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Abstract 
This paper discusses relationships between sta- 
tistical modelin 
ing from exam 

K 
f 

techniques and symbolic learn- 

ing problem w 
es, and indicates types of learn- 

ere a com,bined viewpoint ma be 
very he1 jul. A novel computational approac 1 is 
prp ose 
wat K 

B which combines statistical modeling 
a transformation procedure which ma 

statistical model onto logical decision ru es for P 
s the 

the sake of domain experts’ intuitions. The pro- 
posed algorithm is illustrated by working through 
a simple but challenging case-study on learning 
prognostic rules from clinical observational data. 

1. INTRODUCTION 
Noise, uncertainty and incomplete informa- 

tion can severely degrade the quality of rules 
erated by a s stem for inductive learning rom 

Altlough 
s 

en- 

examples. several algorithms have been 
developed which attempt to deal with noisy 
domains, st,ill the following remain crucial issues. 
Probabilistic vs. deterministic concept expression. 
Because of uncertainty, learning must often be 
done, rather than in terms of few crisp” categories, 
in terms of a smooth gradation of multiple 
categories representing narrow ranges of probabil- 
ity. Exg. if we want to recognize patients affected 
b 
o r 

a given disease from normal ones? on the basis 
some attributes, two categories (normal and 

diseased) may be unsufficient. It may well be 
better to define, and characterize by the value of 
the attributes, multiple categories at different 
degrees of risk of disease. 
Managing @se. When there is noise arising 
:;;geserrors m the- description of attributes o; 

inherent uncertainty m 
doma& yt gz?be the case that two examples 
share the same attribute values and have different 
class values (“clash”). 

In this 
K 

aper we propose a framework in 
which a well- nown 
sion analysis, 

statlstlcal technique, regres- 
and symbolic learning techniques 

may efficaciously interact in order to solve with 
renewed efficiency the problems above. As an 
example, reconsider the problem of discriminating 
normal and diseased patients, on the basis of, say, 
two attributes X 
training sample 0 f 

and X 2. On the basis of a 
normal and diseased patients, 

we can estimate the parameters of a logistic regres- 
model 

log (~/(1--p 
p is the I2 

)=$(x+~ =p0+P15~+&9,, where 
b pos erior proba ihty of disease, and then 

define by inequahty constraints on $(x r,xJ a 
smooth gradation __ of “risk categories” c haractenzed 
by smail ranges of p . 
The nrooosed annroach. which combines regression 
analy’sis’and inductive learning heuristics, Las two 
phases. In the first, regression analysis is exploited 
as a “numerical engine’ for selecting and estimating 
the parameters or a statistical mGde1 which ader 
quately reflects the “true” predictive relati;;inpz 
suggested by the data. In the second 
novel computational procedure “maps” t e alge- R 
braic constraints upon attributes implied by the 
statistical model into symbolic concept descrip 
tions, structured as binary trees or decision rules, 
for the sake of psychological meaningfulness. 
In order to obtain a natural-to-understand final 
product of the learning, loss of predictive efficiency 
with res ect 
traded-o if 

to the regression model must be 
for “simplicity . This implies searching 

among a large set of logical descriptions “reason- 
ably” consistent with the statistical model. 

2. REGRESSION ANALYSIS 
In regression analysis, the set of exam 

Zearnzng sam le, consgeFe of ezchpair$,of B 
les, or 

tions 
p dime!n?oZ!~ )’ 

0. 
1s 

ser;;e 

- vector of attributes ‘of the jth 
example, and Yi is a real-valued number, called 
response. Examples of response are: survival 
time, probability of belonging to a diagnostic 
category, a.s.0. 
The problem tackled by regression consists in using 
the learning sam e useful for 
at least one of t 

le to acquire knowled 
R e following aims: (a 7 obtain Y , 

i.e. the prediction of the value of Y corresponding 
to future measured X-vectors as accurately as 
possible, and (b) understand the structural rela- 
tionships between Y and attributes in X. 
The regression model re 

P 
resents 

random variables with 
Y r, . . YN by 

or some appropr&e func- 
tion g and predictor hnction #: 

Pi = E(K) = g(+(Xi;P),~) (1) 
where Y = E ( Yi ) is the predicted , or expected 
value of Yi , cy and p being vectors of unknown 
parameters. Regression analysis provides 
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(1 a 

procedures for estimating such unknown parame- 
ters from the learning sample by likelihood maxim- 
ization. To allow estimation of parameters, the 
regression model has to be completed by explicitly 
modelmg the “noise” on the data (which, rm or- 
tantly, IS something AI procedures ignore). Ip his 
amounts to specifying the probabilistic distribution 
of the Y ‘s. 
The predictor function $(X;p) is the minimal 
summary of the measurement vector X sufficient 
to determine Y . That, is to say that it “tells the 
whole story” about the strzLcture of the relation- 
ships between Y and X. The form of g and cy 
parameters are important, but unrelated to stable 
notions in the human memory such as the interac- 
tions between X variables in predicting Y . 
T\aote that (1) is in ynmrdeas nonlinear model. *An 
interesting class 0 called generalzzed 
linear models, has 6 linear in the parameters /3. 
As an example, consider the scatter diagram in Fi . 
la summarizing a fictitious data set where eat !I 
sample individual is characterized by t’wo continu- 
ous variables ( Y , X 2) and a binarg one LX l). By 
regressing Y on (X 1, X J, we o tam t e model 
reported m Fig. lb . 

3. BINARY REGRESSION ‘I’ 

FIGURE 1 
(b) 

2)= -2-t 

true \ ‘\ 

I J 1 J 

placing a cut-off point x’ on the continuous range 
of an attribute X . 
For a given node, the unique path from the root to 
it determines an assi 
to a subset of the % 

nment of values (true, false) 
inary variables. The logical 

conjunction of these assignments defines the sub- 
population associated to that node. If these 
assignments involve the entire set of binary vari- 
ables, they determine the value of the predictor 
function uniquely, so that a constant expected 
value for the response variable is associated to that 
node. If the ass1 
tor function in E 

nment is incomplete, the predic- 
t at node is constrained within an 

interval. Intervals associated to a set of nodes at a 
iven 

B 
depth of the tree ma 

escriptions by means of a BR ti? 
be not disjoint. 

are more explicit, 
informative, and directly usable than the regression 
equation alone, though somewhat less precise in 
predicting the response. 

4. THE PROPOSED APPROAC 
We propose an approach by whlc 

or a decision rule2 is enerated as an 
Con of a. prevmus y K ob.tained r 
7a~tet. This amounts to find1 

representing 
homoieneous predicte cf 

rou ps 
response. 

We point out two assumptions implicit in the 
a preach. 

P c ass 
First, that domain experts likeS20ir$ 

descri tions 
that they li K 

of conjunctive type. 
e classes that can be linearly “ranked”: 

in the sense that they correspond to disjoint inter- 
vals of response values. 
The approach consists of three phases: 
1. select a parsimonious predictor function $(X) 

from the learning sample by means of regres- 
sion analysis. 
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2 construct a complete BRT representing the 
selected predictor function 

3. simplify the BRT so that the final BRT indi- 
ErAe;e; reasonable number of logrcally defined 

Let’s examine the three steps in more detail. 

4.1. Selecting a predictor function 
The aim of predictor selection is to achieve 

an economical form of $(X 
I 

consistent with the 
data of the learning samp e, b 
number of X -attributes include B 

reducing the 
in 6 (X). The 

need for sue h simplification arises particularly 
when the number of predictors is large, and there is 
an a priori suspicion that many of them are 
measurin 
some of t a 

essentially equivalent things, and or 
em may be totally irrelevant to Y . I4 ot 

only does a “parsimonious’ model enable one to 
think better about the structure of redictor- 
response relationships, but prediction o P response 
of new cases is more precise if unnecessary terms 
are excluded from the predictor function. How- 
ever, it’s worth while exploring the consequences of 
leavm 
tistica H 

in the model more terms than a strict sta- 
significance criterion would indicate. 

There is a large literature about this to ic: see for 
example [Aitkm,1978]. So we won’t furt 4: er discuss 
this aspect of the proposed methodology. 

4.2. Growing a complete BRT. 
A BRT such as the one in Fig. lc is generated, 

whose leaves corres 
which the predictor lp 

ond to subpopulations within 
unction is constant. This kind 

of BRT, namely where each leave corresponds to a 
complete assignment of value to all attributes 
included in the predictor function is called com- 
plete. Usually the complete BRT is too compli- 
cated to convey a simple inter retation of the data. 
Therefore, a “simplification” p K 
following, is needed. 

ase, described in the 

4.3. Simplifying the BRT 
The corn lete 

simplification a gorithm, whose output is a P 
BRT is submitted itne; 

tree, with a smaller number of leaves. I? ach of 
these leaves generally constrains the predictor 
function to lie within an interval. When there are 
overlappin 
added to t fl 

intervals, suitable exception terms are 
e logical description of some leaves, so 

that final descriptions individuate classes of exam- 
ples with well-separated response predictions. This 
epproac h prlvlleg?s 
category validity . 

“cue validity’ with respect to 

The simplification procedure ma proceed further 
with an amalgamation phase. ry 
of leaves if corres 

his is fusing pairs 

not well-separate B 
onding response predictions are 

tive criteria . 
a 

(either by statistical or subjec- 
If the fused leaves have different 

“parent” no e, the tree becomes a lattice, i.e. 
presents multiple-connections between nodes. This 
introduces diq unctions in the class descriptions. 
The followin 
idea of the w fl 

section intends to convey the basic 
ole approach by illustrating it upon a 

clinical case-study. 
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5. AN APPLICATION 
In a survival stud 

r 
int,erest centres on a group 

roups of patients 
%&ed 

or each of whom there is a 

occurrin 
point event which we will call jai!zlre, 

time. 4; 
after a length of time called the fazlure 

alues are available for each patient of clin- 
ical attributes a priori thought to be related to 
failure time. 
As an example we will consider a sample set of 

disorder (4’ a 

clf,;;oncermn MyeloficFr;;c with Myelold Meta- 
myeloproliferative 

The learning sample comprised 138 
atients’ with MMM consecutively seen in the 

b epartment of Internal Medicine and Medical 
Tt’;apy of the University of Pavia from 1973 to 

. 
There were 29 attributes for each case, including 
haematolo 
nation an cf 

ical laboratory tests, histological exami- 
results from tracer studies. Most attri- 

butes were of continuous type, others took values 
on an ill-defined quantitatrve scale, or were of 
binary type (exg. sex). 
Time from MMM diagnosis to death was regarded 
as failure time for our sample cases. Our aim was 
defining a prognostic classification of MMM into 
meaningful classes with different expected failure 
time. 
While a linear combination of attributes could 
efficiently ex lain 

K 
the statistical variability of 

failure, nevert eless we wanted results of the data 
analysis to be expressed in a more “natural” and 
better structured form, so as to allow clinical 
experts to better confront them with their personal 
knowledge. 
A method used by man 

r 
clinicians is to dichotom- 

ize according to surviva or nonsurvival at a critical 
period such as five years. In case of dichotomiza- 
tion learning from pre-classified examples can be 
used. Th’ is approach is often quite unsatisfactory, 
for the following reasons. First: concentration on a 
sin le time point of the survival experience neces- 

5 sari y wastes some information. The critical time 
threshold ought itself to be determined in such a 
way that wasted information is minimized. 
Second, allowance should be made for more than 
two dis’oint intervals over the range of failure 
times. Ii ut how can their number an location be 
optimized ? 

This learning problem is further complicated 
from the frequent difficulties encountered in 
obtaining relevant data. In particular, some 
patients of the learning sample may not have been 
observed for the full tame to ailure. As a matter 
of fact, for only 60 of our 13 4 sample cases death 
was observed. For the remaining 77 cases only a 
“censored” survival time was available, that is we 
only knew that it was higher than a certain value. 

The regression step 

We used Cox’s regression model 
which allows correlatin 

if 
censored i 

Cox,1972] 
fai ure time 

observations with a set o 
This model full 

(mixed-type) attributes. 

d 
characterizes an individual for the 

E 
urpose of re ictin 
ination $ X) of P 7-l 

failure time by a linear com- 
t e attributes, which has the 



meaning of a relative risk. In fact, Cox’s model 
assumes that the ratio of the instaritaneous risks of 
death for any two individuals A , B with measure- 
ment vectors X 

cf 
and XB res 

over time, an given by %(@@A P 
ectively, is constant 

p ‘xf. 1). Based on MMM data, we performed a lerarc lcal 
set of likelihood-ratio tests to select terms for 
inclusion in $ (X). Th en we dichotomized continu- 
ous attributes by choosing optimal cut-offs on a 
likelihood maximization basis. The final form of the 
predictor function was: 

wuLC,q = 
-6.51+1.9 A +0.85 H +4.8 C +3.9 -, C T (2) 

where: A = (Age > 45 yrs Hb 
C = (Cellularity = aplastic 

< 13 g ldl ), 
TEIT < ZOO). 

Rather than restricting himself 
I 

herself to patterns 
of additive composition of at ribute effects, one 
ought better to try 
among attributes. 

in # patterns of interaction 
The interaction term (-CT ), 

for example, implies that the ‘“effect” of having 
TEI T < 200 is to be taken into account only if the 
cellularity is not aplastic. 

Growing the complete BRT 

(X) = - 6.5+1.9A +0.85H +4.8C +3.9-T 

A = (AGE > 45) 
H=(HB<l3) 
C = (CELLULARITY:aplastic) 

A 
‘H 

T =(TElT<200) 

Fig. 2 shows the complete BRT grown from 
+(A ,H ,C ,T ). Attributes to which the domain 
expert attached more importance were used for 
top-level splittings. 
Each leave of the BRT contains in the box the 
;;lzb,“,f’iQ A 

1 
,H,C,T), and in square brackets the 

sample cases associated to it. The 
leaves are ordered from left to right in the figure 
according to increasin 

% 
value 

tion. The BRT is un 
of the predictor func- 

alanced, because the leaves 
with an empty set of sample cases were pruned. 

The simplification step 

The BRT shown in Fig. 2 was simplified by 
means of the algorithm described in sec.7, and then 
the pair of leaves corresponding to the highest risk 
were amalgamated since the domain ex ert didn’t 
perceive that they re resent substantial 
classes. The result o P 

P 
IT 

different 
this process is in ig.3. The 

leaves correspond to 4 risk classes characterized by 

intervals on P completely consistent with the ori- 

P 
inal predictor function 2). The ” rice” to be paid 
or the simplification is h aving a ESIDUAL sub- If 

po ulation 
rit E 

of “unclassified” patients. The algo- 
m in sec. 7 allows minimizing the residual. In 

fact, only 8 of our 138 cases fell in it. 
A clinical expert translated the simplified tree: 

“Four risk-classes C, * * . C, in order of 
increasin 

P 
risk were singled out. 

entirely armed b 
Cl was 

except a very sma 1 portion of them that had red Y 
all patients with age e 45, 

cell aplasia. C, was formed by all and only 
cases above-45 wath a very javourable attern of 
erythropoiesis, as indicated by 1 a sence 
anemia 

of 

poiesis. 
and marked expansion of erythro- 
C, was formed by anemac patients 

above-d.5 wuzthout severe erythroid failure. C 4 
was formed by atients with anemaa caused to 
severe erythroi cated b 

extreme y reduced T P 

presefcf:itre, this latter being indi- 

6 
red cell aplasia or of 

IT.” 

6. EL..ATIONS TO PREVIOUS W 
A number of induction algorithms have been 
developed for dealing with noisy domains and 
avoiding overfitting. PLSl [Rende11,1987‘i, for 
example, is capable of dealing with classes defined 
on a ‘probabilistic continuum . [Quinlan, 19831 and 
P reiman: 1984: 
algorithms in o’r cf 

ropose recursive splztting (RS 
er to build a decision tree. an d 

p&pose pruning an already created decision tree to 
obtain an “honest-sized” tree. 
Our proposed algorithm may be compared with RS 
algorithms with relation to a number of issues. 
“Global” rather than “locar tests. In a RS algo- 
rithm, the criterion for selecting a split at a node 
takes into account only the limited portion of the 
data represented by that node, while m a regression 
model each parameter summarizes the effect of an 
attribute over the whole learning samble. As a 
consequence, our approach is n&e efficient in 
managing statistical power in the data, it doesn’t 
easily “loose breath” after a few splits due to the 
shrinking of the subsets, and doesn’t require a 
stopping criterion. 
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Stabilit . RS is known to produce very different 
results ependin, d p on kvhich attribute is chosen for 
the first s 
reward sp ittin P 

lit. In RS the splitting criterion doesn’t 

f! 
s in terms of the continued growth 

of the tree. his means unstability and subop- 
timality. Model selection in regression is much 
more stable. 
Other advantages of our approach concern the pos- 
sibility of takin into account “confounding” vari- 
ables, and of % ealing with particular forms of 
incomplete information. 

7. SIMPLIFICATION AlLGORITI3M 
We now formalize how the complete re res- 

sion tree is simplified and then used to derive 5 ogi- 
cal class descriptions. 
We begin with some straightforward definitions. 
Let 0 be a complete BRT representing a predictor 
function +(X). 
DEFINITION 1. Two nodes of 0 are said to be 
independent when none of them is successor of 
the other one. 
DEFIA’ITION 2. A set, of independent nodes is 
complete when each leave of 0 coincides with, or 
is successor of, exactly one oj them. 
DEFINITION 3. A complete set of independent 
nodes of 0, 
(N,, - - - 7 

linearly ordered to form a sequence 
Nk ), is called I-chain. 

Many I-chains can usually be defined on a BRT. 
The first and last nodes of the chain are called root 
and sink of the chain, respectively. 
Let II,..., 
denotes the 

1, denote the leaves of 0. If 6 (Zi ) 
value of the predictor function associ- 

ated to the generic I, , we assume for simplicity 
that leaves can be strictlv ordered according to $, 
and that they are indexedso that: 

For a generic internal node. LIri of 0, let L Ni 

+(Zi+l) > +(Zt ) 

$note the set of leaves which are 

l<i <n-l 

i i 

(3) 

descendan s o 

D1E’FINITION 4. Given two independent nodes 
Ni and Nj of 0. the expression : 

L (lVi> > L (Ni) (4 
means that for any IA E L (Nj ) and ZB E L (Ni ): 

6(IA )>@‘(b > 

DEFINITION 5. An I-chain is consistent when 
for an couple of nodes of the chain Ni, Nj 7 with 
i ,j E 6 ,..., k), j > i , the inequality (4) 1s valid. 
The “group-ordering condition” implicit in the 
definition of consistency given above guarantees 
that the nodes of the I-chain bear on disjoint 
intervals of the response variable, to the benefit of 
the characterization of associated classes. 

In an inconsistent I-chain I there always 
exists a set R (I ) of sets of leaves which are called 
residual sets with the propert 

T 
that if we “ignore” 

all leaves belonging to any r 
appears to be consistent. 

i ) E R (I ), then I 

To a residual set r (I ) E R (I ) we assign a “penalty” 
PEN (r (I)) g iven by the number of sample cases 
att’ached to it, weighted on the basis of a utility of 
correct,ly classifying them. Given an IIchain, we 
may look for 3 
residual set r ( J 

not-necessarily unique) optzmTa,” 
’ 

minimum penalty. 
)E R (I ), i.e. the 7 (1 

The problem is then 1 hat of 
finding 

I^= min 
ICI 

PEN (r^ (I )) 

where 1’ denotes the set of I-chains on 0 with a 
certain restriction on, the number of chain-nodes. 
The set of nodes in I will correspond to the final 
set of classes, and the logical descriptions for these 
classes will depend both on the struct)ure of the 
tree and on the residual set. 

a>> 

11 I2 13 14 15 17 18 
- - 

b) 

11 12 13 18 

As an exam le consider Figs. 4a ,b , showing two 
alternative 

FIGURE 4 

Pi, -c ains on the BRT obt,ained from 
MMM data. The one in Fig. 4b is obt,ained by 
iteratively expanding the one in Fig. 4a. The two 
I-chains share a common residual set. In fact, if 
we “ignore” 
descendin 

1 5 and I,, we find that the sets of leaves 
from the three nodes of t,he first I- 

chain, or rom the five nodes of t.he second l-chain, B 
lie on disjoint intervals of the response. 

The following is an algorithm for finding a 
sub-optimal solution. 

(1) select a set N of independent nodes of 0 
(2) define an I-chain 1 by ranking nodes in “1’ 

according to the mean value of + 
(3) by means of algorithm FIND-RESIDUAL: 

(a) find an optimal residual set r^ (1 ) 
(b) from 1 and 7^ (I ) derive a set of logical 

class descri tions 
set PMIN = P8N (7^ (I )) 

(4) expand the I-chain by selecting a node and 
replacing it with its immediate successors 
then reapply FIND-RESIDUAL. Proceed 
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iteratiyel> with further expansions as long as cy; (j )apz (j )? it sets M, = j . Finally, .Vp sends‘ 
there are expandable nodes in the chain and a, and p, as a message to 1’1’, +1. 
the minimum- enalty is not too high with 
respect to PM .Y P 

The above propagation process is triggered by 
activating the root N , to compute: 

(5) when a stable I-chain is reached, amalgamate 
classes which do not significantly differ in 
expected response. 

8. ALGORITHM FIND-RESIDUAL 

section. 
In order to make it suitable for object-oriented 
programming, this algorithm is based on a self- 
activated propagation mechanism, in which the 
nodes of the tree are viewed as autonomous proces- 
sors, communicating locally via the links of the tree 
or of the I-chain. 
To perform its autonomous computations, each 
node Nsl of the I-chain uses a ulorlcing memor 
containmg: (a) two NL -dimensional arrays cu an 
p,, (b) a scalar Mi , (c) a list L, , (d) a. list RElSi . 

iii 

E$.c&h Nth: a~l~lut~ cooTputJe through a function 
logical variable 

,“a,;ettt; (ll h,.,;i ;.hic h is la(O) if 1, is (is not) a 

The algorithm has two phases. In the first , 
the computations are t,ri 
along the links of the I- c 

gered 
w 

by “messages” sent 
ain. In the second phase, 

messages are sent along the edges of 0. 

Propagation along the I-chain 

o(,~0oo00000~~~:Illlllll.~,:l1222222 
p,:11111111 po1222222 po1133333 

(ti9---@ 
M~=o- M2=2 c---- M3=3 
Ll=-(l, 12 ) L2=(13) L3=(141516 1716) 

I 1 I 
RES,= nil RESpil RE$= (15 16) 

FIGURE 5 

This process is illustrated by Fig. 5. Each Ni 
(except the root), upon receiving from Ni -, a mes- 
sa.ge containing cw; -1 
/3, itera.tively: 

and pzel, computes cy, and 

Pl(o)=o , q(l )=o , 
&( j )= maxb,j ,&(j -I)}, j = l,..., AU 

which are not amon 
t,hem in the list R I? 

its own successors and puts 
S; . The final residual set is 

obtained by joining the RES -lists. 
The algorithm above 
set, which ma 

enerates only one residual 
not be t e opt,imal one. The exten- 7-l 

sion of the a gorithm to generate the full set of r 
residual sets, which may be then searched for the 
optimal residual set, is straightforward, but its 
descri tion 
availa g 

is too lengthy to be included. It is 
le from the author upon request. 

Propagation along the tree edges 

This 
tions for t R 

ropagation generates logical descrip- 

the I-chain. 
e classes represented by the nodes of 

Each node of the I-chain, say node 
N , interrogates its predecessor nodes in 8 to know 
the value assi nments 
from N to t e root. w 

labeling edges on the path 
This conjunction of such 

assignments provides a logical description of the 
general class represented by ,N . Then it interro- 
gates its own successors in 0 to know value assign- 
ments labeling the ed es connecting N to the 
leaves falling in its own w ES list. The conjunction 
of these latter value assignments yields a logical 
formula which tells how to discriminate from the 
general class represented by :Y those examples 
which fall in the residual set, i.e. that have 
response values which are more typical of other 
classes. For example. node ,Y., has a general class 
description 7.4 . Value assignments along the 

P 
ath \ 1 from :; 1 $o the residual leave descending 
rom it? 1 s. are (H ) and (C 

d 
. The final class 

description ~Gll then be (-A -( C )). 
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