description of the facts from
the bottom up. This perspective manifests itself in such
items as the calculation and use of theoretical expectations
of correlations between observables and theoretical terms
(see section 3.4)) as well as the use of certain “conserva-
tive” strategies, e.g., attempting to generalize expressions
that are already “closest to being satisfied” in a given case
(see section 3.1). In contrast to the heuristic approach to
knowledge base refinement advocated in [Ginsberg, Weiss,
and Politakis, 19881, the Reduced Theory Learning System
(RTLS) described here does not employ a cyclic generate-
test-select hill-climbing strategy for discovering efficacious
refinements.

Once the reduced theory has been modified, the final
step involves a “retranslation” of the modified reduced ver-
sion back into the entire language of the original theory.
This step is necessary because the reduced theory only
makes use of a subset of the vocabulary of the original
theory. While the parsimony of the reduced theory is de-
sirable in the learning step, it is undesirable as a final goal,
since a reduced theory will generally be a less compact and
efficient representation for actual use than a theory that
uses a richer language and structure. The retranslation
step of the method is not discussed here; however, an algo-
rithm for automatic retranslation of expert system theories
is known.

2 Theory Reduction & E
For a theory 7 to have any utility for a system it must be
possible for the system to apply 7 - in essentially mechan-
ical fashion - to problem cases that arise in the domain in
question. We may therefore view a useful empirical theory
as defining an “inference mechanism” that relates “observ-
able” features of problem cases to “theoretical” entities or
processes for which the theory posits certain law-governed
behavior.

In view of this, let 7 be a theory and let the vocabu-
lary (predicate symbols, propositional constants, etc.) of
7 be divided into two disjoint subsets 7, and II. We re-
fer to these as the observational (operational) and theoreti-
cad (non-operational) vocabulary of 7, respectively [Nagel,
1961; Keller, 19871; for the sake of brevity, we will hence-
forth refer to theoretical terms as hypotheses. We may
view 7 as implicitly specifying a (partial) function, hav-
ing all possible combinations of items in 7, as domain and
all possible combinations of items in 7t as range: given
some combination of observables as “input,” 7 will yield
some combination of hypotheses as “output,” i.e., this is

5% Learning and Knowledge Acquisition

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

7’s answer for this case. Complete theory reduction may
be seen as a transformation of this implicit function to a
set of functions ,!Z more amenable to analysis and revision:
for each hypothesis r E ‘&, Z(T) E L is a minimal sum-
of-products (minimal disjunctive normal form) expression
in which each product term (disjunct) consists solely of
observables. Following the terminology of de Kleer [1986],
we say that 1(r) is the label for r, and each product term
in a(~) is said to be a (minimal) environment for r. In-
tuitively, 1(r) p re resents all the possible minimal sets of
observables that would cause the theory 7 to assert r.

EBL systems may be viewed as involving dynamic par-
tial theory reduction: an “output” of a typical learning
episode in EBL systems is generally some product term in
a(r), for some r. As each new instance is explained (and
generalized) a particular item in the theoretical vocabu-
lary is being “partially reduced” to a set of predicates that
meets an operationudity criterion. For Mitchell et al. [1986]
the operationality criterion says that the generated gener-
alization must be “expressed in terms of predicates used
to describe examples.. . or other selected, easily evaluated,
predicates from the domain theory.” This is basically the
same as saying that the generated generalization must be
entirely in the observational vocabulary.’

As new instances are presented to an EBL system, new
explanations (inherent in the theory) will be generated and
generalized. For finite propositional theories there can be
only a finite number of instances (perhaps very large) that
yield new explanations and generalizations. 2 In the limit,
when all the instances are seen, the domain theory will
be completely operationalized. Complete theory reduction
yields the same results as exhaustive operationalization,
but does not require the actual presentation of cases to
achieve them: in this sense, the theory is exhaustively op-
erationalized prior to case presentation.

2.1 eduetion of Expert System
Theories

We consider an expert system theory & to be a restricted
propositional logic theory. That is, E consists of a set of
conditionals in propositional logic, i.e., the rules or knowl-
edge base. A sentence a + ,0 is considered to follow from
& iff, to put it loosely, p can be derived from cy and I
via a sequence of applications of a generalized version of
modus ponens. & is said to be acyclic if, roughly speaking,
a sentence of the form Q + or does not follow from &.

A two-step algorithm for the complete prior reduction of
acyclic expert system theories, and a system, K&Reducer,
that implements the algorithm are discussed in [Ginsberg,
1988b]. In the first step the rules in E are partitioned into
disjoints sets called rule levels. A rule r is in level 0 iff

‘DeJong and Mooney [1986] point out problems with the
notion of a well-defined, fixed observation language and Keller
[1987] argues for a notion of operationality that is more closely
tied to the “objectives” of the performance system. For the
sorts of theories considered in this paper, however, it is reason-
able, both from a formal point of view, and from the point of
view of the typical intended application domains, e.g., medi-
cal diagnosis, to view theories as having a fixed observational
vocabulary over substantial periods of time.

2This will also be true for predicate logic theories
spect to their finite models [Ginsberg, 1 988a].

with se-

the truth-value of the left-hand side of r is a function of
the truth-values of observables only. A rule r is in level n,
iff the truth-value of the left-hand side of T is a function
of the truth-values of observables and hypotheses that are
concluded only by rules at levels 0, . . . , n- 1. This partition
defines a partial-ordering for computing the reduction of
all hypotheses: each rule in level 0 is processed (exactly
once), then each rule in level 1, etc.

KB-reducer has been used to reduce several knowledge
bases. Knowledge bases of approximately 50 and 150
rules in size were reduced in 40 cpu seconds and 5 cpu
minutes respectively. The early rheumatology knowledge
base [Lindberg et ad., 19801 (call it “Rheum” for short)
which was used to conduct the experiments reported be-
low (section 4) has 84 observables, 73 hypotheses, and 367
rules when translated into the rule language used by KB-
Reducer. There are 4 rules levels. The total cpu time to
compute the reduction was approximately 10 hours on a
TI Explorer3 II. The total number of environments in the
labels is 34,522.

3 ne
Theory

This section describes the methods employed by an induc-
tive learning program, RTLS, that takes as its input a set
of labels ,C and a set of cases C such that for each c E C,
Answer(c), the “correct answer” for case c, is known. For
the sake of brevity, we use the following notation and ter-
minology. (Table 1 below summarizes most of the notation
used in this section.) Let 1(r) E L represent the label (at
some specified point in the training process) for hypothesis
r. The (current version of the) theory would assert r in
case c iff 1(r) is satisfied by c, i.e., there is some environ-
ment in I(r) that is satisfied by (contained in) c. For a
given c, the set of hypotheses r such that 1(r) is satisfied
by c will be referred to as the “outcome vector” for c. The
phrases “r-case” and “non-r-case” refer, respectively, to
any member of C which is such that Answer(c) includes,
or does not include r. Suppose that l(7) fails to have any
of its environments satisfied in a r-case c. In this event
we say that r and 1(7) “require generalization” and that c
“poses a generalization problem” for 1(r) and r. Suppose
that a(~) has one or more of its environments satisfied in
some non-r-case c. In this case we say that r and 1(r)
“require specialization” and that c “poses a specialization
problem” for 1(r) and r.

RTLS currently uses a five-phase procedure in refining
reduced theories. The first two phases involve massive la-
bel generalization and specialization; the third and fourth
phases involve focused label generalization and specializa-
tion; the fifth phase corrects any problems that are not
corrected in the first four phases. In massive label refine-
ment one attempts to counteract “systematic” errors in
a theory by deleting or adding observables to relatively
large numbers of environments in an effort to match ob-
served correlations, without trying to correct any specific
problem. As we shall see, this is a useful tactic when re-
vising theories whose reductions are much larger than the
number of cases in C. In focused label refinement specific

of Texas Instruments Inc.

Ginsberg 59 1

lo, 0
z, 7
c, c
Answer(c)
w
L
out come vector
r-case
non-T-case
generalization problem
Gen(C9 7); 9
e
e--n
G-4
aa
S
S-patches
e-n-l-0
specialization problem
Spec(C, 7); s
Spec-envs(s, T)
Left-Spec-envs(T)

New- Gen(7)

the observational terms (observables) of 7 (the given theory); a variable over these
the theoretical terms (hypotheses) of 7; a variable over these
the given set of cases; a variable over individual cases
the given (correct) theoretical description for c (may contain several hypotheses)
the label for r (initially determined by reducing 7)
the set of a(r) for r E ‘&
for a given c, this is the set of r whose J(r) are satisfied by c
a c whose Answer(c) includes r
a c whose Answer(c) does not include r
for a r, is a r-case c that does not satisfy 1(r)
the set of r-cases C C posing generalization problems for r; a variable over these
a variable over environments
the result of removing n specified observables from e, so that e - n is satisfied by given g
the set of g E Gen(C, r), for which a (non-empty) e - n exists
foragEG,, theset ofalle-nforg
for a e - n E E,, the set of non-r-cases satisfying e - n
for some e - n, the set of all o such that o is true in g, but not in any S
the result of adding some o E S-patches to e - n
for a r, is a non-r-case c that does satisfy Z(r)
the set of non-r-cases C C posing specialization problems for r; a variable over these
the set of e E 1(r) satisfied by (non-r-case) s
the union over s E Spec(C, 7) of all the environments that remain in Spec-envs(s, 7)
after certain specialization procedures have been applied
cases that would become generalization problems for r if all environments in
Left-Spec-envs(7) were deleted from I(7)

Table 1: Important Symbols and Terminology Defined

additions, deletions, and modifications are made to tar-
geted environments in labels in ways that are guaranteed
to correct specific problem cases. A key pair of principles
employed throughout these procedure is: whenever solv-
ing a generalization {specialization} problem be sure not
to create new specialization {generalization} problems. A
simple schematic example of the methods discussed here is
given in figure 1 below.

3.1 Focused Label Generalization
Let Gen(C, 7) be the set of r-cases in C which pose gener-
alizations problems for r; and let g be a variable over indi-
vidual cases in this set. Let Gr be that subset of Gen(C, 7)
consisting of every g for which there exists at least one en-
vironment e E 1(r) that would be satisfied in g if exactly
one observable were to be deleted from e. That is, removal
of the observable in question from e would yield an envi-
ronment for r that is satisfied in g. RTLS will initially
try to correct the generalization problems posed by Gr.
Any g E Gi whose generalization problem is solved in this
phase is removed from Gen(C, T). RTLS will then move
on to consider Gz C Gen(C, 7) which is defined in similar
fashion to G1. That is, for any g in G2 there exists at least
one environment e E J(T) that would be satisfied in g if ex-
actly two observables were to be deleted from e. This pro-
cess continues until all the generalization problems posed
by Gen(C, 7) are solved or the number of observables that
would have to be deleted equals the length of the largest
environment in 1(7.) .4

4The idea of first trying to generalize environments that are
“closest to being satisfied” in a case is analogous to the idea of

Let us suppose that for some n, RTLS is currently con-
cerned with the cases in G,; let g be a member of G,.
Let E, C l(7) be th e set of e E 1(r) that would be sat-
isfied in g if n of e’s observables were removed. For each
e E E,, RTLS forms e - n, i.e., e with the n observables
which make it unsatisfied in g, removed. For each such
e - n RTLS then determines whether it is satisfied in any
non-r-case. If some of the e - n’s are not satisfied in any
non-?--case, then these environments are added to the label
for a(r); the generalization problem for g is solved.

Suppose, on the other hand, that each of the e - n’s is
satisfied in at least one non - r -case. Let S be the set
of non-r-cases satisfied by one of these environments. For
each e - n and its associated S, RTLS will try to find all
the observables o which are such that o is true in g but
not true in any of the cases in S; let us call the set of such
o’s, the S-patches for e - n. Adding any o E S-patches
to e - n produces an environment - let us designate it by
the notation e - n + o - that will be satisfied in g but
not satisfied in any non-r-case. If S-patches exists for any
e - n, then for every e - n that has S-patches, RTLS will
add e-n+o to l(7) f or every o in the S-patches for e - n.

If, on the other hand, S-patches does not exist for any
e - n, RTLS will move on to try something called theory-
driven label generalization. For each e - n a sorted list of
candidates is formed, as follows. We consider every o true
in g that is not in e - n. The list of such o’s is sorted
in decreasing order by the theoretical expectation of their
“correlation strength” with respect to r - a number given

trying to generalize rules closest to being satisfied used in [Poli-
takis and Weiss, 1984; Ginsberg, Weiss, and Politakis, 19881.

592 Learning and Knowledge Acquisition

Theory
ab V ac V bc --+ 71

eVfVg-kr2
dr1r2 --+ r3

Labels of Reduced Theory
71 = abvacvbc
rz=eVfVg
73 = abde V acde V bcde V abdf v

acdf v bcdf v abdg v acdgv
bcdg

After Massive Refinement
q=aVb

=eVfVg
z=aevbeVafVbfv

adg v bdg

After Focused Refinement
rl =aVbVc
72 = ef V eg V fg
73 =unchanged

- Cases
Case: a 6 c e

Answer: q q 71 nil
f ii1 fs ef e9
nil 72 72 72

Case:
Answer:

a b9
~-1

bf9
7172 73

aef abef
7172 73 7172 73

Figure 1: A Simple Example

by the percentage of environments in 1(r) containing o (see
section 3.4 below). 5 Examining the candidate list in sorted
order, RTLS tries to find a subset 0 = { 01, ok} of the
candidates which is such that each oi E 0 has positive
correlation strength with r, and such that the conjunction
of observables of 0 is false in every non-T-case. If such an
0 is found, it is added to e - n, and this new environment
is added to I(r); the generalization problem for g is solved.
If such an 0 is not found, then the problem posed by g will
be reconsidered by RTLS when it looks at environments in
a(~) with exactly n + 1 observables removed, i.e., at the
G,+l phase.

3.2 Focused Label Specialization
Let Spec(C,h) be the set of non-r-cases in C which pose
specialization problems for r; and let s be a variable over
individual cases in this set. For each s E Spec(C, h), let
Spec-Envs(s, h) be the set of environments in a(r) satis-
fied in case s. In order to solve the specialization problem
posed by s, every environment e in Spec-Envs(s, h) must
be modified - or, if necessary, deleted from a(~) - in such
a way that e no longer is satisfied in s. Once again, how-
ever, RTLS will make a modification to solve a special-
ization problem, only if doing so does not result, in a new
generalization problem coming into existence.

Let e be an environment in Spec-Envs(s, h). RTLS will
first attempt to add observables to e to prevent it from be-
ing satisfied in s, without causing it to become unsatisfied
in any T-case it which it may currently be satisfied. It may
be possible to do this in one of two ways. First RTLS tries

5While this idea is similar to Davis’s [1979] notion of a r&e
model- which encoded the degree of correlation between the oc-
currence of items in the antecedents of rules with the hypotheses
asserted by those rules - it is more general in the sense that a
theory can imply a correlation between o and T, even if they
never occur together in any rules.

to find an observable o satisfied in every r-case but not
satisfied in any non-T-case. If such an o exists replacing e
in J(T) with the environment e + o will contribute to solv-
ing the specialization problem - it will solve it only if e is
the only member of Spec-Envs(s, h) - without generating
new generalization problems. In fact,, if there are several
such observables 01,. . . , o, , RTLS will add each e + oi to
a(~) for 1 < i 5 n. If such an o does not, exist, RTLS will
try the tactic in reverse: find an o true in every non-T-case
that is not true in any T-case. Again, for every such o,
the environment e + 6, i.e., e with the negation of o added
to it - is added to a(~) (and e, of course, is removed). If
either of these tactics is successful, RTLS will remove e
from Spec-Envs(s, h); if Spec-Envs(s, h) is now empty the
specialization problem for s is solved.

Suppose that RTLS has tried these procedures but Spec-
Envs(s, h) is still not empty. Let Left-Spec-Envs(h) be the
union of Spec-Envs(s, h) for every s after the preceding
tactics have been attempted. Intuitively, if all the envi-
ronments in Left-Spec-Envs(h) were simply removed from
i(7) all remaining specialization problems for r would be
solved; the problem, of course, is that new generalization
problems might thereby be created. Let, New-Gen(h) be
the (possibly empty) set of cases that would pose new gen-
eralization problems for T if all the environments in Left-
Spec-Envs(h) were to be deleted from a(r). For each case
g E New-Gen(h), RTLS will attempt to use theory-driven
label generalization - see section 3.1 above - to generate a
new environment for r that will be satisfied in g but not
generate new specialization problems. If this can be done
for every case in New-Gen(h) then deletion of the environ-
ments in Left-Spec-Envs(h) from r - together with addition
of the environments generated to handle New-Gen(h) - will
solve all specialization problems for r. However, outright
deletion of environments from a label is a tactic that RTLS
would prefer to use only as a last resort.

The alternative is to try theory-driven label specializa-
tion on the environments in Left-Spec-Envs(h). For each
e E Left-Spec-Envs(h) a sorted list of candidates is formed,
as follows. We consider every o that is not already con-
tained in e. The list of such o’s is sorted in decreasing
order by the theoretical expectation of their correlation
strength with respect to r (see section 3.4 below). Ex-
amining the candidate list in sorted order, RTLS tries to
find a subset, 0 = {ol,..., ok} of the candidates such that
each oi E 0 has positive correlation strength with r, and
such that the conjunction of observables of e + 0 is false
in every non-T-case. If such an 0 can be found for every e
in Left-Spec-Envs(h), and if replacing e with e + 0 results
in an Z(T) that does not have new generalization prob-
lems, then RTLS will perform these replacements. If this
is not, the case, and New-Gen(h) is either empty or can be
successfully treated by theory-driven label generalization,
then Left-Spec-Envs(h) will simply be removed from l(r).
However, it is possible for theory-driven generalization to
fail on New-Gen(h) and for theory-driven specialization to
fail on Left-Spec-Envs(h); in that event no action will be
taken, and some specialization problem for r will remain
unsolved.

Ginsberg 593

3.3 Solving All Problems highly unlikely that the focused label refinement process

Suppose that the above procedures have been applied with
less than 100% success. Let ,C, be the set of labels for
which generalization problems still exist; let L, be the set
of labels for which specialization problems still exist. The
specialization problems are addressed first as follows. Sup-
pose s is a case which poses a specialization problem for
label Z(r): simply delete every environment in Z(r) that
is satisfied in s. We do this for every case that poses a
specialization problem for any label. Let C’ be the set of
labels after all these deletions have been performed. We
must now recalculate the outcome vector for every case c
- using f? - before continuing the training process. This
is necessary because the deletions just performed may give
rise to new generalization problems which we must address
in the next step of the process. Note however, that at this
point all specialization problems have been solved.

Now we address the remaining generalization problems.
Let r be a hypothesis for which generalization problems ex-
ist. Note that an easy way of correcting all these problems
for r - without generating any new problems (assuming
that C is consistent) - is simply to add c to Z(T) for each
case c E Gen(C,r), i.e., the set of cases still posing a gen-
eralization problem for r. A better procedure is to safely
generalize each such c before adding it to Z(r). This is done
by first forming a subvector of c that contains only those
observables in c that have positive theoretical expected cor-
relation strength with respect to r. Let c7 represent this
subvector of observables. Now for every non-r-case, c’, in
which c, is satisfied we find an observable o E c- c,&o $ c’
such that o has maximum expected empirical correlation
strength with respect to r. For each such non-r-case, c’,
we add the corresponding o to c,. The resulting vector of
observables is guaranteed to be satisfied in case c but un-
satisfied in every non-r-case in C; it now is added to Z(T).
Once this procedure is repeated for every c E Gen(C, r), all
generalization problems for r will be solved, and no new
problems will be generated.

3.4 Massive Label Refinement
As we have seen, focused label refinement can guarantee
that all cases in C are handled correctly by the refined re-
duced theory. Recall however, that a good solution to a
theory revision problem should yield a rational expectation
of general improvement over future cases and not merely
over known cases. The greater the expected improvement
over the entire domain of cases, the better a solution one
has obtained. One can identify situations in which focused
label refinement alone will clearly fail to generate the high-
est expectation of such a general improvement. This will
almost certainly be the case when the reduced theory con-
tains a far greater number of environments than the num-
ber of cases in C, and C contains a fairly representative set
of cases for the domain.

To appreciate this point, consider the following exam-
ple. Suppose a label I(7 contains 1000 environments for)
r, and that all of them contain a particular observable
o. Suppose that in reality this is a particularly egregious
systematic error: o should be in only 100 environments
for r. Suppose further that the training set contains 100
T-cases, 10 of which contain o. Clearly in this case it is

will result in the deletion of o from 900 environments in
Z(T). It is, therefore, highly likely that some T-cases in the
domain but not in C will (when they become known) pose
generalization problems for the new label.

Massive label refinement is an attempt to address the
problem of refining theories that have a large reduced form
relative to the number of known cases. Massive label re-
finement involves trying to make the “correlation strength”
between observables and hypotheses implicit in a theory
match the correlation strengths that are actually observed
in the training cases. (Currently RTLS deals only with
first-order correlations, i.e., correlations between a single
observable and a single hypothesis.) Thus in the example
just given, the fact that all the environments for r contain
o raises the theoreticadexpectation that r and o will always
occur together. But the 90 T-cases in which o does not oc-
cur, as opposed to the 10 T-cases in which it does, raises
the empiricaZexpectation that r and o occur together 10%
of the time. To make the former expectation (quantita-
tively) match the latter, one should attempt to remove o
from 90% of the environments in Z(T); we say “attempt”
because removal of o from environment e should only be
performed if the resulting environment is not satisfied by
any non-r case.

In the case just given one attempts to decrease the theo-
retical expectation for a correlation between an observable
and a hypothesis by removing the observable from a cer-
tain fraction of the environments in which it occurs in a
label. This is massive label generalization. If one reverses
the example - suppose the theoretical expectation is that
o and r never occur together while the empirical expecta-
tion is that they always do - then by a similar argument
one is led to the idea of massive label specialization: one
attempts to increase the theoretical expectation for a cor-
relation between an observable and a hypothesis by adding
the observable to a certain fraction of the environments in
which it does not already occur in a label. (Again, o will
not be added to an environment for r if doing so causes
some r-case to become a new generalization problem).

RTLS attempts massive label refinement prior to focused
label refinement. Currently RTLS determines that a label
Z(T) requires massive label generaliration if the following
is true: there are generalization problems for Z(r), and
the percentage of environments in Z(T) that are not satis-
fied in any T-case is greater than a user specifiable value,
currently set at 5%. RTLS determines that Z(T) requires
massive label specialization if the following is true: there
are specialization problems for Z(7), and the percentage of
environments in Z(T) that are satisfied in at least one non-
T-case is greater than a user specifiable value, currently set
at 5%.

RTLS will attempt to decrease {increase} theoretical ex-
pectations of correlation strengths for any o for which the
difference between the implied {observed} correlation and
the observed {implied} correlation exceeds a user specifi-
able value, currently set at 1%. Once massive label ad-
justment is completed, one must recalculate the outcome
vector for every case, and recompute the theoretical expec-
tation for the correlation of every o - r pair.

The experiments conducted todate indicate that mas-
sive label refinement can have the desired impact. In the

594 Learning and Knowledge Acquisition

experiments reported here (section 4) it was observed that
performing massive label refinement prior to focused label
refinement generally resulted in a 3-5% increase in per-
formance over test cases - cases not included in C - than
simply using focused label refinement alone.

4 mpirical Evaluation of
RTLS has been implemented in common lisp and runs on
a Texas Instruments Explorer’ II. The system has been
tested using the aforementioned Rheum knowledge base
(section 2.1). A total of 121 cases were available. Initially
Rheum misdiagnoses 33 cases: 11 false positives and 22
false negatives. While multiple hypotheses were allowed in
Answer(c) for these cases, there is always one of them that
is distinguished as the preferred diagnosis. As in previous
work with Rheum [Politakis and Weiss, 1984; Ginsberg,
Weiss, and Politakis, 19881 a case c was judged to be cor-
rectly diagnosed by theory 7 iff the preferred diagnosis
for c had the highest confidence factor of any hypothesis
among those reached by I in case c.

In a typical RTLS-Rheum experiment anywhere from 70
to almost 100 percent of the cases are randomly chosen as
training cases and the rest left out for independent testing.
Average training time per trial is about 7-10 cpu minutes.
The system always trains to 100% correct over the training
set. The average performance on the testing set in these
trials is nearly always in the 90% to 100% range - which
represents improvements ranging from 17 to 27 percent
over the initial theory. (It should be noted that in all
but a handful of several hundred such experiments, the
fifth phase of the procedure, described in section 3.3, did
not have to be invoked.) Using the more accurate leave-
one-out method [Lachenbruch, 19671 - which in this case
involves running 121 trials, using a single different case
as the testing set on each trial, then summing the results
- an estimated error rate of 6.7% was obtained. When
massive label refinement is not used
an estimated error rate of 11.6%.

leave-one-out yields

5 Conclusion
The results reported here indicate that the basic approach
is a feasible and robust solution to the theory revision prob-
lem for non-trivial medium size expert system theories.
For large scale problems it will undoubtedly be necessary
to employ heuristic strategies [Ginsberg, 19861 in order to
pinpoint selected portions of the theory for reduction or
partial reduction.

6 Acknowledgments
I thank Sholom Weiss and Casimir Kulikowski for access to
the rheumatology knowledge base and cases used in these
experiments. I thank Keith Williamson for useful discus-
sions related to this topic. I also thank the anonymous
reviewers of this paper for useful criticisms.

12:121-157, 1979.

[DeJong and Mooney, 19861 G. DeJong and R. Mooney.
Explanation-based learning: an alterntive view. Ma-
chine Learning, 1:145-176, 1986.

[deKleer, 19861 Johan de Kleer. An assumption-based
tms. Artificial Intelligence, 28:127-162, 1986.

[Ginsberg, 1988a] A. Ginsberg. Theory reduction: opera-
tionalization as a prelude to learning. In Proceedings of
AAAI Spring Symposium Series, Stanford U., 1988.

[Ginsberg, 1988131 A. Ginsberg. Knowledge-base reduc-
tion: a new approach to checking knowledge bases for
inconsistency and redundancy. In Proceedings of Sev-
enth National Conference on Artificial Intelligence, Min-
neapolis, 1988.

[Ginsberg, 19861 A. Ginsberg. Refinement of Expert Sys-
tem Knowledge Bases: A Metalinguistic Framework for
Heuristic Analysis. PhD thesis, Department of Com-
puter Science, Rutgers University, 1986.. Forthcoming
as Automatic Refinement of Expert System Knowledge
Bases, Pitman Research Notes in Artificial Intelligence,
Pitman Press, London, 1988.

[Ginsberg, Weiss, and Politakis, 19881 A. Ginsberg, S.
Weiss, and P. Politakis. Automatic knowledge base
refinement for classification systems. Artificial Intelli-
gence. To appear in 1988.

[Keller, 19871 R. Keller. Defining operationality for
explanation-based learning. In Proceedings of the Sixth
National Conference on Artificial Intelligence, Seattle,
Wa., 1987.

[Lachenbruch, 19671 P. Lachenbruch. An almost unbiased
method of obtaining confidence intervals for the proba-
bility of misclassification in discriminant analysis. Bio-
metrics, 24:639-645, December 1967.

[Lindberg et al., 19801 D. Lindberg, G. Sharp, L. Kings-
land, S. Weiss, S. Hayes, H. Ueno, and S. Hazelwood.
Computer-based rheumatology consultant. In Proceed-
ings of the Third World Conference on Medical Informa
tics, pages 1311-1315, North-Holland, 1980.

[Michalski 19831 R. Michalski. A theory and methodology
of Inductive learning, ArtiJicial Intelligence, 20:111-161,
1983.

[Mitchell, Keller, and, Kedar-Cabelli, 19861 T. Mitchell,
R. Keller, and S. Kedar-Cabelli. Explanation-based gen-
eralization: a unifying view. Machine Learning, 1:47-80,
1986.

[Nagel, 19611 E. Nagel. The Structure of Science. Har-
court, Brace, and World, New York, 1961.

[Politakis and Weiss, 19841 P. Politakis and S. Weiss. Us-
ing empirical analysis to refine expert system knowledge
bases. Artificial Intelligence, 22:23-48, 1984.

References

Ginsberg 595

