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Abstract 

Credit assignment problems arise when long 
sequences of rules fire between successive exter- 
nal rewards. Two distinct approaches to rule 
learning with genetic algorithms have been 
developed, each approach offering a useful solu- 
tion to a different level of the credit assignment 
problem. We present a system, called RUDI, that 
combines features from both approaches. Experi- 
mental results are presented that support the 
hypothesis that multiple levels of credit assign- 
ment can improve the performance of rule learning 
systems based on genetic algorithms. 

I. Introduction 
Systems that learn heuristic rules often proceed in two phases: 
first, existing rules are assessed in a problem solving context 
and, second, rules are modified in the hope of improving the 
performance of the system on similar tasks. The rule assess- 
ment phase usually gives rise to a credit assignment problem: 
If a sequence of rules fires before the system solves a particu- 
lar problem, how can credit or blame be accurately assigned to 
early rules that set the stage for the final result? For example, 
in a chess playing program the decision that immediately pre- 
cedes checkmate is not usually to blame for the final outcome. 
Rather, some rule that fired earlier in the game may be respon- 
sible for the fatal sequence of moves. It is often difficult to 
identify the responsible rule. If a complete, tractable domain 
theory is available then analytical learning techniques (Mitchell, 
Keller & Kedar-Cabelli, 1986) might be applied. If one can 
assume that an optimal solution path is known (or can be pro- 
duced by the problem solving module), then an analysis of 
solution traces can provide positive and negative instance of 
rule applications (Sleeman, Langley & Mitchell, 1982; Langley, 
1983; Mitchell, Utgoff & Banerji, 1983). If very little background 
knowledge is available and the problem environment provides 
a natural measure for the quality of outcomes, it is appropriate 
to view the problem of learning as a search for high perfor- 
mance knowledge structures, and to explore the capabilities of 
genetic algorithms (Holland, 1975) to perform the search. This 
work explores the latter approach. 

Two rather distinct approaches to rule learning using 
genetic algorithms have been developed. In one approach, 
illustrated by the system called called LS-1 (Smith, 1983), each 
knowledge structure in the population represents a production 
system program represented as a list of rules. As a result of 
applying the knowledge structure to the problem solving task, a 
fitness measure is assigned to the entire program and is used 
to control the selection of structures for reproduction. Genetic 
search operators are applied to the selected structures to pro- 
duce a new population of production system programs. In 
practice, LS-1 successfully learned to solve maze tasks and to 
play draw poker (Smith, 1983). Another approach is taken in 

classifier systems (Holland & Reitman, 1978; Holland, 1986; 
Riolo, 1987), in which the genetic operators are applied to sin- 
gle production rules, or classifiers. Each rule is assigned a 
measure, called its strength, that indicates the utility of the rule 
to the system’s goal of obtaining external reward. New rules 
are discovered by genetic operators applied to existing rules 
selected on the basis of strength. The newly created rules 
must successfully compete with established rules in order to 
survive. Given an appropriate representation for the rules (Hol- 
land, 1986), the theory of genetic search predicts that the suc- 
cessful new rules will be plausible variants of their precursers, 
and that classifier systems can discover significant sets of co- 
operative rules. The classifier system approach has been 
implemented in several successful learning systems (Booker, 
1982; Goldberg, 1985; Wilson, 1987a; Zhou, 1987). 

The relative merits of these two approaches is a topic of 
active debate in the genetic algorithm research community (De 
Jong, 1987). This paper presents the view that each approach 
offers an interesting solution to a distinct aspect of the credit 
assignment problem. Section 2 describes the credit assign- 
ment performed by LS-1, as well as its shortcomings. Section 
3 presents a comparison of various credit assignment tech- 
niques used in classifier systems. Section 4 outlines a new 
rule learning system, RUDI, that tries to exploit each of these 
techniques to its best advantage. An experimental comparison 
of the various techniques appears in Section 5. 

2. Implicit Credit Assignment in LS-1 
Smith (1983) has described a system called LS-1 that employs 
a genetic algorithm to search for high performance knowledge 
structures, each structure consisting of a list of rules. LS-1 
maintains a population of knowledge structures that evolves 
over time as a result of the system’s experiences. A fitness 
measure for each knowledge structure is obtained by observ- 
ing the performance of a problem solving module that uses the 
given rules to solve a number of tasks from the problem 
domain. Once each knowledge structure in the population has 
been evaluated, a new population of structures is formed in two 
steps. First, a selection procedure chooses structures for 
reproduction by a stochastic process that ensures that the 
expected number of offspring associated with a given structure 
is proportional to the structure’s observed performance relative 
to the other structures in the current population. As a result, 
high performance structures may be chosen several times for 
replication and low performance structures may not be chosen 
at all. The second step produces new plausible knowledge 
structures by recombining pairs of selected structures using 
idealized genetic operators. The primary genetic operator is 
crossover, which combines two parent structures to form two 
similar offspring. 1 Crossover operates in LS-1 by exchanging 

l Random mutation plays a minor role in genetic algorithms as a background 
operator that maintains the reachability of ail points in the search space. 
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segments of the string or list representations of the parents. 
For example, if the parents are represented by the lists: 

probability of a matched rule being selected to fire is propor- 
tional to its strength.3 When a rule fires, the operator specified 
by the right-hand-side is applied to the current state to produce 
the new state. If no rule matches the current state, a randomly 
chosen operator is used to produce the next state. 

We first consider a strength updating scheme we call the 
Profit Sharing Plan (PSP), a simplified version of the strength 
updating scheme described by Holland and Reitman (1978). In 
this scheme, problem solving is divided into episodes delimited 
by the receipt of external reward. At the end of each episode, 
the strength of each active rule loses a fixed faction of its value 
and gains an amount equal to the reward obtained.4 Under 
relatively consistent external rewards, the strength of each rule 
under the PSP rapidly converges to an equilibrium strength 
that predicts the level of reward that will be received at the end 
of the episode. 

Most recent classifier systems (Booker, 1982; Goldberg, 
1983; Riolo, 1987; Wilson, 1987a) have adopted a distributed, 
incremental credit assignment scheme, called the Bucket Bri- 
gade Algorithm (BBA), that is closely related to the Temporal 
Difference Methods analyzed by Sutton (1988). In its simplest 
form, the BBA requires that each time a rule fires, the rule pays 
a fixed fraction, called the bid-ratio, of its strength to the rule 
that fired on the previous time step. When external reward is 
obtained, it is paid to the final rule in the chain. 

In many cases, the PSP and the BBA lead to identical 
results, but differences can arise when rules match more than 
one state. Consider the example shown in Figure 1. Assum- 
ing that state A arises equally as often as state E, Table 1 
shows the equilibrium strength for the rules under each credit 
assignment scheme. This example shows that rules that fre- 
quently fire in sequence are assigned similar levels of strength 
by the BBA, whereas the PSP generally gives a better estimate 
of the expected external reward. 

(rule A, rule B, rule C, rule D, rule E) and 
(rule a, rule b, rule c, rule d, rule e) 

then crossover at the rule level2 might produce the offspring 

(rule A, rule B, rule c, rule d, rule e) 
(rule a, rule b, rule C, rule D, rule E) 

and 

The combined effect of performance-biased reproduction and 
crossover is a sophisticated form of adaptive search through 
the space of knowledge structures described by the Schema 
Theorem for genetic algorithms, established by Holland (1975) 
and extended to encompass LS-l’s operator set by Smith 
(1983). This theorem states that the number of structures in 
the knowledge base that share a given subset of components 
(e.g., a group of rules in LS-1) can be expected to increase or 
decrease over time at a rate proportional to the observed per- 
formance of the subset. This property is known as the implicit 
parallelism of genetic algorithms (Holland, 1975). Thus, even 
though LS-1 explicitly computes utility only for entire sets of 
rules, credit assignment operates implicitly at the level of much 
smaller groups of rules. 

The implicit credit assignment in LS-1 is especially 
effective if related rules are clustered, since rules that are phy- 
sically close together on the list representing the knowledge 
structure stand a good chance of being inherited as a group. 
For this reason, LS-1 includes an inversion operator (Holland, 
1975) that reverses a randomly chosen contiguous set of rules 
on a given knowledge structure, thereby altering the rule com- 
binations disrupted by crossover. A moderate rate of inversion 
produced slight performance improvements in LS-1 (Smith, 
1983). However, it was found that random inversion is too 
weak a method to search the space of rule permutations and 
identify related subsets of rules. The clustering problem was 
partially addressed in LS-2, a system that performs 
classification of human gait data (Schaffer & Grefenstette, 
1985), by assigning multiple performance measures for each 
rule set. Section 4 presents a new way of using individual rule 
utilities to cluster related sets of rules within the LS-1 frame- 
work. First, we describe how such rule utilities can be com- 
puted using techniques developed for classifier systems. 

3. Explicit Credit Assignment in Classifier Systems 

A primary difference between LS-1 and classifier systems is 
that classifier systems assign a utility measure called strength 
to individual rules rather than to entire production system pro- 
grams. Just as the genetic algorithm in LS-1 implicitly operates 
on small groups of rules based on explicit fitness measures 
assigned to entire rule sets, the genetic algorithm in classifier 
systems implicitly exploits information about components of 
rules based on the strength assigned to individual rules (Hol- 
land, 1986). Here we focus on the explicit credit assignment 
mechanisms that operate on the rule level. We further limit the 
discussion to classifier systems that learn heuristic control 
rules for applying a set of known operators to a set of states. 
We assume that a single rules fires at each step, and that the 

* Crossover in LS-1 operates at multiple levels. Crossover might occur 
between individual symbols of two rules, producing new rules that inherit some 
conditions from each parent (Smith, 1983). 

Reward: 

200 

100 

Fig. 1. State Space Fragment 

Rule PSP-Strength BBA-Strength 

Rl 200 150 2 R2 200 150 

R3 150 150 

R4 100 150 
R 100 150 

Table 1. Effects of Different Strength Updating Schemes 

3 In the general classifier system model (Holland, 1986; Riolo, 1987) conflict 
resolution may depend on the generality of the rules, strengths may be reduced 
by a variety of taxes, and more than one rule may fire on a single step. The 
effects of these factors on credit assignment is a topic for further research. The 
conflict resolution methods we discuss bear some similarity to those in ACT 
(Anderson 8 Kline, 1979). 

4 Holland and Reitman (1978) attenuate rewards so that rules firing earlier 
are usually rewarded less than those firing closer to the end of an episode. 
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4. RUDI: A Multilevel Credit Assignment System 1) 
We have seen that credit assignment in LS-1 operates on the 
level of groups of rules, but is hampered by its lack of 
knowledge about the performance of individual rules and by 
the inability of random inversion to create meaningful clusters 
of rules. The PSP and the BBA provides complementary utility 
information about individual rules. PSP-Strength provides a 
more accurate estimate of the utility of a rule in terms of its 
expected external reward. BBA-Strength indicates the 
dynamic associations among rules, with rules that fire in 
sequence converging to similar levels of BBA-Strength. This 
section describes one way to exploit all of these credit assign- 
ment techniques in a single system. 

The shift phase is necessary in order to avoid a bias against 
certain distributions of building blocks. For example, the shift 
phase allows (but does not guarantee) an offspring to inherit all 
of the high BBA-Strength rules from each parent. Figure 3 
shows an example of clustering a rule set. 

structure on the 

4.1. The Problem Solving Level 

RUDI (for Rule Dlscovery) is a system that combines features 
of LS-1 and classifier systems, as shown in Figure 2. 

Performance 
> 

/I ( Strength 1 Reward 

Fig. 2. RUDI: A Multilevel Genetic Learning System. 

The problem solving level of RUDI consists of a simplified 
classifier system, as described in Section 3, that maintains 
both PSP-Strength and BBA-Strength for each rule. Since 
PSP-Strength provides an estimate of expected external 
reward, it is used for conflict resolution during problem solving. 
BBA-Strength is used by the learning level to cluster co- 
operative sets of rules, as described below. The problem 
solver reports to the learning level the average external reward 
received by each rule set during the solution of a sets of tasks 
from the problem domain, as well as the updated rule 
strengths. 

4.2. The Learning Level 
Like LS-1, the genetic learning algorithm in RUDI operates on 
a population of knowledge structures, each represented by a 
list of rules. The overall performance of the knowledge struc- 
tures controls the selection of knowledge structures for repro- 
duction. Modified structures are formed by applying crossover 
to the selected structures, as in LS-1, except that each rule in 
the offspring inherits the strengths associated with the 
corresponding rule in the parent structure.!j 

Unlike LS-1, the strengths of the individual rules 
influence the physical representation of the knowledge struc- 
tures in RUDI, making it more likely that useful combinations of 
rules survive and propagate throughout the knowledge base. 
This is accomplished by a heuristic form of inversion called 
clustering. Clustering is performed just prior to crossover and 
involves two steps: 

5 In the case of a new rule created by crossing in the middle of two 
new rule is assigned the average strength of the two parental rules. 

rules, the 

Sort the rules within the knowledge 
basis of their BBA-Strength. 

Treating the knowledge structure as a ring, shift the 
sorted rules a random number of rule positions along the 
structure. 

BEFORE CLUSTERING: 

Rule: R, R2 R3 R.9 R5 
Strength: 225 50 250 30 300 

1) SORT BY BBA-STRENGTH: 

Rule: R5 R3 Rl R2 R4 
Strength: 300 250 225 50 30 

2) CIRCULAR SHIFT: 

Rule: R4 
Strength: 30 

R5 R3 Rl R2 
300 250 225 50 

Fig. 3. Cluster Operator. 

As shown in Section 3, rules that frequently occur in the same 
problem solving chain will tend to have similar levels of BBA- 
Strength. Clustering moves such rules closer together on the 
knowledge structure, and since crossover takes contiguous 
groups of rules from each parent, rules occurring frequently in 
the same chain will tend to be inherited as a group. This 
heuristic provides a way to form meaningful clusters of co- 
operative rules that was missing from LS-1. 

5. An Experimental Study 

This section describes experiments that compare RUDl’s com- 
bination of credit assignment mechanisms with those mechan- 
isms in isolation. Space permits the detailed discussion of only 
one set of experiments, but similar results have been achieved 
on other problems with various state-space topologies and dis- 
tributions of rewards to final states. The test problem consisted 
of a state space containing 288 states as shown in Figure 4. 
There were 32 initial states and each traversal of the space 
required eight decision steps. Each non-final state was 
identified by an 8-bit feature vector indicating its position in the 
space. Three operators -- left, straight, and right -- 
mapped each state to its successors. The state space was 
cylindrical, so that left(O) = 63. The rewards associated with 
the final states ranged from 0 to 1000, with an average of 250. 
As shown in Table 2, the rewards were distributed around two 
hills of high reward, with payoff valleys between. The distribu- 
tion of external rewards to the final states was chosen in order 
to require the discovery of correct heuristic rules for the early 
stages of each task in order to gain maximum reward. For 
example, to obtain maximum reward from starting state 0 (at 
the upper left corner of the state space), it was necessary to 
apply the operator right for at least seven of the eight steps 
in the task (in order to reach maximum reward at state 263 or 
264). 

598 Learning and Knowledge Acquisition 



INITIAL STATES 

30 31 

8 
62 63 

FINAL STATES 

Fig. 4. Experimental State Space 

I State: 256 257 258 259 260 281 282 263 264 265 266 267 268 269 270 2711 

Reward: 0 0 50 75 125 250 500 1000 1000 500 250 125 75 50 0 0 

State: 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 

Reward: 0 0 50 75 125 250 500 1000 1000 500 250 125 75 50 0 0 

Table 2. Distribution of External Rewards. 

5.1. Rule Representation 

The left hand side of each rule contains a pattern that matches 
a set of states, using the symbol # to indicate that the value of 
the corresponding feature is irrelevant.6 The right hand side of 
each rule specifies a single operator, using a fixed mapping 
from integers to operators. For example, the rule 

00000##1 -+ 0010 

represents the heuristic 

IF the current state is in the set {1,3, 5, 7) 
THEN apply operator go-straight. 

Given this representation, there are a total of 19,683 distinct 
rules in the rule space. Recognizing that it is generally infeasi- 
ble to consider all possible rules (or even all maximally specific 
rules), each system was required to learn rule sets that con- 
tained a maximum of 128 rules. 

5.2. Experimental Results 

A series of experiments was performed to test the effects of 
various credit assignment methods on the test problem. 
Although it is possible to inject available knowledge into 
genetic learning systems (Grefenstette, 1987), for the purposes 
of these experiments, all the learning systems began with ran- 
domly generated knowledge structures. Since genetic learning 
systems are stochastic processes, all plots show the average 
of five independent runs. 

Figure 5 shows performance profiles for a random walk 
algorithm and for two simple classifier systems that used either 
the PSP or the BBA for conflict resolution and for rule repro- 

s Holland (1975) discusses the possibility of learning new features, but we do 
not pursue that approach here. Holland (1986) discusses appropriate pattern 
languages for classifier systems, and Booker (1982) discusses issues in 
matching. 

duction. The system using PSP clearly dominated the system 
using BBA, but both left much room for improvement, since the 
maximum reward per episode was 1000. These results, while 
not conclusive, are consistent with previous studies in which 
classifier systems have had difficulty in performing successful 
credit assignment over chains of similar length, unless the BBA 
is augmented by specially designed bric!ge classifiers (Riolo, 
1987). 

lOOO- 

Ave 800 - 
PSP 

BBA 

____cvv Random 

- I I I I I I 
0 10 20 30 40 50 

Episodes (K) 

Fig. 5. Performance Profiles of Classifier Systems. 
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I 
10 
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20 30 40 50 

Episodes (K) 

Fig. 6. Performance Profiles of IS-1 Style Systems. 

Figure 6 shows the performance of three LS-1 style sys- 
tems that used different forms of credit assignment. The sys- 
tem denoted LS-1.0 used random conflict resolution and no 
clustering at the learning level. The system denoted LS-1.5 
used PSP for conflict resolution, but performed no clustering at 
the learning level. And, as described above, RUDI used PSP- 
Strength for conflict resolution and BBA-Strength for clustering 
at the learning level. Each system maintained a knowledge 
base of 50 knowledge structures, each consisting of 64 rules 
along with their associated strengths. Each structure was 
evaluated in 20 reward episodes, each starting at a randomly 
chosen initial state. Each run consisted of 2500 rule set 
evaluations (50 generations). 

After each run, the rule set with the highest evaluation in 
the final population was subjected to a final evaluation consist- 
ing of 1000 reward episodes. The average results for all runs 
are shown in Table 3. The clear performance advantage of 
RUDI over the other systems supports the hypothesis that mul- 
tiple levels of credit assignment can improve the performance 
of rule discovery systems based on genetic algorithms. 
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System Ave. External Reward 

Optimal 1000 

RUDI 943 

LS-1.5 791 

LS-1 .o 724 

PSP 632 

BBA 468 

Random 250 

Table 3. Performance of Final Rule Sets. 

6. Conclusions 
This paper has examined issues of credit assignment in rule 
learning systems based on genetic algorithms. The classifier 
systems approach and the LS-1 approach each provides useful 
mechanisms for assigning credit. RUDI represents a new 
method of reconciling these two approaches, using the BBA 
designed for classifier systems to solve the clustering problem 
in LS-1. RUDI demonstrate the benefits of exploiting multiple 
levels of credit assignment. Further testing is needed to delimit 
the class of problems for which this approach is most valuable. 

An important topics for further research involves the 
development of local strength updating schemes like the BBA 
that predict levels of external reward to the degree achieved by 
the PSP scheme. Such schemes would be especially useful in 
systems that allow parallel rule firing (Holland, 1986). 

Wilson (1987b) has described a hierarchical form of 
classifier system in which strength is passed only among 
modules that operate at the same level of abstraction, thus 
keeping the chains at each level relatively short. This seems to 
be a promising approach that deserves further attention. 
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