
Perceptron Trees: A Case Study in
ybrid Concept epresentations

Paul E. Utgoff
Department of Computer and Information Science

University of Massachusetts
Amherst, MA 01003

Abstract

The paper presents a case study in examining the
bias of two particular formalisms: decision trees
and linear threshold units. The immediate result
is a new hybrid representation, called a percep-
tron tree, and an associated learning algorithm
called the perceptron tree error correction proce-
dure. The longer term result is a model for ex-
ploring issues related to understanding represen-
tational bias and constructing other useful hybrid
representations.

P Introduction
A core problem in machine learning is how to learn from
examples. One would like to observe positive and negative
instances of a concept, and be able to identify a gener-
alization that is both correct for the observed instances
and a good predictor for the classification of unobserved
instances. Several algorithms have been devised, includ-
ing Candidate Elimination [Mitchell, 19781, ID3 [Quinlan,
19831, AQ [Michalski and Chilausky, 19801, ID4 [Schlim-
mer and Fisher, 19861, and ID5 [Utgoff, 19881.

A fundamental issue in concept learning is the prob-
lem of built in biases that cause some generalizations to
be preferred to others, even among those generalizations
that are consistent with all the observed training instances
[Utgoff, 19861. This paper is concerned with biases that
are inherent in a given concept formalism. Here, formal-
ism is seen as one aspect of representation. Examples of
formalisms include predicate calculus, formal grammars,
set-theoretic notation, and other algebras. A second as-
pect of representation is the set of particular predefined
terms and concepts that provide the basic building blocks
for constructing concept descriptions within the formalism.

An example of bias that is inherent in a formalism is
evident in the decision tree formalism. It is biased toward
concepts that are expressed as boolean combinations of the
instance features. If the concept to be learned is based on
something other than a boolean combination, then the de-
cision tree formalism will be a poor choice, resulting in a
large tree that generalizes poorly for the unobserved in-
stances. Consider the “numerically greater than” relation.
A decision tree formalism would be a poor choice, because
each ordered pair (z, y) would need to appear in the tree.
The result would be rote learning.

It is beyond the scope of this paper, and beyond our
present knowledge, to make any catalogue of formalisms
and their inherent biases, or to draw any large conclu-
sions about such biases. Instead, this paper presents a case

study in examining the bias of two particular formalisms:
decision trees and linear threshold units. The immediate
result is a new hybrid representation, and an associated
learning algorithm. The longer term result is a model for
exploring issues related to understanding representational
bias and constructing other useful hybrid representations.

2 otivation
The thesis of the work is that individual concept for-
malisms have inherent biases. This implies that no single
formalism is the best choice for all concept learning prob-
lems. It would increase the autonomy and effectiveness of
a learning program if it were able to make its own choices
regarding selection of formalism. Such choices should oc-
cur at every level of the learning, including terms or sub-
concepts, not just at the top level. The result of mixing
formalisms and statements within those formalisms is a
hybrid representation. By selecting an appropriate formal-
ism for each subconcept, the learning program draws on
the special strengths of that formalism. Strength is used
loosely to refer to the ease with which particular concepts
can be described within the formalism. To the extent that
the strength of each individual representation complements
the weaknesses of the others, the hybrid representation is
enriched.

The present work arose from the need for a learning
program to be able to handle a stream of training instances
flowing at a rate of up to several thousand instances per
minute [Utgoff and Heitman, 19881. In terms of handling
a large volume of instances, decisions tree methods and
connectionist learning methods are natural choices.

The desire to find concepts that are consistent with all
the training instances, given that the training instances
are labeled consistently l, favored decision trees, leading to
examination of ID3 [Quinlan, 19831, ID4 [Schlimmer and
Fisher, 19861, and ID5 [Utgoff, 19881. Unfortunately, ID3
is not incremental, ID4 does not always find a consistent
concept description, and ID5 saves the training instances,
making it space-inefficient for a large volume of instances.
More important, the bias of the decision tree formalism
was inappropriate for many kinds of concepts that were to
be learned.

Connectionist methods provide the needed efficiency in
handling training instances, but there is no existing theory
regarding choice of network architecture. This is of critical
importance, since choice of network is closely analogous to
the problem of selecting a representation. For example, a

1. he.
way on

any given training instance is
every presentation.

always classified the same

utgoff GO1

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

The following requirements and assumptions emerged:

1.

2.

3.

4.

5.

The learning algorithm must be able to handle a large
volume of training instances efficiently and incremen-
tally.

The algorithm must be able to select an appropriate
formalism at any level.

The algorithm must find a consistent concept descrip-
tion in finite time without human intervention.

The training instances are assumed to be labeled con-
sistently.

The resulting concept description must be efficient for
classifying unobserved instances.

large network can represent more concepts than a small
network. The choice of network architecture directly af-
fects the expense of updating weights, granularity of rep-
resentation, and quality of generalization.

Now consider the characteristics of learning with the deci-
sion tree formalism and learning with the linear threshold
unit formalism.

3 Decision TYees and Linear
Threshold Units

A’ decision tree, especially as described by Quinlan, is a
node that contains an answer (typically ‘+’ or ‘-’ to indi-
cate the classification) or an attribute test with, for each
value that the attribute can take on, a branch to a de-
cision tree. Each branch represents a disjunction. Each
distinct path through the tree, from the root to an an-
swer node, represents a conjunction. A decision tree can
be viewed as a factored boolean expression. For classifi-
cation purposes, a decision tree is traversed, starting at
the root, according to the decision nodes in the tree and
the corresponding values in the instance, until an answer
node is reached. There is a large literature on methods
for constructing decision trees [More& 19821. Throughout
this paper, the information-theoretic approach is assumed
[Lewis, 1962; Quinlan, 19831, in which the tree building
process selects the attribute test that removes the greatest
amount of ambiguity, leaving the least amount of expected
decision making to be done. This kind of tree building
procedure is quasi-optimal. The structure of a decision
tree has the effect of partitioning the instance space at
each decision node, due to the manner in which the tree is
traversed for classification purposes.

A linear threshold unit, herein abbreviated LTU, is a de-
vice that compares a weighted sum of instance features to
a fixed threshold value [Minsky and Papert, 19691. The
model assumes that presence or absence of a feature in an
instance is represented numerically. An instance is repre-
sented by a vector I that encodes the presence or absence
of each feature. The LTU maintains one weight for each
feature and one weight for the constant term (viewing the
weights as coefficients of a linear polynomial), making a
vector W of such weights. The constant term, denoted
8 throughout this paper, is treated as a feature that is
present in every training instance. If We I is greater than
or equal to 0 then the instance I is classified as positive by
the LTU. Otherwise, the LTU classifies I as negative. Ge-
ometrically, W defines a hyperplane. The inner product

Decision Tree LTU
Complete Representation Yes N
Guaranteed Convergence Yes NE
Efficient Update
Efficient Classifier Yes P;yoer y)

Yes
Yes

Boolean Combination Bias Yes No
Hyperplane Bias No Yes

Table 1: Characteristics of the Two Methods

of W and I indicates which side of the hyperplane I is on.
As guaranteed by the Perceptron Convergence Theorem
[Minsky and Papert, 19691, a W that separates the posi-
tive and negative instances via a hyperplane can be found
in a finite number of steps if such a W exists. This means
that a LTU will find a consistent concept description if and
only if the target concept is describable by a hyperplane.

Now consider the characteristics of the two formalisms
and their associated learning algorithms as listed in table
1. The item “Complete Representation” refers to whether
every concept over the instance space is representable.
“Guaranteed Convergence” indicates whether the associ-
ated learning algorithm is guaranteed to find a concept
description that is consistent with all the observed train-
ing instances. The item “Efficient Update” refers to the
expense of handling a training instance that has been pre-
sented to the learning algorithm.

In qualitative terms, one would like a representation and
associated learning algorithm that possesses all the favor-
able and none of the unfavorable characteristics. Note that
neither decision trees nor LTUs alone possess all the favor-
able characteristics.

This section reports a case study in constructing a hybrid
representation and associated learned algorithm. It is mo-
tivated by the requirements listed above in section 2 and
by the observation in table 1 that decision trees and linear
threshold units complement each other well.

4.1 Perceptron Tree epresentation
Define a perceptron tree to be either a linear threshold unit,
or an attribute test with, for each value the attribute can
take on, a branch to a perceptron tree. The term “per-
ceptron tree” was chosen because the linear threshold unit
is the basic unit of Rosenblatt’s perceptron. A perceptron
tree is much like a decision tree, except that every leaf node
is a LTU. As explained below, this is not simply a case of
trading in answer nodes for LTUs. Given the ability of a
LTU to represent concepts, a LTU can serve in place of a
decision tree or subtree. The number of decision nodes in
a perceptron tree need never exceed the number of nodes
in a plain decision tree, and will typically be less.

For the work reported here, the symmetric model of in-
stance representation is assumed [Hampson and Volper,
19861. Each feature is represented by 1 if present in the in-
stance and -1 otherwise. A feature is a specific value of a
specific attribute. For example, if the color of the instance
is red, then the attribute is “color”, the value is “red”, and
the feature is “color is red”.

602 Learning and Knowledge Acquisition

It is important to note that the perceptron tree formal-
ism is complete.

Theorem 1 The perceptron tree formalism is complete in
the sense that for every possible subset of the instance
space, there is a perceptron tree that can describe exactly
that subset.

Proof: The decision tree formalism is complete. Because
a perceptron tree could be elaborated to a plain decision
tree down to the point that each instance is described by
a single attribute, it is sufficient to show that a LTU can
discriminate instances described by a single feature. This
is trivially so because for each attribute value i observed
in some positive instance, weight zud = 0 will cause that
instance to be classified positive. Similarly, for each at-
tribute value i observed in some negative instance, weight
wi = -1 will cause that instance to be classified negative.
Under the assumption that a training instance is never la-
beled positive on one occasion and negative on another, it
will always be the case that an instance with a given value
of the attribute can be uniquely classified. •I

A perceptron tree is a hybrid representation. It is a
disjunction of hyperplanes, each selected by a unique con-
junction of features. A perceptron tree may need to be
a decision tree down to the point that each leaf LTU is
discriminating instances based on a single attribute. This
would be equivalent to a complete decision tree. However,
a perceptron tree offers the ability to describe a space of
instances with a LTU. A perceptron tree can be smaller
than a plain decision tree in terms of number of decision
nodes. This is an advantage because the need to partition
the instance space on an attribute test may be significantly
reduced. It is potentially a disadvantage if obtaining the
value of each attribute is considered expensive, because a
LTU requires obtaining the value of every attribute not
tested above in the tree. In terms of computation, ob-
taining all the values can be done in parallel. However,
depending on the application, it could be expensive or un-
warranted to perform all the tests.

4.2 Peseeptron Tree Error Correction
rocedure

The error correction procedure incrementally updates a
perceptron tree, which is a global data structure. The ini-
tial perceptron tree consists of a single empty node. An
empty node is a node that contains no information and
has not yet been initialized as either as decision node or
a LTU node. A decision node is a node that contains an
attribute test and, for each value of the test attribute that
has been observed previously, a branch to a perceptron
tree. A LTU node is a node that contains a linear threshold
unit. The notation dim(W) indicates the number of com-
ponents (features) in vector W. The procedure that up-
dates a perceptron tree in response to a training instance,
called the perceptron tree error correction procedure, is:

1. While at a decision node, traverse the indicated value
branch.

2. If at a decision node, then there was no value branch cor-
responding to the value in the instance. Add a new branch
with a new empty node at its leaf and traverse the branch
to the leaf.

3.

4.

5.

6.

7.

If at an empty node, then make it a LTU node and initial-
ize the LTU at the node. The LTU is initialized by setting
all weights in the vector W of the LTU to 0. Any other
bookkeeping variables for the LTU are also initialized.

Compute the relationship of instance I to the hyperplane
defined by W by y t WV I.

If y 2 0 and the training instance is negative, then adjust
W so that 1 would have been correctly classified as nega-
tive. This is computed by W c W - I * (I.~j 1 + 1).
Go to step 7.

If y < 0 and the training instance is positive, then adjust
W so that II would have been correctly classified as posi-
tive. This is computed by W t W + I . ([.3&J + 1).

If the space of instances at this node should be partitioned
into subspaces (explained below), then discard the LTU
at this node and replace it with an attribute test. This
makes the node a decision node with no branches. (There
is no immediate need to provide branches below the node
because they will be grown as necessary with subsequent
training.)

There are four points to note. First, the procedure indi-
cated for adjusting W in steps 5 and 6 above is the absolute
error correction procedure described in Nilsson [Nilsson,
19651. Second, W is integer-valued. Third, a perceptron
tree only grows, it never shrinks. Finally, the W at each
LTU corresponds to the features that were not determined
by decision nodes. For example, if “color” is a test at-
tribute above a given LTU, then no feature corresponding
to “color” is part of the W of that LTU. This is because
the attribute “color” and its value are fixed as a result of
taking that path through the decision nodes of the percep-
tron tree.

There are two issues in step 7 above. First is the prob-
lem of detecting when the space of instances should be
partitioned via an attribute test. The second is the prob-
lem of picking the attribute for the decision node of the
perceptron tree. A specific method for deciding when to
partition, and a specific method for picking an attribute
are given below. Together, they illustrate one way of in-
stantiating step 7 of the procedure. The sole requirement
is that the space of instances at a node be split if that
space is not linearly separable.

4.2.1 When to split
If the space of instances at a node is not linearly separa-

ble, then it is necessary that the space be split (partitioned)
into subspaces. A space of instances is linearby separable
if there exists a hyperplane that discriminates the positive
and negative training instances. The problem is to detect
that the space of instances is not linearly separable. The
Perceptron Cycling Theorem [Minsky and Papert, 19691
states that the perceptron learning algorithm visits a fi-
nite number of weight vectors W, assuming integer valued
weights, regardless of separability. A corollary [Gallant,
19861 is that the perceptron learning algorithm will leave
and revisit at least one weight vector if and only if the
space of instances is not linearly separable. Thus, to prove
nonlinear separability, it is sufficient to prove that the cur-
rent weight vector W has been visited before. A sufficient
test for separability is:

Corollary 1 If the number of vectors visited (so far) ex-
ceeds the number of distinct vectors that could have been

utgoff GO3

visited (so
separable.

far), then the space of instances is not linearly

To be able to compute an upper bound on the number
of distinct vectors that could have been visited so far, the
minimum and maximum value that each weight 2vi has ever
taken on are maintained within the LTU. The notations
wi,min and wi,maz indicate, respectively, the minimum and
maximum value wi has ever taken on. An upper bound on
the number of distinct vectors that could have been visited
is:

. ,

II(wi,maz - Wi,min + 1)
i=l

This leads immediately to:

Corollary 2 Nonlinear separability can be detected in a
finite number of steps, without saving previous weight vec-
tors.

This follows immediately because the above upper bound
on the number of distinct weight vectors that could have
been visited is finite. Thus, by corollary 1 and the above
computable upper bound (1) on the number of distinct
vectors that could have been visited so far, a procedure
exists for detecting nonlinear separability: if the number
of vectors visited (so far) exceeds upper bound (l), then
the space of instances is not linearly separable.

The test for nonlinear separability is correct, but con-
servative because the upper bound is not tight. Cycling
can occur long before the test detects it. A test is needed
that both detects cycling when it first occurs and does not
require saving the training instances. Gallant’s “Pocket Al-
gorithm” [Gallant, 19861 addresses the problem indirectly
by detecting when the classification performance of a best
weight vector for a linear threshold unit appears to have
reached an asymptote. Although such a test does not prove
nonlinear separability, it may provide a good heuristic. Ho
and Kashyap [Ho and Kashyap, 19651 constructed a pro-
cedure for detecting an inconsistency in a set of linear in-
equalities, but it requires saving the training instances.

For the current work, a more aggressive test is used for
deciding when to split. Due to the completeness of the
perceptron tree representation, splitting more often than
is strictly necessary is not harmful, in the sense that the
ability to find a consistent concept description is not lost.
It means that it is possible that a decision node will have
split the space even though a LTU would have been suf-
ficient. Instead of detecting only nonlinear separability,
the test detects when the LTU is not making significant
progress toward arriving at a consistent concept descrip-
tion.

The test is based on the number of vector adjustments
of W that have occurred since some wi,mdn or some ZU~,~~,~
has been adjusted. If W continues to be adjusted in re-
sponse to misclassified training instances, yet the minimum
and maximum values of the wi come to be adjusted rarely
or seemingly not at all, then there is reason to believe that
there is lack of progress in moving toward a solution vector.
At issue is how many weight adjustments without chang-
.
mg a wi,mas or a wi,7nin constitute lack of progress. Let
C be the number of consecutive vector adjustments to W .
smce some wi,min or some wi,maz has been adjusted. The
test is: if C > dim(W) th en split the space of instances.

4.2.2 Where to split
The problem of picking an attribute test for a decision

node has received much attention in the fields of pattern
recognition and statistics [Fu, 1968; More& 19821. As men-
tioned above in section 3, the approach taken here is to
employ an information-theoretic criterion that measures
the amount of ambiguity in a space of instances. The at-
tribute that removes the greatest amount of ambiguity, by
partitioning the space into the least ambiguous subsets,
is chosen as the attribute test for the decision node. See
Quinlan [Quinlan, 19831 for a specific algorithm. See sec-
tion 3.3.1 of Moret [Moret, 19821 for a general discussion
and for references to theoretical work.

The information-theoretic splitting criterion currently in
use requires the number of positive and number of nega-
tive instances observed for each of the wi. These counts
are maintained in each LTU, and are updated for every
observed training instance, whether or not the weights in
W are adjusted.

4.23 Convergence to a Consistent Concept
Description

Given that there exists a perceptron tree representa-
tion of a concept description that is consistent with all
the training instances, one needs to consider whether such
a description will be found.
Theorem 2 If the training instances are labeled consis-
tently, then the perceptron learning algorithm, using the
perceptron tree error correction procedure, will find a con-
sistent concept description in a finite number of steps.
Proof: Either the LTU finds a solution vector in a finite
number of steps, as per the Perceptron Convergence The-
orem, or the space of instances is detected to be not lin-
early separable in a finite number of steps (corollary 2).
If the space of instances is not linearly separable, then it
is split with an attribute test. Since the algorithm is ap-
plied recursively at each node, it is only necessary to show
that a linearly separable space is finally reached at each
LTU node. This is guaranteed by the completeness of the
representation (theorem 1) and the consistent labeling as-
sumption. Cl

4.2.4 Learning Behavior

Because a perceptron tree has a LTU at each leaf node,
much of the learning behavior is characteristic of a LTU.
As per the perceptron learning algorithm, one must re-
peatedly present the training instances because the LTU
is not guaranteed to remain consistent with the previously
observed training instances. A perceptron tree has the
additional characteristic that replacing a leaf LTU with a
decision node (attribute test) causes that LTU to be dis-
carded. New LTUs must be trained at each new leaf node
below the new decision node. This is most noticable when
the initial root LTU is replaced by an attribute test. The
effect becomes less noticable at subsequent splits because
the rest of the perceptron tree remains intact.

4.3 An Illustration
To illustrate various characteristics of learning with the
perceptron tree error correction procedure, a simple prob-
lem was formulated. The problem is to learn the concept

(a v b) @ (c A d)

GO4 Learning and Knowledge Acquisition

100

75

50

25

1 WI.- - - -w - I II .
.

-

I
I I - 1 1 I I

25 50 75 100 125 150

Figure 1: Percent correct (y axis) vs instances.

where a, b, c, and d are boolean, and @ indicates exclusive-
or. There are only 16 possible instances. An instance is
an example of the concept if and only if (a V b) @ (c A d) is
true for the given values of u, b, c, and d in the instance.
This problem was chosen because the concept cannot be
learned by a single LTU and because the subconcepts in-
volve testing whether some z of n variables are true, a kind
of problem which is well suited to a LTU.

The standard perceptron learning algorithm repeatedly
draws a training instance at random from the set of train-
ing instances, and presents it to the error correction pro-
cedure in use. A variant of the algorithm was employed
here, in which the training instances were drawn in order
from the entire space of 16, one after the other. The list
of training instances is considered to be circular.

The training procedure was: while the perceptron tree
fails to classify all 16 instances correctly, apply the percep-
tron tree error correction procedure to the next training
instance. Figure 1 shows the percentage of the 16 train-
ing instances classified correctly after training on the next
training instance. The first split occurred while training on
the 64th instance. Classification performance temporar-
ily dipped to 0% when the perceptron tree consisted of
a decision node with no branches. As the branches were
grown on subsequent training, performance was generally
better than before the split. The second split came while
training on the 122nd instance. Classification performance
temporarily dipped to 50% because one of the leaf nodes
was a decision node with no branches. As the branches
below that node were grown during subsequent training,
performance climbed to 100% after the 143rd instance.

Figure 2 shows the final perceptron tree. It contains 2
decision nodes and 3 LTU nodes. Each LTU is depicted as
a simple matrix in which the row is indexed by the value
of a variable and the column is indexed by the name of the
variable. To illustrate the LTU notation, how a symmetric
LTU operates, and how a perceptron tree is used to classify
an instance, consider how the instance (a = F, b = T,
c=T, d= F) is classified. Because a is the test attribute
at the root, and a = F in the instance, the F branch is
taken. Because b is the test attribute at the subtree, and
b = 2’ in the instance, the T branch is taken. Now, at the
LTU node, the instance is encoded as 1 for each feature
present and -1 for each feature absent. Thus We I, i.e.

so the instance is classified as positive.

Figure 2: Perceptron tree

a a
F - T

I\ - + b + b -

- + + -

Figure 3: Decision tree

Figure 3 shows the plain decision tree that would be
built by Quinlan’s ID3. Note that it has 8 decision nodes
and 9 answer nodes.

5

An alternative method for combining decision trees and
LTUs has been proposed in [Breiman et al, 19841. Their
approach is to place a LTU at each decision node. If, for
a set of weights W, W a I is greater than or equal to 0,
then branch one way, else branch the other. Leaf nodes
are answer nodes, indicating either that the instance is a
positive instance or that it is a negative. This approach
if different from perceptron trees, in which each decision
node contains an attribute test, and each leaf node contains
a LTU.

Schlimmer [Schlimmer, 19871 has constructed a hybrid
representation and associated learning algorithm embodied
in his STAGGER program. The program m<aintains a pair
of weights for each boolean term in his concept descrip-
tion. One corresponds to logical sufficiency, the other to
logical necessity. By adjusting the weights and by adding
or removing boolean terms, the program searches for a con-
sistent concept description. A recent addition to STAG-
GER is the ability to group values of real-valued attributes
into dynamically formed intervals, which constitute new
boolean terms that can become part of the concept de-
scription.

utgoff 405

The perceptron tree representation and the perceptron tree
error correction procedure offer a new mechanism for con-
cept learning. The immediate result can be seen either
as a method for perceptron learning even when the space
of instances is not linearly separable, or as a method for
incremental construction of a tree structure that is very
much like a decision tree. The algorithm is incremental,
does not save training instances, and is guaranteed to find
a consistent concept description for all problems in which
the instances are labeled consistently.

Au analysis of learning rate is still lacking. For every call
to the perceptron tree error correction procedure, some
number (possibly 0) of d ecision nodes will be traversed
until a LTU node is reached, at which point the LTU is
updated using the symmetric feature representation and
the absolute error correction procedure. For some training
events, a LTU will be discarded and replaced by an at-
tribute test. This kind of activity is low compared to the
total time spent in updating some LTU, so such activity
can be discounted. Thus, it seems that much of the theo-
retical analysis regarding rate of convergence for learning
with a single LTU, for linearly separable sets, would ap-
ply, but this has not been established. See Hampson and
Volper [Hampson and Volper, 19861 for a recent analysis
of learning rate using LTUs.

The work has been motivated by the specific need for an
efficient incremental learning algorithm, and by the obser-
vation that the inherent biases in the formalisms of two ef-
ficient learning algorithms are highly complementary. The
ease of incrementally training a linear threshold unit com-
plements the difficulty of incrementally building a decision
tree. The ability to represent any concept in the decision
tree formalism complements the inability to represent not
linearly separable concepts in the hyperplane formalism.
The combination of complementary formalisms into a hy-
brid makes it possible to draw on the particular strengths
of each of the individual formalisms. The case study re-
ported here demonstrates that a perceptron tree represen-
tation retains the advantages of both the decision tree rep-
resentation and the hyperplane representation, while shed-
ding the major disadvantages.

Acknowledgments
This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IRI-8619107
and by a General Electric Faculty Fellowship. Helpful com-
ments have been provided by Andy Barto, Sharad Saxena,
Peter Heitman, Margie Connell, Jamie Callan, Kishore
Swaminathan, Victor Coleman, and Richard Yee.

References
[Breiman et al, 19841 Breiman, L., Friedman, 3. H., Ol-

shen, R. A., and Stone, C. J. (1984) Classifzcation and
regression trees. Belmont, CA: Wadsworth International
Group.

[Fu, 19681 Fu, K. S. (1968) Sequential methods in pattern
recognition and machine learning. Academic Press.

GO6 Learning and Knowledge Acquisition

[Gallant, 19861 Gallant, S. I. (1986) Optimal linear dis-
criminants. In Proceedings of the International Confer-
ence on Pattern Recognition (pp. 849-852). IEEE Com-
puter Society Press.

[Hampson and Volper, 19861 Hampson, S. E. and Volper,
D. J. (1986) L inear function neurons: Structure
and training. In Biological Cybernetics, 59, 203-217.
Springer-Verlag.

[Ho and Kashyap, 19651 H o, Y. C. and Kashyap, R. L.
(1965) An algorithm for linear inequalities and its ap-
plications. IEEE Transactions on Electronic Computers,
EC-14(5), 683-688.

[Lewis, 19621 Lewis, P. M. (1962) The characteristic selec-
tion problem in recognition systems. IRE Transactions
on Information Theory, IT-8(Z), 171- 178.

[Michalski and Chilausky, 19801 Michalski, R. S. and Chi-
lausky, R. L. (1980) L earning by being told and learning
from examples. Policy Analysis and Information Sys-
tems, 4 (2).

[Minsky and Papert, 19691 Minsky, M. and Papert. S.
(1969) Perceptrons: An introduction to computational
geometry. MIT Press.

[Mitchell, 19781 Mitchell, T. M. (1978) Version spaces: an
approach to concept learning. Ph.D. dissertation, Stan-
ford University. (also Stanford CS report STAN-CS-78-
711, HPP-79-2).

[Moret, 19821 More& B. M. E. (1982) Decision trees and
diagrams. Computing Surveys, 14, 593-623.

[Nilsson, 19651 Nilsson, N. J. (1965) Learning machines.
McGraw-Hill.

[Quinlan, 19831 Q uinlan, J. R. (1983) Learning efficient
classification procedures and their application to chess
end games. In Michalski, Carbonell, & Mitchell (Eds.),
Machine learning: An artificial intelligence approach
(pp. 463-482). M organ Kaufmann.

[Schlimmer and Fisher, 19861
Schlimmer, J. C. and Fisher, D. (1986) A case study
of incremental concept induction. In Proceedings of the
Fifth National Conference on Artificial Intelligence (pp.
496-501). Morgan Kaufman.

[Schlimmer, 19871 Schlimmer, J. C. (1987) Learning and
representation change. In Proceedings of the Siath Na-
tional Conference on Artificial Intelligence (pp. 511-
515). Morgan Kaufman.

[Utgoff, 19861 Utgoff, P. E. (1986) Shift of bias for in-
ductive concept learning. In Michalski, Carbonell, &
Mitchell (Eds.), Machine learning: An artificial inteb-
ligence approach, 11 (pp. 107-148). Morgan Kaufmann.

[Utgoff and Heitman, 19881 (1988) Utgoff, P. E. and Heit-
man, P. S. Learning and generalizing move selection
preferences. In Proceedings of the AAAI Symposium on
Computer Game Playing (pp. 36-40).

[Utgoff, 19881 (1988) Utgoff, P. E. ID5: An incremental
ID3. In Proceedings of the Fifth International Confer-
ence on Machine Learning. Morgan Kaufman.

