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Abstract 

The paper presents a case study in examining the 
bias of two particular formalisms: decision trees 
and linear threshold units. The immediate result 
is a new hybrid representation, called a percep- 
tron tree, and an associated learning algorithm 
called the perceptron tree error correction proce- 
dure. The longer term result is a model for ex- 
ploring issues related to understanding represen- 
tational bias and constructing other useful hybrid 
representations. 

P Introduction 
A core problem in machine learning is how to learn from 
examples. One would like to observe positive and negative 
instances of a concept, and be able to identify a gener- 
alization that is both correct for the observed instances 
and a good predictor for the classification of unobserved 
instances. Several algorithms have been devised, includ- 
ing Candidate Elimination [Mitchell, 19781, ID3 [Quinlan, 
19831, AQ [Michalski and Chilausky, 19801, ID4 [Schlim- 
mer and Fisher, 19861, and ID5 [Utgoff, 19881. 

A fundamental issue in concept learning is the prob- 
lem of built in biases that cause some generalizations to 
be preferred to others, even among those generalizations 
that are consistent with all the observed training instances 
[Utgoff, 19861. This paper is concerned with biases that 
are inherent in a given concept formalism. Here, formal- 
ism is seen as one aspect of representation. Examples of 
formalisms include predicate calculus, formal grammars, 
set-theoretic notation, and other algebras. A second as- 
pect of representation is the set of particular predefined 
terms and concepts that provide the basic building blocks 
for constructing concept descriptions within the formalism. 

An example of bias that is inherent in a formalism is 
evident in the decision tree formalism. It is biased toward 
concepts that are expressed as boolean combinations of the 
instance features. If the concept to be learned is based on 
something other than a boolean combination, then the de- 
cision tree formalism will be a poor choice, resulting in a 
large tree that generalizes poorly for the unobserved in- 
stances. Consider the “numerically greater than” relation. 
A decision tree formalism would be a poor choice, because 
each ordered pair (z, y) would need to appear in the tree. 
The result would be rote learning. 

It is beyond the scope of this paper, and beyond our 
present knowledge, to make any catalogue of formalisms 
and their inherent biases, or to draw any large conclu- 
sions about such biases. Instead, this paper presents a case 

study in examining the bias of two particular formalisms: 
decision trees and linear threshold units. The immediate 
result is a new hybrid representation, and an associated 
learning algorithm. The longer term result is a model for 
exploring issues related to understanding representational 
bias and constructing other useful hybrid representations. 

2 otivation 
The thesis of the work is that individual concept for- 
malisms have inherent biases. This implies that no single 
formalism is the best choice for all concept learning prob- 
lems. It would increase the autonomy and effectiveness of 
a learning program if it were able to make its own choices 
regarding selection of formalism. Such choices should oc- 
cur at every level of the learning, including terms or sub- 
concepts, not just at the top level. The result of mixing 
formalisms and statements within those formalisms is a 
hybrid representation. By selecting an appropriate formal- 
ism for each subconcept, the learning program draws on 
the special strengths of that formalism. Strength is used 
loosely to refer to the ease with which particular concepts 
can be described within the formalism. To the extent that 
the strength of each individual representation complements 
the weaknesses of the others, the hybrid representation is 
enriched. 

The present work arose from the need for a learning 
program to be able to handle a stream of training instances 
flowing at a rate of up to several thousand instances per 
minute [Utgoff and Heitman, 19881. In terms of handling 
a large volume of instances, decisions tree methods and 
connectionist learning methods are natural choices. 

The desire to find concepts that are consistent with all 
the training instances, given that the training instances 
are labeled consistently l, favored decision trees, leading to 
examination of ID3 [Quinlan, 19831, ID4 [Schlimmer and 
Fisher, 19861, and ID5 [Utgoff, 19881. Unfortunately, ID3 
is not incremental, ID4 does not always find a consistent 
concept description, and ID5 saves the training instances, 
making it space-inefficient for a large volume of instances. 
More important, the bias of the decision tree formalism 
was inappropriate for many kinds of concepts that were to 
be learned. 

Connectionist methods provide the needed efficiency in 
handling training instances, but there is no existing theory 
regarding choice of network architecture. This is of critical 
importance, since choice of network is closely analogous to 
the problem of selecting a representation. For example, a 
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The following requirements and assumptions emerged: 

1. 

2. 

3. 

4. 

5. 

The learning algorithm must be able to handle a large 
volume of training instances efficiently and incremen- 
tally. 

The algorithm must be able to select an appropriate 
formalism at any level. 

The algorithm must find a consistent concept descrip- 
tion in finite time without human intervention. 

The training instances are assumed to be labeled con- 
sistently. 

The resulting concept description must be efficient for 
classifying unobserved instances. 

large network can represent more concepts than a small 
network. The choice of network architecture directly af- 
fects the expense of updating weights, granularity of rep- 
resentation, and quality of generalization. 

Now consider the characteristics of learning with the deci- 
sion tree formalism and learning with the linear threshold 
unit formalism. 

3 Decision TYees and Linear 
Threshold Units 

A’ decision tree, especially as described by Quinlan, is a 
node that contains an answer (typically ‘+’ or ‘-’ to indi- 
cate the classification) or an attribute test with, for each 
value that the attribute can take on, a branch to a de- 
cision tree. Each branch represents a disjunction. Each 
distinct path through the tree, from the root to an an- 
swer node, represents a conjunction. A decision tree can 
be viewed as a factored boolean expression. For classifi- 
cation purposes, a decision tree is traversed, starting at 
the root, according to the decision nodes in the tree and 
the corresponding values in the instance, until an answer 
node is reached. There is a large literature on methods 
for constructing decision trees [More& 19821. Throughout 
this paper, the information-theoretic approach is assumed 
[Lewis, 1962; Quinlan, 19831, in which the tree building 
process selects the attribute test that removes the greatest 
amount of ambiguity, leaving the least amount of expected 
decision making to be done. This kind of tree building 
procedure is quasi-optimal. The structure of a decision 
tree has the effect of partitioning the instance space at 
each decision node, due to the manner in which the tree is 
traversed for classification purposes. 

A linear threshold unit, herein abbreviated LTU, is a de- 
vice that compares a weighted sum of instance features to 
a fixed threshold value [Minsky and Papert, 19691. The 
model assumes that presence or absence of a feature in an 
instance is represented numerically. An instance is repre- 
sented by a vector I that encodes the presence or absence 
of each feature. The LTU maintains one weight for each 
feature and one weight for the constant term (viewing the 
weights as coefficients of a linear polynomial), making a 
vector W of such weights. The constant term, denoted 
8 throughout this paper, is treated as a feature that is 
present in every training instance. If We I is greater than 
or equal to 0 then the instance I is classified as positive by 
the LTU. Otherwise, the LTU classifies I as negative. Ge- 
ometrically, W defines a hyperplane. The inner product 

Decision Tree LTU 
Complete Representation Yes N 
Guaranteed Convergence Yes NE 
Efficient Update 
Efficient Classifier Yes P;yoer y) 

Yes 
Yes 

Boolean Combination Bias Yes No 
Hyperplane Bias No Yes 

Table 1: Characteristics of the Two Methods 

of W and I indicates which side of the hyperplane I is on. 
As guaranteed by the Perceptron Convergence Theorem 
[Minsky and Papert, 19691, a W that separates the posi- 
tive and negative instances via a hyperplane can be found 
in a finite number of steps if such a W exists. This means 
that a LTU will find a consistent concept description if and 
only if the target concept is describable by a hyperplane. 

Now consider the characteristics of the two formalisms 
and their associated learning algorithms as listed in table 
1. The item “Complete Representation” refers to whether 
every concept over the instance space is representable. 
“Guaranteed Convergence” indicates whether the associ- 
ated learning algorithm is guaranteed to find a concept 
description that is consistent with all the observed train- 
ing instances. The item “Efficient Update” refers to the 
expense of handling a training instance that has been pre- 
sented to the learning algorithm. 

In qualitative terms, one would like a representation and 
associated learning algorithm that possesses all the favor- 
able and none of the unfavorable characteristics. Note that 
neither decision trees nor LTUs alone possess all the favor- 
able characteristics. 

This section reports a case study in constructing a hybrid 
representation and associated learned algorithm. It is mo- 
tivated by the requirements listed above in section 2 and 
by the observation in table 1 that decision trees and linear 
threshold units complement each other well. 

4.1 Perceptron Tree epresentation 
Define a perceptron tree to be either a linear threshold unit, 
or an attribute test with, for each value the attribute can 
take on, a branch to a perceptron tree. The term “per- 
ceptron tree” was chosen because the linear threshold unit 
is the basic unit of Rosenblatt’s perceptron. A perceptron 
tree is much like a decision tree, except that every leaf node 
is a LTU. As explained below, this is not simply a case of 
trading in answer nodes for LTUs. Given the ability of a 
LTU to represent concepts, a LTU can serve in place of a 
decision tree or subtree. The number of decision nodes in 
a perceptron tree need never exceed the number of nodes 
in a plain decision tree, and will typically be less. 

For the work reported here, the symmetric model of in- 
stance representation is assumed [Hampson and Volper, 
19861. Each feature is represented by 1 if present in the in- 
stance and -1 otherwise. A feature is a specific value of a 
specific attribute. For example, if the color of the instance 
is red, then the attribute is “color”, the value is “red”, and 
the feature is “color is red”. 
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It is important to note that the perceptron tree formal- 
ism is complete. 

Theorem 1 The perceptron tree formalism is complete in 
the sense that for every possible subset of the instance 
space, there is a perceptron tree that can describe exactly 
that subset. 

Proof: The decision tree formalism is complete. Because 
a perceptron tree could be elaborated to a plain decision 
tree down to the point that each instance is described by 
a single attribute, it is sufficient to show that a LTU can 
discriminate instances described by a single feature. This 
is trivially so because for each attribute value i observed 
in some positive instance, weight zud = 0 will cause that 
instance to be classified positive. Similarly, for each at- 
tribute value i observed in some negative instance, weight 
wi = -1 will cause that instance to be classified negative. 
Under the assumption that a training instance is never la- 
beled positive on one occasion and negative on another, it 
will always be the case that an instance with a given value 
of the attribute can be uniquely classified. •I 

A perceptron tree is a hybrid representation. It is a 
disjunction of hyperplanes, each selected by a unique con- 
junction of features. A perceptron tree may need to be 
a decision tree down to the point that each leaf LTU is 
discriminating instances based on a single attribute. This 
would be equivalent to a complete decision tree. However, 
a perceptron tree offers the ability to describe a space of 
instances with a LTU. A perceptron tree can be smaller 
than a plain decision tree in terms of number of decision 
nodes. This is an advantage because the need to partition 
the instance space on an attribute test may be significantly 
reduced. It is potentially a disadvantage if obtaining the 
value of each attribute is considered expensive, because a 
LTU requires obtaining the value of every attribute not 
tested above in the tree. In terms of computation, ob- 
taining all the values can be done in parallel. However, 
depending on the application, it could be expensive or un- 
warranted to perform all the tests. 

4.2 Peseeptron Tree Error Correction 
rocedure 

The error correction procedure incrementally updates a 
perceptron tree, which is a global data structure. The ini- 
tial perceptron tree consists of a single empty node. An 
empty node is a node that contains no information and 
has not yet been initialized as either as decision node or 
a LTU node. A decision node is a node that contains an 
attribute test and, for each value of the test attribute that 
has been observed previously, a branch to a perceptron 
tree. A LTU node is a node that contains a linear threshold 
unit. The notation dim(W) indicates the number of com- 
ponents (features) in vector W. The procedure that up- 
dates a perceptron tree in response to a training instance, 
called the perceptron tree error correction procedure, is: 

1. While at a decision node, traverse the indicated value 
branch. 

2. If at a decision node, then there was no value branch cor- 
responding to the value in the instance. Add a new branch 
with a new empty node at its leaf and traverse the branch 
to the leaf. 

3. 

4. 

5. 

6. 

7. 

If at an empty node, then make it a LTU node and initial- 
ize the LTU at the node. The LTU is initialized by setting 
all weights in the vector W of the LTU to 0. Any other 
bookkeeping variables for the LTU are also initialized. 

Compute the relationship of instance I to the hyperplane 
defined by W by y t WV I. 

If y 2 0 and the training instance is negative, then adjust 
W so that 1 would have been correctly classified as nega- 
tive. This is computed by W c W - I * ( I.~j 1 + 1). 
Go to step 7. 

If y < 0 and the training instance is positive, then adjust 
W so that II would have been correctly classified as posi- 
tive. This is computed by W t W + I . ([.3&J + 1). 

If the space of instances at this node should be partitioned 
into subspaces (explained below), then discard the LTU 
at this node and replace it with an attribute test. This 
makes the node a decision node with no branches. (There 
is no immediate need to provide branches below the node 
because they will be grown as necessary with subsequent 
training.) 

There are four points to note. First, the procedure indi- 
cated for adjusting W in steps 5 and 6 above is the absolute 
error correction procedure described in Nilsson [Nilsson, 
19651. Second, W is integer-valued. Third, a perceptron 
tree only grows, it never shrinks. Finally, the W at each 
LTU corresponds to the features that were not determined 
by decision nodes. For example, if “color” is a test at- 
tribute above a given LTU, then no feature corresponding 
to “color” is part of the W of that LTU. This is because 
the attribute “color” and its value are fixed as a result of 
taking that path through the decision nodes of the percep- 
tron tree. 

There are two issues in step 7 above. First is the prob- 
lem of detecting when the space of instances should be 
partitioned via an attribute test. The second is the prob- 
lem of picking the attribute for the decision node of the 
perceptron tree. A specific method for deciding when to 
partition, and a specific method for picking an attribute 
are given below. Together, they illustrate one way of in- 
stantiating step 7 of the procedure. The sole requirement 
is that the space of instances at a node be split if that 
space is not linearly separable. 

4.2.1 When to split 
If the space of instances at a node is not linearly separa- 

ble, then it is necessary that the space be split (partitioned) 
into subspaces. A space of instances is linearby separable 
if there exists a hyperplane that discriminates the positive 
and negative training instances. The problem is to detect 
that the space of instances is not linearly separable. The 
Perceptron Cycling Theorem [Minsky and Papert, 19691 
states that the perceptron learning algorithm visits a fi- 
nite number of weight vectors W, assuming integer valued 
weights, regardless of separability. A corollary [Gallant, 
19861 is that the perceptron learning algorithm will leave 
and revisit at least one weight vector if and only if the 
space of instances is not linearly separable. Thus, to prove 
nonlinear separability, it is sufficient to prove that the cur- 
rent weight vector W has been visited before. A sufficient 
test for separability is: 

Corollary 1 If the number of vectors visited (so far) ex- 
ceeds the number of distinct vectors that could have been 
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visited (so 
separable. 

far), then the space of instances is not linearly 

To be able to compute an upper bound on the number 
of distinct vectors that could have been visited so far, the 
minimum and maximum value that each weight 2vi has ever 
taken on are maintained within the LTU. The notations 
wi,min and wi,maz indicate, respectively, the minimum and 
maximum value wi has ever taken on. An upper bound on 
the number of distinct vectors that could have been visited 
is: 

. , 

II( wi,maz - Wi,min + 1) 
i=l 

This leads immediately to: 

Corollary 2 Nonlinear separability can be detected in a 
finite number of steps, without saving previous weight vec- 
tors. 

This follows immediately because the above upper bound 
on the number of distinct weight vectors that could have 
been visited is finite. Thus, by corollary 1 and the above 
computable upper bound (1) on the number of distinct 
vectors that could have been visited so far, a procedure 
exists for detecting nonlinear separability: if the number 
of vectors visited (so far) exceeds upper bound (l), then 
the space of instances is not linearly separable. 

The test for nonlinear separability is correct, but con- 
servative because the upper bound is not tight. Cycling 
can occur long before the test detects it. A test is needed 
that both detects cycling when it first occurs and does not 
require saving the training instances. Gallant’s “Pocket Al- 
gorithm” [Gallant, 19861 addresses the problem indirectly 
by detecting when the classification performance of a best 
weight vector for a linear threshold unit appears to have 
reached an asymptote. Although such a test does not prove 
nonlinear separability, it may provide a good heuristic. Ho 
and Kashyap [Ho and Kashyap, 19651 constructed a pro- 
cedure for detecting an inconsistency in a set of linear in- 
equalities, but it requires saving the training instances. 

For the current work, a more aggressive test is used for 
deciding when to split. Due to the completeness of the 
perceptron tree representation, splitting more often than 
is strictly necessary is not harmful, in the sense that the 
ability to find a consistent concept description is not lost. 
It means that it is possible that a decision node will have 
split the space even though a LTU would have been suf- 
ficient. Instead of detecting only nonlinear separability, 
the test detects when the LTU is not making significant 
progress toward arriving at a consistent concept descrip- 
tion. 

The test is based on the number of vector adjustments 
of W that have occurred since some wi,mdn or some ZU~,~~,~ 
has been adjusted. If W continues to be adjusted in re- 
sponse to misclassified training instances, yet the minimum 
and maximum values of the wi come to be adjusted rarely 
or seemingly not at all, then there is reason to believe that 
there is lack of progress in moving toward a solution vector. 
At issue is how many weight adjustments without chang- 
. 
mg a wi,mas or a wi,7nin constitute lack of progress. Let 
C be the number of consecutive vector adjustments to W . 
smce some wi,min or some wi,maz has been adjusted. The 
test is: if C > dim(W) th en split the space of instances. 

4.2.2 Where to split 
The problem of picking an attribute test for a decision 

node has received much attention in the fields of pattern 
recognition and statistics [Fu, 1968; More& 19821. As men- 
tioned above in section 3, the approach taken here is to 
employ an information-theoretic criterion that measures 
the amount of ambiguity in a space of instances. The at- 
tribute that removes the greatest amount of ambiguity, by 
partitioning the space into the least ambiguous subsets, 
is chosen as the attribute test for the decision node. See 
Quinlan [Quinlan, 19831 for a specific algorithm. See sec- 
tion 3.3.1 of Moret [Moret, 19821 for a general discussion 
and for references to theoretical work. 

The information-theoretic splitting criterion currently in 
use requires the number of positive and number of nega- 
tive instances observed for each of the wi. These counts 
are maintained in each LTU, and are updated for every 
observed training instance, whether or not the weights in 
W are adjusted. 

4.23 Convergence to a Consistent Concept 
Description 

Given that there exists a perceptron tree representa- 
tion of a concept description that is consistent with all 
the training instances, one needs to consider whether such 
a description will be found. 
Theorem 2 If the training instances are labeled consis- 
tently, then the perceptron learning algorithm, using the 
perceptron tree error correction procedure, will find a con- 
sistent concept description in a finite number of steps. 
Proof: Either the LTU finds a solution vector in a finite 
number of steps, as per the Perceptron Convergence The- 
orem, or the space of instances is detected to be not lin- 
early separable in a finite number of steps (corollary 2). 
If the space of instances is not linearly separable, then it 
is split with an attribute test. Since the algorithm is ap- 
plied recursively at each node, it is only necessary to show 
that a linearly separable space is finally reached at each 
LTU node. This is guaranteed by the completeness of the 
representation (theorem 1) and the consistent labeling as- 
sumption. Cl 

4.2.4 Learning Behavior 

Because a perceptron tree has a LTU at each leaf node, 
much of the learning behavior is characteristic of a LTU. 
As per the perceptron learning algorithm, one must re- 
peatedly present the training instances because the LTU 
is not guaranteed to remain consistent with the previously 
observed training instances. A perceptron tree has the 
additional characteristic that replacing a leaf LTU with a 
decision node (attribute test) causes that LTU to be dis- 
carded. New LTUs must be trained at each new leaf node 
below the new decision node. This is most noticable when 
the initial root LTU is replaced by an attribute test. The 
effect becomes less noticable at subsequent splits because 
the rest of the perceptron tree remains intact. 

4.3 An Illustration 
To illustrate various characteristics of learning with the 
perceptron tree error correction procedure, a simple prob- 
lem was formulated. The problem is to learn the concept 

(a v b) @ (c A d) 

GO4 Learning and Knowledge Acquisition 



100 

75 

50 

25 

1 WI.- - - -w - I II . 
. 

- 

I 
I I - 1 1 I I 

25 50 75 100 125 150 

Figure 1: Percent correct (y axis) vs instances. 

where a, b, c, and d are boolean, and @ indicates exclusive- 
or. There are only 16 possible instances. An instance is 
an example of the concept if and only if (a V b) @ (c A d) is 
true for the given values of u, b, c, and d in the instance. 
This problem was chosen because the concept cannot be 
learned by a single LTU and because the subconcepts in- 
volve testing whether some z of n variables are true, a kind 
of problem which is well suited to a LTU. 

The standard perceptron learning algorithm repeatedly 
draws a training instance at random from the set of train- 
ing instances, and presents it to the error correction pro- 
cedure in use. A variant of the algorithm was employed 
here, in which the training instances were drawn in order 
from the entire space of 16, one after the other. The list 
of training instances is considered to be circular. 

The training procedure was: while the perceptron tree 
fails to classify all 16 instances correctly, apply the percep- 
tron tree error correction procedure to the next training 
instance. Figure 1 shows the percentage of the 16 train- 
ing instances classified correctly after training on the next 
training instance. The first split occurred while training on 
the 64th instance. Classification performance temporar- 
ily dipped to 0% when the perceptron tree consisted of 
a decision node with no branches. As the branches were 
grown on subsequent training, performance was generally 
better than before the split. The second split came while 
training on the 122nd instance. Classification performance 
temporarily dipped to 50% because one of the leaf nodes 
was a decision node with no branches. As the branches 
below that node were grown during subsequent training, 
performance climbed to 100% after the 143rd instance. 

Figure 2 shows the final perceptron tree. It contains 2 
decision nodes and 3 LTU nodes. Each LTU is depicted as 
a simple matrix in which the row is indexed by the value 
of a variable and the column is indexed by the name of the 
variable. To illustrate the LTU notation, how a symmetric 
LTU operates, and how a perceptron tree is used to classify 
an instance, consider how the instance (a = F, b = T, 
c=T, d= F) is classified. Because a is the test attribute 
at the root, and a = F in the instance, the F branch is 
taken. Because b is the test attribute at the subtree, and 
b = 2’ in the instance, the T branch is taken. Now, at the 
LTU node, the instance is encoded as 1 for each feature 
present and -1 for each feature absent. Thus We I, i.e. 

so the instance is classified as positive. 

Figure 2: Perceptron tree 

a a 
F - T 

I\ - + b + b - 

- + + - 

Figure 3: Decision tree 

Figure 3 shows the plain decision tree that would be 
built by Quinlan’s ID3. Note that it has 8 decision nodes 
and 9 answer nodes. 

5 

An alternative method for combining decision trees and 
LTUs has been proposed in [Breiman et al, 19841. Their 
approach is to place a LTU at each decision node. If, for 
a set of weights W, W a I is greater than or equal to 0, 
then branch one way, else branch the other. Leaf nodes 
are answer nodes, indicating either that the instance is a 
positive instance or that it is a negative. This approach 
if different from perceptron trees, in which each decision 
node contains an attribute test, and each leaf node contains 
a LTU. 

Schlimmer [Schlimmer, 19871 has constructed a hybrid 
representation and associated learning algorithm embodied 
in his STAGGER program. The program m<aintains a pair 
of weights for each boolean term in his concept descrip- 
tion. One corresponds to logical sufficiency, the other to 
logical necessity. By adjusting the weights and by adding 
or removing boolean terms, the program searches for a con- 
sistent concept description. A recent addition to STAG- 
GER is the ability to group values of real-valued attributes 
into dynamically formed intervals, which constitute new 
boolean terms that can become part of the concept de- 
scription. 
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The perceptron tree representation and the perceptron tree 
error correction procedure offer a new mechanism for con- 
cept learning. The immediate result can be seen either 
as a method for perceptron learning even when the space 
of instances is not linearly separable, or as a method for 
incremental construction of a tree structure that is very 
much like a decision tree. The algorithm is incremental, 
does not save training instances, and is guaranteed to find 
a consistent concept description for all problems in which 
the instances are labeled consistently. 

Au analysis of learning rate is still lacking. For every call 
to the perceptron tree error correction procedure, some 
number (possibly 0) of d ecision nodes will be traversed 
until a LTU node is reached, at which point the LTU is 
updated using the symmetric feature representation and 
the absolute error correction procedure. For some training 
events, a LTU will be discarded and replaced by an at- 
tribute test. This kind of activity is low compared to the 
total time spent in updating some LTU, so such activity 
can be discounted. Thus, it seems that much of the theo- 
retical analysis regarding rate of convergence for learning 
with a single LTU, for linearly separable sets, would ap- 
ply, but this has not been established. See Hampson and 
Volper [Hampson and Volper, 19861 for a recent analysis 
of learning rate using LTUs. 

The work has been motivated by the specific need for an 
efficient incremental learning algorithm, and by the obser- 
vation that the inherent biases in the formalisms of two ef- 
ficient learning algorithms are highly complementary. The 
ease of incrementally training a linear threshold unit com- 
plements the difficulty of incrementally building a decision 
tree. The ability to represent any concept in the decision 
tree formalism complements the inability to represent not 
linearly separable concepts in the hyperplane formalism. 
The combination of complementary formalisms into a hy- 
brid makes it possible to draw on the particular strengths 
of each of the individual formalisms. The case study re- 
ported here demonstrates that a perceptron tree represen- 
tation retains the advantages of both the decision tree rep- 
resentation and the hyperplane representation, while shed- 
ding the major disadvantages. 
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