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Abstract
This paper discusses relationships between sta-
tistical modeling techniques and symbolic learn-
ing from ezxamples, and indicates types of learn-
ing problem where a combined viewpoint may be
very helpful. A novel computational approach is
proposed which combines statistical modeling
with a transformation procedure which maps the
statistical model onto logical decision rules for
the sake of domain experts’ intuitions. The pro-
posed algorithm is illustrated by working through
a simple but challenging case-study on learning
prognostic rules from clinical observational data.

1. INTRODUCTION

Noise, uncertainty and incomplete informa-
tion can severely degrade the quality of rules gen—
erated by a system for inductive learning from
examples. Although several algorithms have been
developed which attempt to deal with noisy
domains, still the following remain crucial issues.

Probabilistic vs. deterministic concept expression.
Because of uncertainty, learning must often be
done, rather than in terms of few "crisp" categories,
in terms of a smooth gradation of multiple
categories representing narrow ranges of probabil-
ity. Exg. if we want to recognize patients affected
by a given disease from normal ones, on the basis
o?l some attributes, two categories (normal and
diseased) may be unsufficient. It may well be
better to define, and characterize by the value of
the attributes, multiple categories at different
degrees of risk of disease.

Managing notse. When there is noise, arising
from errors in the description of attributes or
classes, or some inherent uncertainty in the
domain, it may be the case that two examples
share the same attribute values and have different
class values ("clash”).

In this paper we propose a framework in
which a well-known statistical technique, regres-
sion analysis, and symbolic learning techniques
may efficaciously interact in order to solve with
renewed efficiency the problems above. As an
example, reconsider the problem of discriminating
normal and diseased patients, on the basis of, say,
two attributes X; and X, On the basis of a
training sample of normal and diseased patients,

we can estimate the parameters of a logistic regres—

?mn( ( Y mﬁde
og(p/(1—p))=d(z, x2)b= otB1z;+B2z4, Where
p is the posgerior _pr(’)ba ilﬁy of diisease, and then
define by inequality constraints on ¢(z,z,) a
smooth gradation of "risk categories” characterized

by small ranges of p .

The proposed approach, which combines regression
analysis_and inductive iearning heuristics, has two
phases. In the first, regression analysis is exploited
as a "numerical engine” for selecting and estimating
the parameters ofga statistical model which ade-
quately reflects the "true” predictive relationships
suggested by the data. In the second phase, a
novel computational procedure "maps" tEe alge—
braic constraints upon attributes implied by the
statistical model into symbolic concept descrip—
tions, structured as binary trees or decision rules,
for the sake of psychological meaningfulness.

In order to obtain a natural-to—understand final
product of the learning, loss of predictive efficiency
with respect to the regression model must be
traded—off for "simplicity". This implies searching
among a large set of logical descriptions "reason-
ably" consistent with the statistical model.

2. REGRESSION ANALYSIS

In regression analysis, the set of examples, or
learning sample, consists of N pairs of ogserva-
tions (Y ,)g), where each X; is the
p—dimensionaﬂ vector of attributes of the %
example, and Y, is a real-valued number, called
response. Examples of response are: survival
time, probability of belonging to a diagnostic
category, a.s.o.

The problem tackled by regression consists in using
the learning sample to acquire knowledge useful for
at least one of the following aims: ((5 obtain Y,
i.e. the prediction of the value of Y corresponding
to future measured X-vectors as accurately as
possible, and (b) understand the structural rela-
tionships between Y and attributes in X.

The regression model represents Y, ..., Yy by
random variables with, for some appropriate func-
tion ¢ and predictor Function ¢:

Y,‘ = F (Yi) =49 (¢(Xz ;B)sa) (1)

where ¥ = E (Y;) is the predicted , or expected
value of Y;, o and B being vectors of unknown
parameters. Regression analysis provides
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(a) FIGURE 1

procedures for estimating such unknown parame-
ters from the learning sample by likelihood maxim-
ization. To allow estimation of parameters, the
regression model has to be completed by explicitly
modeling the "noise" on the data (which, impor-
tantly, 1s something Al procedures ignore). This
amounts to specifying the probabilistic distribution
of the Y’s.

The predictor function ¢(X;B8) is the minimal
summary of the measurement vector X sufficient
to determine Y . That is to say that it "tells the
whole story" about the structure of the relation—
ships between Y and X. The form of ¢ and «
parameters are important, but unrelated to stable
notions in the human memory such as the interac-
tions between X variables in predicting Y .

Note that (1) is in general a nonlinear model. An
interesting class of models, called generalized
linear models, has ¢ linear in the parameters 8.

As an example, consider the scatter diagram in Fig.
la summarizing a fictitious data set where eac
sample individual is characterized by two continu-
ous variables (Y, X ;) and a binary one (X ).
regressing Y on (X, X,), we obtain the model
reported in Fig. 15.

3. BINARY REGRESSION TREES (BRT)

The regression model in Fig. 15 can be
ag roximate througll‘l the Binary Regression Tree
(BRT), in Fig.1c. Through a sequence of binary
SElits ased on the value of explanatory variables,
the BRT partitions the entire population,
represented by the root of the tree, into a hierarch—
ically organized set of subpopulations, represented
by the other nodes of the tree. Each edge of the
tree is labeled by an assignment of true or false to
a binary variable, which sometimes is an attribute
originally coded as true or false, and sometimes is a
logical expression of the form (z >z ), obtained by

Y\=¢(X1,X2)=

(b)
-2+6X1-Xy

X2>0>

\true

false
/

e(-2,0) fe(-4,-2)

placing a cut-off point # on the continuous range
of an attribute X .

For a given node, the unique path from the root to
it determines an assignment of values {true, false)
to a subset of the %inary variables. The logical
conjunction of these assignments defines the sub-
population associated to that node. If these
assignments involve the entire set of binary vari-
ables, they determine the value of the predictor
function uniquely, so that a constant expected
value for the response variable is associated to that
node. If the assignment is incomplete, the predic-
tor function in tﬁat node is constrained within an
interval. Intervals associated to a set of nodes at a
iven depth of the tree ma}i‘ be not disjoint.
%escriptions by means of a BRT are more explicit,
informative, and directly usable than the regression
equation alone, though somewhat less precise in
predicting the response.

4. THE PROPOSED APPROACH

We propose an approach by which a BRT,
or a decision rule, is generated as an explana-
tion of a previously obtained regression
model. This amounts to finding simply described
classes, representing groups of examples with
homogeneous predicted response.

We point out two assumptions implicit in the
approach. First, that domain experts like logical
class descriptions of conjunciive type. Second,
that they like classes that can be linearly "ranked",
in the sense that they correspond to disjoint inter-
vals of response values.

The approach consists of three phases:

1. select a parsimonious predictor function ¢ (X)
from the learning sample by means of regres-
sion analysis.
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2  construct a complete BRT representing the
selected predictor function

3. simplify the BRT so that the final BRT indi-
c]ates a reasonable number of logically defined
classes

Let’s examine the three steps in more detail.

4.1. Selecting a predictor function

The aim of predictor selection is to achieve
an economical form of ¢(X) consistent with the
data of the learning sample, by reducing the
number of X —attributes includeg in ¢(X). The
need for such simplification arises particularly
when the number of predictors is large, and there is
an a priors suspicion that many of them are
measuring essentially equivalent things, and/or
some of them may be totally irrelevant to Y. Not
only does a "parsimonious" model enable one to
think better about the structure of predictor—
response relationships, but prediction of response
of new cases is more precise if unnecessary terms
are excluded from the predictor function. How-
ever, it’s worth while exploring the consequences of
leaving in the model more terms than a strict sta—
tistical significance criterion would indicate.

There is a large literature about this topic: see for
example [Aitkin,1978]. So we won’t further discuss
this aspect of the proposed methodology.

4.2. Growing a complete BRT.

A BRT such as the one in Fig. 1c is generated,
whose leaves correspond to subpopulations within
which the predictor function is constant. This kind
of BRT, namely where each leave corresponds to a
complete assignment of value to all "attributes
included in the predictor function, is called com-
plete. Usually the complete BRT is too compli-
cated to convey a simple interpretation of the data.
Therefore, a "simplification" phase, described in the
following, is needed.

4.3. Simplifying the BRT

. The complete BRT is submitted to a
simplification af)gorithm, whose output is a_pruned
tree, with a smaller number of leaves. Each of
these leaves generally constrains the predictor
function to lie within an interval. When there are
overlappin% intervals, suitable ezception terms are
added to the logical description of some leaves, so
that final descriptions individuate classes of exam-—
ples with well-separated response predictions. This
approach privileges "cue validity” with respect to
“category validity".
The simplification procedure may proceed further
with an amalgamation phase. This is fusing pairs
of leaves if corresponding response predictions are
not well-separated (either by statistical or subjec—
tive criteria). If the fused leaves have different
"parent” node, the tree becomes a lattice, i.e.
resents multiple-connections between nodes. This
introduces disjunctions in the class descriptions.

The following section intends to convey the basic
idea of the whole approach by illustrating it upon a
clinical case-study.
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5. AN APPLICATION

In a survival study interest centres on a group
or groups of patients for each of whom there is a
deﬁgned point event which we will call failure,
occurring after a length of time called the failure
time. Vgalues are available for each patient of clin—
ical attributes a prior: thought to be related to
failure time.

As an example we will consider a_sample set of
data concerning Myelofibrosis with Myeloid Meta-
plasia 1\/[1\/1'1\16, a chronic myeloproliferative
disorder. The’ learning sample comprised 138
atients with MMM consecutively seen in the
epartment of Internal Medicine and Medical
Therapy of the University of Pavia from 1973 to
1985.

There were 20 attributes for each case, including
haematological laboratory tests, histological exami-
nation andg results from tracer studies. Most attri-
butes were of continuous type, others took values
on an ill-defined quantitative scale, or were of
binary type (exg. sex).

Time from MMM diagnosis to death was regarded
as failure time for our sample cases. Our aim was
defining a prognostic classification of MMM into
meaningful classes with different expected failure
time.

While a linear combination of attributes could
efficiently explain the statistical variability of
failure, nevert%eless we wanted results of the data
analysis to be expressed in a more "natural” and
better structured form, so as to allow clinical
experts to better confront them with their personal

knowledge.

A method used by many clinicians is to dichotom-
ize according to survival or nonsurvival at a critical
period such as five years. In case of dichotomiza~
tion, learning from pre—classified examples can be
used. This approach is often quite unsatisfactory,
for the following reasons. First: concentration on a
single time point of the survival experience neces—
sarﬁy wastes some information. The critical time
threshold ought itself to be determined in such a
way that wasted information is minimized.
Second, allowance should be made for more than
two disjoint intervals over the range of failure
times. But how can their number an location be
optimized ?

This learning problem is further complicated
from the frequent difficulties encountered in
obtaining relevant data. In particular, some
patients of the learning sample may not have been
observed for the full time to 4azlure. As a matter
of fact, for only 60 of our 137 sample cases death
was observed. For the remaining 77 cases only a
"censored" survival time was avallable, that is we
only knew that it was higher than a certain value.

The regression step

We used Cox’s regression model ECox,1972]
which allows correlating censored failure time
observations with a set o% (mixed-type) attributes.
This model fully characterizes an individual for the
urpose of redy;ctin failure time by a linear com-
gination ¢ (X) of t‘ﬁle attributes, which has the



meaning of a relative risk. In fact, Cox’s model
assumes that the ratio of the instantaneous risks of
death for any two individuals A, B with measure-
ment vectors X, and Xp restectively, is constant
over time, and given by log(¢(X4)—¢(X5g)).
Based on MMM data, we performed a ierarcl?ical
set of likelihood-ratio tests to select terms for
inclusion in ¢(X). Then we dichotomized continu-
ous attributes by choosing optimal cut-offs on a
likelihood maximization basis. The final form of the
predictor function was:

¢(A,H,C,T) =

—-6.51+1.9 A +0.85 H +4.8C +39-C T (2)
where: A = (Age > 45 yrs), H= (Hb < 13 ¢ /dl),
C = (Cellularity = aplastic), T = (TEIT < 200).
Rather than restricting himself /herself to patterns
of additive composition of attribute effects, one
ought better to try in ¢ patterns of interaction
among attributes. The interaction term (-CT ),
for example, implies that the "effect" of having

TEIT <200 is to be taken into account only if the
cellularity is not aplastic.

Growing the complete BRT
PX)=-65+19A +085H +48C +397CT

A =(AGE >45)
H=(HB <13)

C =(CELLULARITY:aplastic)

T =(TEIT <200)

Bas] (s8] (o8] [=7] (o]

B 1 mel @l @ @ A
FIGURE 2

Fig. 2 shows the complete BRT grown from

¢(A ,H,C,T). Attributes to which the domain
expert attached more importance were used for
top-level splittings.
Each leave of the BRT contains in the box the
value of ¢>¥A ,H ,C ,T), and in square brackets the
number of sample cases associated to it. The
leaves are ordered from left to right in the figure
according to increasing value of the predictor func—
tion. The BRT is unﬁaalanced, because the leaves
with an empty set of sample cases were pruned.

The simplification step

The BRT shown in Fig. 2 was simplified by
means of the algorithm described in sec.7, and then
the pair of leaves corresponding to the highest risk
were amalgamated since the domain expert didn’t
perceive that they represent substantially different
classes. The result of this process is in l*xig.3. The
leaves correspond to 4 risk classes characterized by

FIGURE 3

intervals on ¥ completely consistent with the ori-

inal predictor function (2). The "price" to be paid
or the simplification is having a RESIDUAL sub-
population of "unclassified" patients. The algo-
rithm in sec. 7 allows minimizing the residual. In
fact, only 8 of our 138 cases fell in it.

A clinical expert translated the simplified tree:
"Four risk-classes C,---C,4 in order of
increasing risk were singled out. C,; was
entirely fqormed by all patients with age < 45,
except a very small portion of them that had red
cell aplasia. C, was formed by all and only
cases above-45 with a very favourable pattern of
erythropoiesis, as indicated by absence of
anemia and marked ezpansion of erythro-
potesis. Ca was formed by anemic patients
above-45 without severe erythroid failure. C,
was formed by patients with anemia caused to
severe erythroz'dpfailure, this latter being indi-
cated by presence of red

cell aplasia or of
extremely reduced TEIT."

6. RELATIONS TO PREVIOUS WORK.

A number of induction algorithms have been
developed for dealing with noisy domains and
avoiding overfitting.  PLS1 |Rendell, 1987}, for
example, is capable of dealing with classes defined
on a "probabilistic continuum”. [Quinlan, 1983] and
[Breiman, 1984/ propose recursive splitting (RS
algorithms in order to build a decision iree, an
propose pruning an already created decision tree to
obtain an "honest-sized" tree.

Our proposed algorithm may be compared with RS
algorithms with relation to a number of issues.

"Global" rather than "local' tests. In a RS algo-
rithm, the criterion for selecting a_split at a node
takes into account only the limited portion of the
data represented by that node, while 1n a regression
model each parameter summarizes the effect of an
attribute over the whole learning sample. As a
consequence, our approach is more efficient in
managing statistical power in the data, it doesn’t
easily "loose breath" after a few splits due to the
shrinking of the subsets, and doesn’t require a
stopping criterion.
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Stability. RS is known to produce very different
results depending on which attribute is chosen for
the first split. In RS the splitting criterion doesn’t
reward splittings in terms of the continued growth
of the tree. This means unstability and subop-
timality. Model selection in regression is much
more stable.

Other advantages of our approach concern the pos—
sibility of taking into account "confounding” vari-
ables, and of dealing with particular forms of
incomplete information.

7. SIMPLIFICATION ALGORITHM

~ We now formalize how the complete regres—
sion tree is simplified and then used to derive logi-
cal class descriptions.

We begin with some straightforward definitions.

Let © be a complete BRT representing a predictor
function ¢ (X).
DEFINITION 1. Two nodes of © are said to be

independent when none of them is successor of
the other one.

DEFINITION 2. A set of independent nodes is
complete when each leave of © coincides with, or
is successor of, ezactly one of them.

DEFINITION 3. A complete set of independent
nodes of ©, linearly ordered to form a sequence
(N, ..., Ng), iscalled I-chain.

Many I-chains can usually be defined on a BRT.

The first and last nodes of the chain are called root
and sink of the chain, respectively.

Let Iy, ...,l, denote the leaves of ©. If ¢(/;)
denotes the value of the predictor function associ-
ated to the generic [;, we assume for simplicity
that leaves can be strictly ordered according to ¢,
and that they are indexed so that:

b)) > (L) 1<i Sn—1 (3)

For a generic internal node N; of O, let L&N,»z_
denote the set of leaves which are descendants o

DEFINITION 4. Given two independent nodes
N; and N; of @, the expression :

L(N;) > L(N:) (4)
means that for any [, € L (N; ) and lg € L (N, ):
¢(la)>¢(ls)

DEFINITION 5. An I-chain is consistent when
for any couple of nodes of the chain N;, N;, with
i,7 €(1,....k), 7 >1,the inequality (4) is vahd.
The "group-ordering condition" implicit in the
definition of consistency given above guarantees
that the nodes of the I-chain bear on disjoint
intervals of the response variable, to the benefit of
the characterization of associated classes.

In an inconsistent I-chain I there always
exists a set R (I ) of sets of leaves, which are called
residual sets with the propert _tila.t if we "ignore”
all leaves belonging to any r{: )€ R (), then I
appears to be consistent.
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To a residual set r (I )€ R (/) we assign a "penalty”
PEN (r (1)) given by the number of sample cases
attached to 1t, weighted on the basis of a utility of
correctly classifying them. Given an l-chain, we
may look for a (not-necessarily unique) optimal
residual set 7 (/)eR(I), i.e the r (]2 with
minimum penalty. The problem is then that of
finding

I= min
Ter

where I' denotes the set of I-chains on © with a
certain restriction on,.the number of chain-nodes.
The set of nodes in I will correspond to the final
set of classes, and the logical descriptions for these
classes will éepend both on the structure of the
tree and on the residual set.

a)

PEN (7 (1))

P I Is i Is le l7 Is

|5 '6 |7 |8

I4 l2 la ls

FIGURE 4

As an example, consider Figs. 4a,b, showing two
alternative I-chains on the BRT obtained from
MMM data. The one in Fig. 4b is obtained by
iteratively expanding the one in Fig. 4a. The two
I-chains share a common residual set. In fact, if
we "ignore" [ and 4, we find that the sets of leaves
descending from the three nodes of the first I-
chain, or from the five nodes of the second 1-chain,
lie on disjoint intervals of the response.

The following is an algorithm for finding a
sub—optimal solution.

(1) select aset N of independent nodes of ©

(2) define an I-chain I by ranking nodes in N
according to the mean value of ¢

(3) by means of algorithm FIND-RESIDUAL:
(a) find an optimal residual set 7 (/)

(b) from I and 7 (1) derive a set of logical
class descriptions

set PMIN =PEN (7 (1))

(4) expand the I—chain by selecting a node and
replacing it with its immediate successors

then reapply FIND-RESIDUAL. Proceed



iteratively with further expansions as long as
there are expandable nodes in the chain and
the minimum-penalty is not too high with
respect to PM IP’V

(5) when a stable I-chain is reached, amalgamate
classes which do not significantly differ in
expected response.

8. ALGORITHM FIND-RESIDUAL

The crucial and computationally most difficult
step of the algorithm described in the previous sec—
tion is ste 3}). This step is managed through
algorithm %‘I N —RESIDUKL, described in this
section.

In order to make it suitable for object—oriented
programming, this algorithm is based on a self-
activated propagation mechanism, in which the
nodes of the tree are viewed as autonomous proces-
sors, communicating locally via the links of the tree
or of the I-chain.

To perform its autonomous computations, each
node N; of the I-chain uses a working memor
containing: (@) two NL -dimensional arrays a; an
B, (b) ascalar M;, (c)alist L;, (d)alist RES
Each N; is able to compute through a function
subs  the value of a logical variable
s;; = subs (I; N, ), which is 1 (0) if [; is (is not) a
successor of jV,v in ©.

The algorithm has two phases. In the first ,
the computations are triggered by "messages” sent
along the links of the I-chain. In the second phase,
messages are sent along the edges of @.

Propagation along the I-chain

00000000, 11111111 _ o.:11222222
1111111 201222222 301133333

—
Mi=0. Mo=2_  M3=3
Li=(hly)  Le=(h) L3=(lslslg l71e)

| | |
RES1= nil HESZ=ni| RE33= (I515)

FIGURE 5

This process is illustrated by Fig. 5. Each N;
(except the root), upon receiving from N;_; a mes-
sage containing a;_, and B;_;, computes a; and
B; iteratively:

oy {J;
B: ()
for j=1,.,NL, assumin

=a; (0)= B; (0? =0. Then N,

corresponding elements in o; and 8, .

(1

{ 7 — ] Ut -

ag(s)=  Bols)
airwise compares
Upon finding

a, (7)2B:(7), it sets M, =7 . Finally, N, sends:
o; and B8, as a message to N, 4.

The above propagation process is triggered by
activating the root IV to compute:

B](0)=0 k] 0‘1(.7.)20 )
B1(J )=maxisy; ,8,(s =1)}, 7=1,.,NL

and to send to N, a message containing a; and 8.
After computing P 1% sets
Ly =(l(m, +1), - - - » Inp ) and triggers a "f)ackwards"
%ropa%)ation by sending M, as a message to N;_;

he "backwards" propagation wave ripples afong
the I-chain by a simple mechanism: eacll)m N; , upon
receiving M; rom N1 computes
L= (LM, +1)lm,, )» looks for all leaves I € L,
which are not among its own successors and puts
them in the list RES;. The final residual set is
obtained by joining the RES -lists.

The algorithm above generates only one residual
set, which may not be the optimal one. The exten—
sion of the algorithm to generate the full set of
residual sets, which may be then searched for the
optimal residual set, is straightforward, but its
description is too lengthy to be included. It is
available from the author upon request.

Propagation along the tree edges

This propagation generates logical descrip-
tions for the classes represented by the nodes of
the I-chain. Each node of the I-chain, say node
N, interrogates its predecessor nodes in @ to know
the value assignments labeling edges on the path
from N to the root. This conjunction of such
assignments provides a logical description of the
general class represented by N . Then it interro-
gates its own successors in © to know value assign-
ments labeling the edges connecting N to the
leaves falling in its own RES list. The conjunction
of these latter value assignments yields a logical
formula which tells how to discriminate from the
general class represented by N those examples
which fall in the residual set, i.e. that have
response values which are more typical of other
classes. For example, node N ; has a general class
description (\—-.42. Value assignments along the

ath from N, to the residual leave descending
rom it, [ are (H) and ((‘H) The final class
description will then be (=4 ~(HC)).
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